期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:572 |
Binomial edge ideals of small depth | |
Article | |
Malayeri, Mohammad Rouzbahani1  Madani, Sara Saeedi1,2  Kiani, Dariush1,2  | |
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran Polytech, Tehran, Iran | |
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran | |
关键词: Binomial edge ideals; Depth; Hochster type formula; Meet-contractible; | |
DOI : 10.1016/j.jalgebra.2020.11.024 | |
来源: Elsevier | |
【 摘 要 】
Let G be a graph on [n] and J(G) be the binomial edge ideal of G in the polynomial ring S = K [x(1), ..., x(n), y(1), ..., y(n)] . In this paper we investigate some topological properties of a poset associated to the minimal primary decomposition of J(G). We show that this poset admits some specific subposets which are contractible. This in turn, provides some interesting algebraic consequences. In particular, we characterize all graphs G for which depth S/J(G) = 4. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2020_11_024.pdf | 363KB | download |