期刊论文详细信息
JOURNAL OF ALGEBRA 卷:572
Binomial edge ideals of small depth
Article
Malayeri, Mohammad Rouzbahani1  Madani, Sara Saeedi1,2  Kiani, Dariush1,2 
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran Polytech, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词: Binomial edge ideals;    Depth;    Hochster type formula;    Meet-contractible;   
DOI  :  10.1016/j.jalgebra.2020.11.024
来源: Elsevier
PDF
【 摘 要 】

Let G be a graph on [n] and J(G) be the binomial edge ideal of G in the polynomial ring S = K [x(1), ..., x(n), y(1), ..., y(n)] . In this paper we investigate some topological properties of a poset associated to the minimal primary decomposition of J(G). We show that this poset admits some specific subposets which are contractible. This in turn, provides some interesting algebraic consequences. In particular, we characterize all graphs G for which depth S/J(G) = 4. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2020_11_024.pdf 363KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次