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Let K be an algebraically closed field. Let G be a non-trivial
connected unipotent group, which acts effectively on an affine
variety X . Then every non-empty component R of the set of fixed
points of G is a K -uniruled variety, i.e., there exist an affine
cylinder W × K and a dominant, generically-finite polynomial
mapping φ : W × K → R . We show also that if an arbitrary infinite
algebraic group G acts effectively on K n and the set of fixed points
contains a hypersurface H , then this hypersurface is K -uniruled.
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1. Introduction

Let K be an algebraically closed field (of arbitrary characteristic). Let G be a connected unipotent
algebraic group, which acts effectively on a variety X . The set of fixed points of this action was
studied intensively (see, e.g., [1–4]). In particular Białynicki-Birula has proved that if X is an affine
variety, then G has no isolated fixed points.

Here we consider the case when X is an affine variety. We generalize the result of Białynicki-Birula
and we prove, that the set Fix(G) of fixed points of G is in fact a K -uniruled variety. In particular for
every point x ∈ Fix(G) there is a polynomial curve φ : K → Fix(G) such that φ(0) = x.

We show also that if an arbitrary infinite algebraic group G acts effectively on K n and the set of
fixed points contains a hypersurface H, then this hypersurface is K -uniruled. This generalizes [6].
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1 Partially supported by the grant of Polish Ministry of Science, 2006–2009.
0021-8693/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2009.06.007

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:najelone@cyf-kr.edu.pl
mailto:mlason@op.pl
http://dx.doi.org/10.1016/j.jalgebra.2009.06.007
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.

2. Preliminaries

At the beginning we recall some basic facts about K -uniruled varieties (see [7]).

Proposition 2.1. Let Γ be an affine curve. The following two statements are equivalent:

(1) there exists a regular bi-rational map φ : K → Γ ;
(2) there exists a regular dominant map φ : K → Γ .

Definition 2.2. Let Γ be an affine curve which has the property (1) (or (2)) from the above proposi-
tion. Then Γ will be called an affine polynomial curve and the mapping φ will be called a parametriza-
tion of Γ . A family F of affine polynomial curves on X is called bounded if there exist an embedding
i : X ⊂ K N and a natural number D such that every curve Γ ∈ F has degree less then or equal to D
in K N .

Remark 2.3. It is easy to see that the definition of bounded family does not depend on an embedding
i : X → K N .

Now we give the definition of a K -uniruled variety. We have introduced this notion for uncountable
fields in [7]. However, here we work over any field and we need a refined version of the definition (it
coincides with the older one for uncountable fields).

Proposition 2.4. Let X ⊂ K N be an irreducible affine variety of dimension � 1. The following conditions are
equivalent:

(1) there is a bounded family F of affine polynomial curves, such that for every point x ∈ X there is a curve
lx ∈ F going through x;

(2) there is an open, non-empty subset U ⊂ X and a bounded family F of affine polynomial curves, such that
for every point x ∈ U there is a curve lx ∈ F going through x;

(3) there exists an affine variety W with dim W = dim X − 1 and a dominant polynomial mapping φ : W ×
K → X .

Proof. (1) ⇒ (2) is obvious. (2) ⇒ (3) follows from [10]. (3) ⇒ (2) is obvious. We prove (2) ⇒ (1).
Assume that X ⊂ K n. Every curve lx ∈ F is given by n polynomials of one variable:

lx(t) =
(

x1 +
D∑

i=1

a1,iti, . . . , xn +
D∑

i=1

an,iti

)
.

Let Δ denote an nD −1-dimensional weighted projective space with weights 1,2, . . . , D, . . . ,1,2, . . . , D
Hence we can associate lx with one point

(
x1, . . . , xn;a1,1, . . . ,a1,D;a2,1, . . . ,a2,D; . . . ;an,1, . . . ,an,D) ∈ X × Δ.

Let { f i = 0, i = 1, . . . ,m} ( f i ∈ K [x1, . . . , xn]) be equations of the variety X . The condition lx ⊂ X is
equivalent to conditions f i(lx(t)) = 0, i = 1, . . . ,m. The last equations are in fact equivalent to a finite
number of polynomial equations

hα

(
x1, . . . , xn;a1,1, . . . ,a1,D;a2,1, . . . ,a2,D; . . . ;an,1, . . . ,an,D) = 0,

which are weighted homogeneous with respect to a1,1, . . . ,a1,D;a2,1, . . . ,a2,D; . . . ;an,1, . . . ,an,D . Let
W ⊂ X × Δ be a variety described by polynomials hα and let π : X × Δ → X be the projection. The
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mapping π is proper, in particular the set π(W ) is closed. Since π(W ) contains the dense subset U ,
we have π(W ) = X . �

Now we can state:

Definition 2.5. An affine irreducible variety X is called K -uniruled if it is of dimension � 1, and
satisfies one of equivalent conditions (1)–(3) listed in Proposition 2.4.

If the field K is uncountable we have stronger result (see [10]):

Proposition 2.6. Let K be an uncountable field. Let X be an irreducible affine variety of dimension � 1. The
following conditions are equivalent:

(1) X is K -uniruled;
(2) for every point x ∈ X there is a polynomial affine curve in X going through x;
(3) there exists a Zariski-open, non-empty subset U of X, such that for every point x ∈ U there is a polynomial

affine curve in X going through x;
(4) there exists an affine variety W with dim W = dim X − 1 and a dominant polynomial mapping φ : W ×

K → X .

Let X be a smooth projective surface and let D = ∑n
i=1 Di be a simple normal crossing (s.n.c.)

divisor on X (here we consider only reduced divisors). Let graph(D) be a graph of D , i.e., a graph
with one vertex Q i for each irreducible component Di of D , and one edge between Q i and Q j for
each point of intersection of Di and D j .

Definition 2.7. Let D be a simple normal crossing divisor on a smooth surface X . We say that D is a
tree if graph(D) is connected and acyclic.

We have the following fact which is obvious from graph theory:

Proposition 2.8. Let X be a smooth projective surface and let divisor D ⊂ X be a tree. Assume that D ′, D ′′ ⊂ D
are connected divisors without common components. Then D ′ and D ′′ have at most one common point.

Definition 2.9. Let X, Y be affine varieties and f : X → Y be a regular mapping. We say that f is finite
at a point y ∈ Y if there exists an open neighborhood U of y such that res f −1(U ) f : f −1(U ) → U is a
finite map.

It is well known that if f is generically finite, then the set of points at which f is not finite is
either empty or it is a hypersurface in f (X) (for details see [7,8]). We denote this set by S f . Now we
can formulate the following useful:

Theorem 2.10. Let Γ be an affine curve. Let φ : Γ × K → K N be a generically-finite mapping. Then the set Sφ

is a union of finitely many (possibly empty) of affine polynomial curves.

Proof. Taking a normalization we can assume that the curve Γ is smooth (note that a normalization
is a finite mapping). Let Γ be a smooth completion of Γ and denote Γ \ Γ = {a1, . . . ,al}. Let X =
Γ × K and X = Γ × P

1 be a projective closure of X . The divisor D = X \ X = Γ × ∞ + ∑l
i=1{ai} × P

1

is a tree. Now we can resolve points of indeterminacy of the mapping φ:
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Note that the divisor D ′ = π∗(D) is a tree. Let Γ × ∞′ denote a proper transform of Γ × ∞. It is an
easy observation that φ′(Γ × ∞′) ⊂ H∞ , where H∞ denotes the hyperplane at infinity of P

N . Now
Sφ = φ′(D ′ \ φ′−1(H∞)). The curve L = φ′−1(H∞) is a complement of a semi-affine variety φ′−1(K N)

hence it is connected (for details see [7, Lemma 4.5]). Now by Proposition 2.8 we have that every
irreducible curve Z ⊂ D ′ which does not belong to L has at most one common point with L. Let
S ⊂ Sφ be an irreducible component. Hence S is a curve. There is a curve Z ⊂ D ′, which has exactly
one common point with L such that S = φ′(Z \ L) = φ′(K ). This completes the proof. �
3. Main result

The aim of this section is to prove the following:

Theorem 3.1. Let G be a non-trivial connected unipotent group which acts effectively on an affine variety X .

Then every non-empty component R of the set of fixed points of G is a K -uniruled variety.

Proof. First of all let us recall that a connected unipotent group has a normal series

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G,

where Gi/Gi−1 ∼= Ga = (K ,+,0). By induction on dim G we can easily reduce the general case to that
of G = Ga.

First assume that the field K is uncountable. Take a point a ∈ R. By Proposition 2.6 it is enough
to prove, that there is an affine polynomial curve S ⊂ Fix(G) through a. Let L be an irreducible curve
in X going through a, which is not contained in any orbit of G and it is not contained in Fix(G).

Consider a surface Y = L × G. There is natural G action on Y : for h ∈ G and y = (l, g) ∈ Y we put
h(y) = (l,hg) ∈ Y . Take a mapping

Φ : L × G 
 (x, g) → g(x) ∈ X .

It is a generically-finite polynomial mapping. Observe that it is G-invariant, i.e., Φ(gy) = gΦ(y). This
implies that the set SΦ of points at which the mapping Φ is not finite is G-invariant. Indeed, it is
enough to show that the complement of this set is G-invariant. Let Φ be finite at x ∈ X . This means
that there is an open neighborhood U of x such that the mapping Φ : Φ−1(U ) → U is finite. Now we
have the following diagram:
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This diagram shows that the mapping Φ is finite over gU if it is finite over U . In particular this
implies that the set SΦ is G-invariant. Let SΦ = S1 ∪ S2 ∪ · · · ∪ Sk be a decomposition of SΦ in
(irreducible) affine polynomial curves (see Theorem 2.10). Since the set SΦ is G-invariant, we have
that each curve Si is also G-invariant. Note that the point a belongs to SΦ , because the fiber over a
has infinite number of points. We can assume that a ∈ S1. Let x ∈ S1, we want to show that x ∈ Fix(G).

Indeed, otherwise G.x = S1 and a would be in the orbit of x—a contradiction. Hence S1 ⊂ Fix(G) and
we conclude our result by Theorem 2.10.

Now assume that the field K is countable. Let X ⊂ K n. Let T be uncountable algebraically closed
extension of K . By the base change the group G acts on X ⊂ T n. Moreover, the variety R ⊂ T n is a
component of the set of fixed points of G (because the set R is dense in R). By the first part of our
proof the variety R is T -uniruled. In particular there exists a number D such that for every point
x ∈ R there is a polynomial affine curve lx ⊂ R ⊂ T n, of degree at most D, going through x. Note that
it is true for every point x ∈ R.

Every such curve lx is given by n polynomials of one variable:

lx(t) =
(

x1 +
d∑

i=1

a1,iti, . . . , xn +
d∑

i=1

an,iti

)
,

where d � D. Hence we can associate l with one point

(
a1,0,a1,1, . . . ,a1,d;a2,0, . . . ,a2,d; . . . ;an,0, . . . ,an,d) ∈ T n.

We can assume without loss of generality that a1,d = 1. Let { f i = 0, i = 1, . . . ,m} ( f i ∈ K [x1, . . . , xn])
be equations of the variety S. The condition lx ⊂ R is equivalent to conditions f i(l(t)) = 0, i =
1, . . . ,m. The last equations are in fact equivalent to a finite number of polynomial equations

hα

(
a1,0,a1,1, . . . ,a1,d;a2,0, . . . ,a2,d; . . . ;an,0, . . . ,an,d) = 0,

where hα ∈ K [y1, . . . , yN ]. Equations hα = 0 plus extra conditions ai,0 = xi , i = 1, . . . ,n, and a1,d = 1
have solutions in the field T , hence they have also solutions in the field K .

This means that we can find an affine polynomial curve lx over the field K of degree at most D,

which is contained in R and goes through x. Consequently the variety R is K -uniruled. The proof of
Theorem 3.1 is complete. �
Corollary 3.2. (See Białynicki-Birula, [1].) Let G be a non-trivial connected unipotent group which acts effec-
tively on an affine variety X . Then G has no isolated fixed points.

Theorem 3.1 (or rather its proof) suggests the following generalization of [6]:
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Theorem 3.3. Let G be an infinite algebraic group which acts effectively on K n, n � 2. Assume that an irre-
ducible hypersurface W is contained in the set of fixed points of G. Then W is K -uniruled.

Proof. Since G acts effectively on affine space K n we can assume by the Chevalley Theorem (see [9,
Theorem C, p. 190]) that the group G is affine. In particular it contains either the subgroup Gm =
(K ∗, ·,1) or the subgroup Ga = (K ,+,0) (see, e.g., [5]). Thus we can assume that G is either Gm or it
is Ga.

As before we can assume that the field K is uncountable. Take a point a ∈ W . By Proposition 2.6
it is enough to prove, that there is an affine parametric curve S ⊂ W through a. Let L be a line in
K n going through a such that the set L ∩ Fix(G) is finite. Set L ∩ W = {a,a1, . . . ,am}. Now consider a
mapping

φ : L × G 
 (x, g) → g(x) ∈ K n.

Observe that φ(L × G) is a union of disjoint orbits of G. This implies φ(L × G) ∩ W = {a,a1, . . . ,am}.
Take X = φ(L × G). Note that X ∩ W is a union of curves. This means that there is a curve S ⊂ X ∩ W ,
which contains the point a. However S ⊂ X \ φ(L × G). This implies that S ⊂ Sφ and we conclude by
Theorem 2.10. �

To finish this note we state:

Conjecture. Let K be an algebraically closed field. Let G be an algebraic group, which acts effectively on K n.

If S is an irreducible component of the set of fixed points of G, then S is either a point or it is a K -uniruled
variety.
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