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1. Introduction

Let K be an algebraically closed field (of arbitrary characteristic). Let G be a connected unipotent
algebraic group, which acts effectively on a variety X. The set of fixed points of this action was
studied intensively (see, e.g., [1-4]). In particular Biatynicki-Birula has proved that if X is an affine
variety, then G has no isolated fixed points.

Here we consider the case when X is an affine variety. We generalize the result of Bialynicki-Birula
and we prove, that the set Fix(G) of fixed points of G is in fact a K-uniruled variety. In particular for
every point x € Fix(G) there is a polynomial curve ¢ : K — Fix(G) such that ¢(0) =x.

We show also that if an arbitrary infinite algebraic group G acts effectively on K" and the set of
fixed points contains a hypersurface H, then this hypersurface is K-uniruled. This generalizes [6].
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2. Preliminaries

At the beginning we recall some basic facts about K-uniruled varieties (see [7]).

Proposition 2.1. Let I" be an affine curve. The following two statements are equivalent:

(1) there exists a regular bi-rationalmap ¢ : K — I';
(2) there exists a regular dominant map ¢ : K — I'.

Definition 2.2. Let I" be an affine curve which has the property (1) (or (2)) from the above proposi-
tion. Then I" will be called an affine polynomial curve and the mapping ¢ will be called a parametriza-
tion of I'. A family F of affine polynomial curves on X is called bounded if there exist an embedding
i: Xlg K" and a natural number D such that every curve I" € F has degree less then or equal to D
in K.

Remark 2.3. It is easy to see that the definition of bounded family does not depend on an embedding
i:X— KN,

Now we give the definition of a K-uniruled variety. We have introduced this notion for uncountable
fields in [7]. However, here we work over any field and we need a refined version of the definition (it
coincides with the older one for uncountable fields).

Proposition 2.4. Let X C KN be an irreducible affine variety of dimension > 1. The following conditions are
equivalent:

(1) there is a bounded family F of affine polynomial curves, such that for every point x € X there is a curve
Iy € F going through x;

(2) there is an open, non-empty subset U C X and a bounded family F of affine polynomial curves, such that
for every point x € U there is a curve Iy € F going through x;

(3) there exists an affine variety W with dim W = dim X — 1 and a dominant polynomial mapping ¢ : W x
K — X.

Proof. (1) = (2) is obvious. (2) = (3) follows from [10]. (3) = (2) is obvious. We prove (2) = (1).
Assume that X C K". Every curve Iy € F is given by n polynomials of one variable:

D D
I(t) = ()q + Zalviti, e Xn Za”’iti).
i=1

i=1

Let A denote an nD — 1-dimensional weighted projective space with weights 1,2,...,D,...,1,2,...,D.
Hence we can associate Iy with one point

(x1, ..., xpzat, o alPa®t L a® P am L dP) e X x A

Let {fi=0,i=1,...,m} (fi € K[x1,...,%;]) be equations of the variety X. The condition Iy C X is
equivalent to conditions fi(ly(t)) =0, i=1,...,m. The last equations are in fact equivalent to a finite
number of polynomial equations

ha (X1, . xsat o d Pyt a Py d L dP) =0,

which are weighted homogeneous with respect to ab'1,...,al-P;a®1, ... a?P; . .;a™!, ... a"P. Let

W C X x A be a variety described by polynomials h, and let 7 : X x A — X be the projection. The
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mapping 7 is proper, in particular the set 7 (W) is closed. Since 7 (W) contains the dense subset U,
we have t(W)=X. O

Now we can state:

Definition 2.5. An affine irreducible variety X is called K-uniruled if it is of dimension > 1, and
satisfies one of equivalent conditions (1)-(3) listed in Proposition 2.4.

If the field K is uncountable we have stronger result (see [10]):

Proposition 2.6. Let K be an uncountable field. Let X be an irreducible affine variety of dimension > 1. The
following conditions are equivalent:

(1) X is K-uniruled;

(2) for every point x € X there is a polynomial affine curve in X going through x;

(3) there exists a Zariski-open, non-empty subset U of X, such that for every point x € U there is a polynomial
affine curve in X going through x;

(4) there exists an affine variety W with dim W = dim X — 1 and a dominant polynomial mapping ¢ : W x
K — X.

Let X be a smooth projective surface and let D = 2?21 D; be a simple normal crossing (s.n.c.)
divisor on X (here we consider only reduced divisors). Let graph(D) be a graph of D, i.e., a graph
with one vertex Q; for each irreducible component D; of D, and one edge between Q; and Q; for
each point of intersection of D; and D;.

Definition 2.7. Let D be a simple normal crossing divisor on a smooth surface X. We say that D is a
tree if graph(D) is connected and acyclic.

We have the following fact which is obvious from graph theory:

Proposition 2.8. Let X be a smooth projective surface and let divisor D C X be a tree. Assume that D', D” C D
are connected divisors without common components. Then D’ and D” have at most one common point.

Definition 2.9. Let X, Y be affine varieties and f : X — Y be a regular mapping. We say that f is finite
at a point y € Y if there exists an open neighborhood U of y such that res;-1 ) f: flU)y—>Uisa
finite map.

It is well known that if f is generically finite, then the set of points at which f is not finite is
either empty or it is a hypersurface in f(X) (for details see [7,8]). We denote this set by Sy. Now we
can formulate the following useful:

Theorem 2.10. Let I" be an affine curve. Let ¢ : I x K — KN be a generically-finite mapping. Then the set S
is a union of finitely many (possibly empty) of affine polynomial curves.

Proof. Taking a normalization we can assume that the curve I is smooth (note that a normalization
is a finite mapping). Let I" be a smooth completion of I" and denote I" \ I" = {ay,...,q}. Let X =
I'xK and X =T x P! be a projective closure of X. The divisor D =X\ X =T x 0o+ Y_i_,{a;} x P!
is a tree. Now we can resolve points of indeterminacy of the mapping ¢:



Z. Jelonek, M. Lasori / Journal of Algebra 322 (2009) 2180-2185 2183

X m

Tm

X m—1

Tm—1

1

Note that the divisor D’ = *(D) is a tree. Let I" x oo’ denote a proper transform of I" x co. It is an
easy observation that ¢'(I" x 00’) C Huo, where Hy, denotes the hyperplane at infinity of PN. Now
Sp =¢'(D'\ ¢’ 1(Hs)). The curve L = ¢'~1(Hyo) is a complement of a semi-affine variety ¢’ ~1(K™)
hence it is connected (for details see [7, Lemma 4.5]). Now by Proposition 2.8 we have that every
irreducible curve Z C D’ which does not belong to L has at most one common point with L. Let
S C Sy be an irreducible component. Hence S is a curve. There is a curve Z C D’, which has exactly
one common point with L such that S =¢’(Z \ L) = ¢’(K). This completes the proof. O

3. Main result
The aim of this section is to prove the following:

Theorem 3.1. Let G be a non-trivial connected unipotent group which acts effectively on an affine variety X.
Then every non-empty component R of the set of fixed points of G is a K-uniruled variety.

Proof. First of all let us recall that a connected unipotent group has a normal series
0=GocGiC---CGr=0G,

where G;/Gi_1 = G4 = (K, +, 0). By induction on dim G we can easily reduce the general case to that
of G =G,.

First assume that the field K is uncountable. Take a point a € R. By Proposition 2.6 it is enough
to prove, that there is an affine polynomial curve S C Fix(G) through a. Let L be an irreducible curve
in X going through a, which is not contained in any orbit of G and it is not contained in Fix(G).
Consider a surface Y =L x G. There is natural G action on Y: for he G and y = (I, g) € Y we put
h(y) = (, hg) € Y. Take a mapping

D:LxG>3(8) — gk eX.

It is a generically-finite polynomial mapping. Observe that it is G-invariant, i.e., ®(gy) = g®(y). This
implies that the set S¢ of points at which the mapping @ is not finite is G-invariant. Indeed, it is
enough to show that the complement of this set is G-invariant. Let @ be finite at x € X. This means
that there is an open neighborhood U of x such that the mapping @ : ®~1(U) — U is finite. Now we
have the following diagram:
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g
o~H(U)

®1(gU) = g@(U)

U qgU

This diagram shows that the mapping @ is finite over gU if it is finite over U. In particular this
implies that the set S¢ is G-invariant. Let S = S U Sy U--- U S, be a decomposition of S¢ in
(irreducible) affine polynomial curves (see Theorem 2.10). Since the set S is G-invariant, we have
that each curve S; is also G-invariant. Note that the point a belongs to Sg, because the fiber over a
has infinite number of points. We can assume that a € Sy. Let x € S1, we want to show that x € Fix(G).
Indeed, otherwise G.x = S and a would be in the orbit of x—a contradiction. Hence S{ C Fix(G) and
we conclude our result by Theorem 2.10.

Now assume that the field K is countable. Let X C K". Let T be uncountable algebraically closed
extension of K. By the base change the group G acts on X C T". Moreover, the variety R C T" is a
component of the set of fixed points of G (because the set R is dense in R). By the first part of our
proof the variety R is T-uniruled. In particular there exists a number D such that for every point
x € R there is a polynomial affine curve Iy C R € T", of degree at most D, going through x. Note that
it is true for every point x € R.

Every such curve I, is given by n polynomials of one variable:

d d
L(t) = (x1 + Zal*iti, o Xp Za”*’f’),
i=1

i=1

where d < D. Hence we can associate [ with one point

@ a .. a% a0 a0 dm ) e T
We can assume without loss of generality that al-¢ =1.Let {fi=0, i=1,....m} (fi € K[x1,...,xa])
be equations of the variety S. The condition Iy C R is equivalent to conditions f;(I(t)) =0, i =
1,...,m. The last equations are in fact equivalent to a finite number of polynomial equations
hOl (al,O al,] a],d. a2,0 az,d. . an,o an,d) =0
where hy € K[y1, ..., yn]. Equations hy = 0 plus extra conditions a0 =xj,i=1,...,n, and ald=1

have solutions in the field T, hence they have also solutions in the field K.

This means that we can find an affine polynomial curve I, over the field K of degree at most D,
which is contained in R and goes through x. Consequently the variety R is K-uniruled. The proof of
Theorem 3.1 is complete. O

Corollary 3.2. (See Biatynicki-Birula, [1].) Let G be a non-trivial connected unipotent group which acts effec-
tively on an affine variety X. Then G has no isolated fixed points.

Theorem 3.1 (or rather its proof) suggests the following generalization of [6]:
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Theorem 3.3. Let G be an infinite algebraic group which acts effectively on K", n > 2. Assume that an irre-
ducible hypersurface W is contained in the set of fixed points of G. Then W is K-uniruled.

Proof. Since G acts effectively on affine space K" we can assume by the Chevalley Theorem (see [9,
Theorem C, p. 190]) that the group G is affine. In particular it contains either the subgroup G, =
(K*, -, 1) or the subgroup G, = (K, +,0) (see, e.g., [5]). Thus we can assume that G is either G, or it
is Gq.

As before we can assume that the field K is uncountable. Take a point a € W. By Proposition 2.6
it is enough to prove, that there is an affine parametric curve S ¢ W through a. Let L be a line in
K™ going through a such that the set L N Fix(G) is finite. Set LN W ={a,as, ..., an}. Now consider a
mapping

¢:LxG>(x,g) — gx) e K"

Observe that ¢ (L x G) is a union of disjoint orbits of G. This implies ¢ (L x G) "W ={a,ay,...,an}.
Take X = ¢ (L x G). Note that XN W is a union of curves. This means that there is a curve S Cc XNW,
which contains the point a. However S C X \ ¢(L x G). This implies that S C S4 and we conclude by
Theorem 2.10. O

To finish this note we state:

Conjecture. Let K be an algebraically closed field. Let G be an algebraic group, which acts effectively on K™.
If S is an irreducible component of the set of fixed points of G, then S is either a point or it is a K-uniruled
variety.
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