期刊论文详细信息
JOURNAL OF ALGEBRA 卷:322
The set of fixed points of a unipotent group
Article
Jelonek, Zbigniew1  Lason, Michal1,2 
[1] Polish Acad Sci, Inst Matemat, PL-31027 Krakow, Poland
[2] Uniwersytet Jagiellonski, Wydzial Matemat & Informat, PL-30348 Krakow, Poland
关键词: Affine variety;    Unipotent algebraic group;    Set of fixed points;   
DOI  :  10.1016/j.jalgebra.2009.06.007
来源: Elsevier
PDF
【 摘 要 】

Let K be an algebraically closed field. Let G be a non-trivial connected unipotent group, which acts effectively on an affine variety X. Then every non-empty component R of the set of fixed points of G is a K-uniruled variety, i.e., there exist an affine cylinder W x K and a dominant, generically-finite polynomial mapping phi : W x K -> R. We show also that if an arbitrary infinite algebraic group G acts effectively on K-n and the set of fixed points contains a hypersurface H, then this hypersurface is K-uniruled. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2009_06_007.pdf 138KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次