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Let G be a graph on [n] and JG be the binomial edge ideal of G
in the polynomial ring S = K[x1, . . . , xn, y1, . . . , yn]. In this 
paper we investigate some topological properties of a poset 
associated to the minimal primary decomposition of JG. We 
show that this poset admits some specific subposets which are 
contractible. This in turn, provides some interesting algebraic 
consequences. In particular, we characterize all graphs G for 
which depthS/JG = 4.
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1. Introduction

Binomial edge ideals were introduced in 2010 by Herzog, Hibi, Hreinsdóttir, Kahle 
and Rauh in [12] and independently by Ohtani in [19]. Let G be a simple graph on the 
vertex set [n] and the edge set E(G). Let S = K[x1, . . . , xn, y1, . . . , yn] be the polynomial 
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ring over 2n variables where K is a field. Then the binomial edge ideal associated to the 
graph G denoted by JG is an ideal in S which is defined as follows:

JG = (xiyj − xjyi : {i, j} ∈ E(G), 1 ≤ i < j ≤ n).

This class of ideals could be interpreted as a natural generalization of the well-studied 
so-called determinantal ideal of the (2 × n)-matrix

X =
[
x1 · · · xn

y1 · · · yn

]
.

The study of algebraic properties as well as numerical invariants of binomial edge 
ideals has attracted a considerable attention in the meantime, see e.g. [1,3,5,8–10,14,16–
18,20–22].

One of the interesting homological invariants associated to binomial edge ideals is 
depth. Let Hi

m(S/JG) denote the ith local cohomology module of S/JG supported on 
the irrelevant maximal ideal m = (x1, . . . , xn, y1, . . . , yn). Then we have

depthS/JG = min{i : Hi
m(S/JG) �= 0}.

While computing the depth of the binomial edge ideal of a graph is hard in general, 
there have been several attempts to get some interesting results in this direction for 
some special families of graphs. Moreover, some lower and upper bounds for the depth 
of binomial edge ideal of graphs have been obtained by several authors which will be 
briefly discussed in the sequel.

Let Cn denote the cycle on n vertices. In [24] it was shown that depthS/JCn
= n, for 

n > 3. Also, in [8] the authors showed that depthS/JG = n + 1, for a connected block
graph G. Later in [15] the authors computed the depth of a wider class of graphs which 
are called generalized block graphs. In [17], a nice formula was given for the depth of 
the join product of two graphs G1 and G2. Roughly speaking, the join product of two 
graphs G1 and G2, denoted by G1 ∗ G2, is the graph which is obtained from the union 
of G1 and G2 by joining all the vertices of G1 to vertices of G2, (the precise definition is 
given in Section 2).

In [3] the authors gave an upper bound for the depth of the binomial edge ideal 
of a graph in terms of some graphical invariants. Indeed, they showed that for a non-
complete connected graph G, depthS/JG ≤ n −κ(G) +2, where κ(G) denotes the vertex 
connectivity of G.

There is also a lower bound for depthS/JG. Indeed, let cd(JG, S) denote the cohomo-
logical dimension of JG in S, namely, cd(JG, S) = max{i : Hi

JG
(S) �= 0}. Now a result 

in [11] due to Faltings implies that

cd(JG, S) ≤ 2n−
⌊ 2n− 1 ⌋

, (1)
bigheight JG
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whenever JG �= (0). On the other hand, since S/JG is a cohomologically full ring by a 
result in [6], (see [7] for the definition of cohomologically full rings), by [7] we have that

depthS/JG ≥ 2n− cd(JG, S). (2)

Hence, by (1) and (2), we get the following lower bound for the depth of S/JG:

depthS/JG ≥
⌊ 2n− 1
bigheight JG

⌋
. (3)

In this paper we apply some results and techniques from the topology of posets to 
study the depth of binomial edge ideals. We are interested in studying binomial edge 
ideals of small depth. Specifically, we characterize all graphs G with depthS/JG = 4. This 
is based on a Hochster type decomposition formula for the local cohomology modules of 
binomial edge ideals provided recently by Àlvarez Montaner in [1].

This paper is organized as follows. In Section 2, we fix the notation and review some 
definitions and some known facts that will be used throughout the paper.

In Section 3, we associate a poset to the binomial edge ideal of a graph. Then, we 
state in Theorem 3.6 the Hochster type formula for the local cohomology modules of 
binomial edge ideals arised from [1, Theorem 3.9].

Section 4 is devoted to extract some topological properties like contractibility of some 
specific subposets of the poset associated to binomial edge ideals which is introduced in 
Definition 3.1.

In Section 5, in Theorem 5.2, we supply a lower bound for the depth of binomial 
edge ideals. In particular, we show that depthS/JG ≥ 4, where G is a graph with at 
least three vertices. Then, by using the aforementioned lower bound and also by the 
provided ingredients in Section 4, we characterize all graphs G with depthS/JG = 4, in 
Theorem 5.3.

2. Preliminaries

In this section we review some notions and facts that will be used throughout the 
paper. In this paper all graphs are assumed to be simple (i.e. with no loops, directed 
and multiple edges).

Let G be a graph on [n] and T ⊆ [n]. A subgraph H of G on the vertex set T is called 
an induced subgraph of G, whenever for any two vertices i, j ∈ T such that {i, j} ∈ E(G), 
one has {i, j} ∈ E(H). Moreover, by G − T , we mean the induced subgraph of G on 
the vertex set [n]\T . A vertex i ∈ [n] is said to be a cut vertex of G whenever G − {i}
has more connected components than G. We say that T has cut point property for G, 
whenever each i ∈ T is a cut vertex of the graph G − (T\{i}). In particular, the empty 
set ∅, has cut point property for G. We denote by C(G), the family of all subsets T of 
[n] which have the cut point property for G. Namely,
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C(G) = {T ⊆ [n] : T has cut point property for G}.

Let G1 and G2 be two graphs on the disjoint vertex sets V (G1) and V (G2), respec-
tively. Then by the join product of G1 and G2, denoted by G1 ∗G2, we mean the graph 
on the vertex set V (G1) ∪ V (G2) and the edge set

E(G1) ∪ E(G2) ∪ {{u, v} : u ∈ V (G1) and v ∈ V (G2)}.

Let G be a graph and T ⊆ [n]. Assume that G1, . . . , GcG(T ) are the connected 
components of G − T . Let G̃1, . . . , G̃cG(T ) be the complete graphs on the vertex sets 
V (G1), . . . , V (GcG(T )), respectively, and let

PT (G) = (xi, yi)i∈T + JG̃1
+ · · · + JG̃cG(T )

.

Then it is easily seen that

height PT (G) = n− cG(T ) + |T |.

Also, in [12, Corollary 3.9], it was shown that PT (G) is a minimal prime ideal of JG if 
T has cut point property for G. Moreover, it was proved in [12, Corollary 2.2] that JG
is a radical ideal. So, JG =

⋂
T∈C(G)

PT (G).

Let Δ be a simplicial complex. Recall that the 1-skeleton graph of Δ is the subcomplex 
of Δ consisting of all of the faces of Δ which have cardinality at most 2. The simplicial 
complex Δ is said to be connected if its 1-skeleton graph is connected.

Let (P, �) be a poset. Recall that the order complex of P, denoted by Δ(P), is the 
simplicial complex whose facets are the maximal chains in P. If P is an empty poset, 
then we consider Δ(P) = {∅}, i.e. the empty simplicial complex.

3. Hochster type formula

In this section we focus on a Hochster type formula for the local cohomology modules 
of binomial edge ideals recently provided by Àlvarez Montaner in [1]. First we need to 
recall the definition of a poset associated to the binomial edge ideal of a graph G from 
[1].

Let I be an ideal in the polynomial ring S and I = q1 ∩ · · · ∩ qt be a not necessarily 
minimal decomposition for the ideal I. Now, the set of all possible sums of ideals in this 
decomposition forms a poset ordered by the reverse inclusion and is denoted by PI. In 
the special case, we use the notation PG, instead of PJG

, for the poset arised from the 
minimal primary decomposition of JG.

Now, the following, is the definition of a poset associated to the binomial edge ideal 
of a graph G which was introduced in [1, Definition 3.3].

Let G be a graph. Associated to JG is the following poset which is denoted by AG: 
The ideals contained in AG are the prime ideals in PG, the prime ideals in the posets PI
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arised from the minimal primary decomposition of every non prime ideal I in PG and 
the prime ideals that are obtained by repeating this procedure every time a non prime 
ideal is discovered.

Note that for some technical goals that will be discussed later, we need to consider 
another poset associated to binomial edge ideals. Indeed, the importance of our new poset 
will be exhibited when we study the topological properties of some specific subposets of 
it, see Lemma 4.1, Theorem 4.4 and also Remark 4.5.

Now, inspired by the Àlvarez Montaner’s definition, we define a new poset associated 
to the binomial edge ideal of a graph G as follows:

Definition 3.1. Let G be a graph on [n] and JG =
⋂

T∈C(G)
PT (G) be the minimal primary 

decomposition of JG. Associated to this decomposition, we consider the poset (QG, �)
ordered by reverse inclusion which is made up of the following elements:

• the prime ideals in the poset PG,
• the prime ideals in the posets PI , arised from the following type of decompositions:

I = q1 ∩ q2 ∩ · · · ∩ qt ∩ (q1 + P∅(G)) ∩ (q2 + P∅(G)) ∩ · · · ∩ (qt + P∅(G)),

where I’s are the non-prime ideals in the poset PG and q1, q2, . . . , qt are the minimal 
prime ideals of I, and

• the prime ideals that we obtain repeatedly by this procedure every time that we find 
a non-prime ideal.

It is worth mentioning here that the process of the construction of our poset QG

terminates after a finite number of steps just like the construction process of the poset 
AG. Indeed, as we will see in Corollary 3.5, every element q in the poset QG is of the 
form PT (H) for some graph H on the vertex set [n] and some T ⊆ [n].

Moreover, the main difference between our construction of the poset QG and the 
construction of the poset AG, is that our construction involves a special decomposition 
of the form I = q1 ∩ q2 ∩ · · · ∩ qt ∩ (q1 +P∅(G)) ∩ (q2 +P∅(G)) ∩ · · · ∩ (qt +P∅(G)) for the 
non-prime ideals I, in spite of using the minimal primary decomposition for the ideals 
I in the construction of AG. It turns out that AG is a subposet of the poset QG. Now, 
a natural question might be whether the posets QG and AG coincide in general or not. 
The following example aims to show that, in general, QG and AG do not coincide.

Here, Kn denotes the complete graph on [n].

Example 3.2. Let G be the graph shown in Fig. 1. One could see that

C(G) = {T : T ⊆ {2, 4, 7, 9}}.

Now, since



236 M. Rouzbahani Malayeri et al. / Journal of Algebra 572 (2021) 231–244
1

2

3

4

5

6

7

8

9

10

Fig. 1. A graph G for which AG is a proper subposet of QG.

(x2, y2, x3, y3, x4, y4, x7, y7, x8, y8, x9, y9) ∈ Min(P{2,9}(G) + P{4,7}(G)),

we have that q = (x2, y2, x3, y3, x4, y4, x7, y7, x8, y8, x9, y9) + JK10−{2,3,4,7,8,9} ∈ QG. 
However, q /∈ AG. Indeed, assume on contrary that q ∈ AG. Now let A = {PT1(G),
. . . , PTs

(G)} be a subset of the maximal elements of the poset AG with the property 
that I =

∑s
i=1 PTi

(G) creates the element q in the process of construction of the poset 
AG. We call the set A with such property, a predecessor for the element q. Now, regarding 
the described structure of the minimal prime ideals of JG, and also by using the fact that 
the vertices 5 and 10 are adjacent in the graph K10 − {2, 3, 4, 7, 8, 9}, one could easily 
check that P{4}(G) ∈ A and P{9}(G) ∈ A. This implies that

I = (xj , yj : j ∈ ∪s
i=1Ti) + JL,

where L is the join product of two isolated vertices 5 and 10, with the complete graph 
on the vertex set {1, 2, 3, 6, 7, 8}. So, I = q1 ∩ q2 is the minimal primary decomposition 
for I, where

q1 = (xj , yj : j ∈ ∪s
i=1Ti) + (xk, yk : k ∈ {1, 2, 3, 6, 7, 8})

and

q2 = (xj , yj : j ∈ ∪s
i=1Ti) + P∅(L).

Now, since q1 + q2 is a prime ideal and q /∈ {q1, q2, q1 + q2}, we get a contradiction with 
the fact that A is a predecessor for q.

Now, to complete our discussion, we give an example of a graph G for which QG = AG. 
This example was appeared in [1, Example 3.2].

Example 3.3. Let G be the path on 5 vertices illustrated in Fig. 2. Thus, the minimal 
prime ideals of JG are:

P∅(G), P{2}(G), P{3}(G), P{4}(G), P{2,4}(G).
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Fig. 2. A graph G for which QG = AG.

So, it was mentioned in [1, Example 3.2] that the elements of the poset PG are:

P∅(G), P{2}(G), P{3}(G), P{4}(G), P{2,4}(G), (x2, y2, f13, f14, f15, f34, f35, f45), (x3, y3,

f12, f14, f15, f24, f25, f45), (x2, y2, x3, y3, f45), (x2, y2, x4, y4, f13), (x4, y4, f12, f13, f15, f23,

f25, f35), (x2, y2, x4, y4, f35), (x3, y3, x4, y4, f12), (x2, y2, x4, y4, f13, f35), (x2, y2, x3, y3, x4,

y4), (x2, y2, x3, y3, f14, f15, f45), (x2, y2, x4, y4, f13, f15, f35), (x3, y3, x4, y4, f12, f15, f25),
(x2, y2, x3, y3, x4, y4, f15).

Note that I = (x2, y2, x4, y4, f13, f35), is the only non-prime ideal in the poset PG. 
Moreover, I = q1 ∩ q2 is the minimal primary decomposition for I, where

q1 = (x2, y2, x4, y4, f13, f15, f35)

and

q2 = (x2, y2, x3, y3, x4, y4).

Now, according to the construction of the poset QG, we need to consider the following 
type of decomposition for I:

I = q1 ∩ q2 ∩ (q1 + P∅(G)) ∩ (q2 + P∅(G)). (4)

On the other hand, since q1 +P∅(G) = q1 and q2 +P∅(G) = q1 + q2, the elements of the 
poset PI , arised from the decomposition in (4) are exactly q1, q2 and q1 + q2. Therefore, 
the constructions of the posets QG and AG imply that QG = AG.

Now, we are going to state the Hochster type formula for the local cohomology modules 
of binomial edge ideals arised from [1, Theorem 3.9]. First, we need to present the 
following proposition:

Here, Min(J), denotes the set of minimal prime ideals of an ideal J .

Proposition 3.4. Let Gi be a graph on [n] and Ti ⊆ [n] for each 1 ≤ i ≤ k. Let J =∑k
i=1 PTi

(Gi) and q ∈ Min(J). Then q = PT (H), for some graph H on [n] and some 
T ⊆ [n].
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Proof. For each 1 ≤ i ≤ k, we have PTi
(Gi) = (xs, ys : s ∈ Ti) +JG̃i1

+· · ·+JG̃icGi
(Ti)

. Let 

H1, . . . , H� be the connected components of the graph G = (
⋃k

i=1
⋃cGi

(Ti)
j=1 G̃ij) −

⋃k
i=1 Ti. 

One could easily see that

J = (xs, ys : s ∈
k⋃

i=1
Ti) + JH1 + · · · + JH�

. (5)

Now, by [13, Problem 7.8, part (ii)], there exist U1, . . . , U� with Ui ∈ C(Hi) for each 
1 ≤ i ≤ �, such that q = (xs, ys : s ∈

⋃k
i=1 Ti) +

∑�
i=1 PUi

(Hi). Let T = (
⋃k

i=1 Ti) ∪
(
⋃�

i=1 Ui). Now we take H to be the graph which is obtained from the graph L =
(
⋃�

i=1
⋃cHi

(Ui)
j=1 H̃ij), by adding those elements of [n] which do not belong to the vertex 

set of the graph L, as isolated vertices. Then it follows that q = PT (H). �
Note that the above proposition together with the construction of the poset QG imply 

the next corollary that will be crucial throughout the paper:

Corollary 3.5. Let G be a graph on [n]. Then, every element q in the poset QG is of the 
form PT (H), for some graph H on [n] and some T ⊆ [n].

Before stating the Hochster type formula, we need to fix some notation:
Let 1QG

be a terminal element that we add to the poset QG. Then for every q ∈ QG, 
by the interval (q, 1QG

), we mean the subposet

{z ∈ QG : q � z � 1QG
}

of the poset QG.
Now, we are ready to state the Hochster type formula for the local cohomology mod-

ules of binomial edge ideals based on [1, Theorem 3.9]. Moreover, we would like to mention 
that since the poset QG which we consider in this paper is different from the poset con-
sidered by Àlvarez Montaner in [1], we provide a proof for this formula. However, the 
proof is similar to the one that was proposed in [1, Theorem 3.9].

Theorem 3.6. Let G be a graph on [n] and QG be the poset associated to JG. Then we 
have the K-isomorphism

Hi
m(S/JG) ∼=

⊕
q∈QG

H
dq
m (S/q)⊕Mi,q ,

where dq = dimS/q and Mi,q = dimK H̃i−dq−1((q, 1QG
); K).

Proof. Let q ∈ QG. By Corollary 3.5, we have that q = PT (H), for some graph H
on [n] and some T ⊆ [n]. Now, the same method that was used for the proof of [1, 
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Proposition 3.7] implies that QG is a subset of a distributive lattice of ideals of S. 
Moreover, since S/q ∼=

⊗cH(T )
i=1 Si/JH̃i

, where Si = K[xj , yj : j ∈ V (Hi)], we have that 
S/q is a Cohen-Macaulay domain, by [1, Theorem 2.2]. Therefore, the poset QG fulfills all 
the required conditions in [1, Theorem 2.4]. Now, the result follows by [1, Theorem 2.4], 
since minimality of the decompositions of non-prime ideals I appeared in Definition 3.1
does not matter in applying [2, Theorem 5.22]. �
4. Topology of the subposets of the poset associated to binomial edge ideals

In this section we investigate some topological properties of some specific subposets 
of the poset QG associated to the binomial edge ideal of a graph G.

The following lemma plays a vital role in our proofs.

Lemma 4.1. Let G be a graph on [n]. Then q + P∅(G) ∈ QG, for every q ∈ QG.

Proof. By the construction of the poset QG, it is enough to show that q+P∅(G) is a prime 
ideal. By Corollary 3.5, we have that q = PT (H) for some graph H on [n] and some T ⊆
[n]. First we assume that G is connected. Therefore, q+P∅(G) = (xi, yi : i ∈ T ) +JKn−T , 
where Kn − T denotes the complete graph on [n]\T . Therefore, q + P∅(G) = PT (Kn), 
which implies that q + P∅(G) is prime.

Next assume that G is a disconnected graph with the connected components 
G1, . . . , Gr. We claim that every connected component of the graph H is contained 
in the graph Gi, for some 1 ≤ i ≤ r. From this claim it will then follow that 
q + P∅(G) = (xi, yi : i ∈ T ) +

∑r
i=1 JKni

−T , where ni = |V (Gi)|, for every 1 ≤ i ≤ r. 
Then q + P∅(G) = PT (∪r

i=1Kni
), which is a prime ideal.

To prove the claim, by the construction of the poset QG and also by virtue of Corol-
lary 3.5 and using (5) repeatedly, we may assume that q ∈ Min(J1 + · · · + J�), where 
Ji ∈ Min(JG), for every 1 ≤ i ≤ �. On the other hand, by [13, Problem 7.8, part (ii)], 
we have that Ji =

∑r
j=1 PTij

(Gj) for each 1 ≤ i ≤ �, where Tij ∈ C(Gj), for every 

1 ≤ j ≤ r. Therefore, 
∑�

i=1 Ji =
∑r

j=1
∑�

i=1 PTij
(Gj). This, together with [13, Prob-

lem 7.8, part (ii)], Corollary 3.5 and (5) imply that the connected components of the 
graph H should be contained in the connected components of the graph G, and hence 
the claim follows. �

The following definition is devoted to recall the concept of meet-contractibility for 
posets.

Definition 4.2. A poset P is said to be meet-contractible if there exists an element α ∈ P
such that α has a meet with every element β ∈ P.

We say that a poset is contractible if its order complex is contractible.
We use the following lemma to study the topology of some subposets of the poset QG.
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Lemma 4.3. ([4, Theorem 3.2], see also [23, Proposition 2.4]) Every meet-contractible 
poset is contractible.

The following theorem is the main theorem of this section.

Theorem 4.4. Let G be a graph on [n] and assume that m ∈ QG. Then (m, 1QG
) is a 

contractible poset.

Proof. Let P = (m, 1QG
). By Lemma 4.3, it is enough to show that P is a meet-

contractible poset.
Clearly, P∅(G) ∈ P. Let q ∈ P. We show that P∅(G) and q have a meet in P. By 

Lemma 4.1, we have q+P∅(G) ∈ QG. On the other hand, by Corollary 3.5 q+P∅(G) � m, 
since q � m and P∅(G) does not contain any variable. This implies that q + P∅(G) ∈
P.

Now we claim that q +P∅(G) is the meet of q and P∅(G). Clearly, q +P∅(G) � q and 
q + P∅(G) � P∅(G). Now suppose that there exists q′ ∈ P with q′ � q and q′ � P∅(G). 
So, q′ � q + P∅(G). This means that q + P∅(G) is the meet of q and P∅(G), and hence 
the claim follows. Therefore, P is a meet-contractible poset. �
Remark 4.5. Let m̂ = PT (H), where H is an arbitrary graph on [n] with |T | = n − 1, 
where n ≥ 2. Then with the same argument that we used in the proof of Theorem 4.4, 
one checks that the result of Theorem 4.4 still holds, if we replace m̂ with m.

Now, as a consequence of Theorem 4.4 and the above remark, we get the following 
corollary which will be used in the next section.

Corollary 4.6. Let G be a graph on [n] with n ≥ 2. Let q be an element of the poset QG

such that q ∈ {m, m̂}. Then we have Mi,q = 0, for every i.

5. Characterization of binomial edge ideals of small depth

In this section, as an application of the results provided in the previous section, we 
characterize all binomial edge ideals JG, for which depthS/JG = 4. First, we state the
following remark that enables us to simplify the proofs in this section.

Remark 5.1. Let G be a graph on [n]. Then dq �= 1, for every q ∈ QG. Indeed, suppose 
on the contrary that dq = 1. By Corollary 3.5 we have that q = PT (H), for some T ⊆ [n]
and some graph H on [n]. Now dq = 1 implies that either |T | = n and cH(T ) = 1, or 
|T | = n − 1 and cH(T ) = 0, where both of them are clearly impossible.

Now, we supply a lower bound for the depth of binomial edge ideals that will be used 
later in our characterization.
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Theorem 5.2. Let G be a graph on [n]. Then

depthS/JG ≥ 4r +
n∑

i=1
ri(i + 1),

where r is the number of non-complete connected components of G and ri is the number 
of complete connected components of G of size i, for every 1 ≤ i ≤ n.

Proof. Let G1, . . . , Gω be the connected components of G. So, S/JG ∼=
⊗ω

i=1 Si/JGi
, 

where Si = K[xj , yj : j ∈ V (Gi)]. Therefore, depthS/JG =
∑ω

i=1 depthSi/JGi
. Then, 

by [8, Theorem 1.1], the result follows if we show that depthS/JG ≥ 4, whenever n ≥ 3.
Now by the definition of depth, it suffices to show that Hi

m(S/JG) = 0, for all i
with 0 ≤ i ≤ 3. Let q ∈ QG, dq = dimS/q and Mi,q = dimK H̃i−dq−1((q, 1QG

); K). By 
Theorem 3.6, it is enough to show that Mi,q = 0, for i = 0, 1, 2, 3.

First of all, Corollary 3.5 implies that q = PT (H), for some graph H on [n] and some 
T ⊆ [n]. Now, we consider the following cases:

Let i = 0. If dq > 0, the assertion is clear. So we assume that dq = 0. We have 
height PT (H) = n −cH(T ) + |T | = 2n. This implies that |T | −cH(T ) = n. So that q = m, 
since |T | = n and cH(T ) = 0. Now the result follows, since the order complex of the 
poset (q, 1QG

) is not empty.
Let i = 1. If dq ≥ 2, then the assertion is obvious. So, by Remark 5.1 we may assume 

that dq = 0. Then we get q = m, and hence the result follows by Corollary 4.6.
Let i = 2. If dq ≥ 3, then the assertion is clear. In addition, in Remark 5.1 we showed 

that dq �= 1. So assume that dq ∈ {0, 2}. If dq = 0, then q = m. So that the result follows 
again by Corollary 4.6. Next suppose that dq = 2. Then we have |T | − cH(T ) = n − 2. 
This implies that |T | = n − 1 and cH(T ) = 1. Therefore, P∅(G) ∈ (q, 1QG

), and hence 
the result follows since the order complex of the poset (q, 1QG

) is non-empty.
Let i = 3. If dq ≥ 4, then the assertion holds. Moreover, the discussion of the cases 

dq = 0, 1, 2 is similar to the previous cases. So we only need to consider the case dq = 3. 
In this case we have that |T | = n − 2 and cH(T ) = 1. So without loss of generality we 
may assume that

q = (x1, . . . , xn−2, y1, . . . , yn−2) + (xn−1yn − xnyn−1).

Now, we have that P∅(G) � q, since n ≥ 3. Therefore, the order complex of the poset 
(q, 1QG

) is not empty, and hence the desired result follows. �
Note that the aforementioned lower bound in Theorem 5.2, recovers the stated bound 

in (3) in Section 1. Indeed, by the notation that we used in Theorem 5.2, and by putting 
t =

∑n
i=1 ri, it is not difficult to see that

⌊ 2n− 1
bigheight JG

⌋
≤ r + t + 1 ≤ 4r + 2t ≤ 4r +

n∑
ri(i + 1),
i=1
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Fig. 3. A complete bipartite graph G with depthS/JG = 4.

for every graph G with at least a non-complete connected component. Moreover, we 
would like to remark that the given lower bound in Theorem 5.2 is sharp. For example, 
consider G to be the graph depicted in Fig. 3. Then we have depthS/JG = 4, by [17, 
Theorem 4.4].

Now we are ready to state our main theorem. Here, we denote by 2K1, the graph 
consisting of two isolated vertices.

Theorem 5.3. Let G be a graph on [n] with n ≥ 4. Then the following are equivalent:

(a) depthS/JG = 4.
(b) G = G′ ∗ 2K1, for some graph G′.

Proof. (a) ⇒ (b): Assume that G �= G′ ∗ 2K1, for any graph G′. We show that 
depth S/JG ≥ 5. By the definition of depth and by Theorem 5.2, it suffices to show 
that H4

m(S/JG) = 0.
We keep using the notation that we used in Theorem 5.2. Let q ∈ QG, dq = dimS/q

and M4,q = dimK H̃3−dq ((q, 1QG
); K). By Theorem 3.6, the result follows once we show 

that M4,q = 0. Notice that Corollary 3.5 implies that q = PT (H), for some graph H on 
[n] and some T ⊆ [n]. Note also that if dq ≥ 5, then the assertion is obvious. On the 
other hand, as we discussed in Remark 5.1, we have dq �= 1. So we consider the following 
cases:

Let dq = 0. So q = m, since |T | = n and cH(T ) = 0. Therefore, M4,q = 0, by 
Corollary 4.6.

Let dq = 2. We have |T | −cH(T ) = n −2. This implies that |T | = n −1 and cH(T ) = 1. 
Now the result follows by Corollary 4.6.

Let dq = 3. We need to show that the order complex of the poset (q, 1QG
) is connected. 

Note that since height q = n −cH(T ) + |T | = 2n −3, we have |T | = n −2 and cH(T ) = 1, 
and hence we may assume that

q = (x1, . . . , xn−2, y1, . . . , yn−2) + (xn−1yn − xnyn−1).

Now suppose that q1, q2 ∈ (q, 1QG
) and q1 �= q2. By Corollary 3.5, we have that 

q1 = PT1(H1) and q2 = PT2(H2), for some graphs H1 and H2 on [n] and some T1, T2 ⊆ [n]. 
Moreover, we have that T1, T2 ⊆ {1, . . . , n − 2}, since q1, q2 ∈ (q, 1QG

). Now without loss 
of generality we may assume that T1 ⊆ {1, . . . , n − 2} and T2 � {1, . . . , n − 2}, since 
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q1 �= q2. We first assume that T1 � {1, . . . , n − 2}. Thus we have q1 + P∅(G) ∈ (q, 1QG
)

and q2 + P∅(G) ∈ (q, 1QG
), by Lemma 4.1. So we get the path

q1, q1 + P∅(G), P∅(G), q2 + P∅(G), q2

in the 1-skeleton graph of the order complex of the poset (q, 1QG
).

Next assume that T1 = {1, . . . , n − 2}. Now since the set of maximal elements of 
the poset QG coincides with the set of minimal prime ideals of JG, there exists U ∈
C(G) such that PU (G) ⊆ q1. We show that U � {1, . . . , n − 2}. Indeed, otherwise by 
[12, Corollary 3.9] we get G = L ∗ 2K1, where L = G − {n − 1, n}. This contradicts 
the fact that G �= G′ ∗ 2K1, for any graph G′. So, PU (G) � q1. On the other hand, 
PU (G) + P∅(G) ∈ (q, 1QG

) by Lemma 4.1. Therefore, we get the path

q1, PU (G), PU (G) + P∅(G), P∅(G), q2 + P∅(G), q2

in the 1-skeleton graph of the order complex of the poset (q, 1QG
).

Therefore, the order complex of the poset (q, 1QG
) is connected, as desired.

Now let dq = 4. Therefore, |T | − cH(T ) = n − 4. So, the following cases occur:
First assume that |T | = n − 2 and cH(T ) = 2. Therefore, we may assume that 

q = (x1, . . . , xn−2, y1, . . . , yn−2). Then by a similar method that we used in the last part 
of the case dq = 3, there exists W ∈ C(G) such that PW (G) � q. This means that 
PW (G) ∈ (q, 1QG

), and hence (q, 1QG
) is non-empty.

Next assume that |T | = n − 3 and cH(T ) = 1. So, we may assume that

q = (x1, . . . , xn−3, y1, . . . , yn−3, xn−2yn−1 − xn−1yn−2, xn−2yn − xnyn−2,

xn−1yn − xnyn−1).

Now, we have P∅(G) ∈ (q, 1QG
), since n ≥ 4. Thus, (q, 1QG

) is non-empty.
Therefore, M4,q = dimK H̃−1((q, 1QG

); K) = 0.
(b) ⇒ (a): Assume that G = G′ ∗ 2K1, for some graph G′. Now, if G′ is a complete 

graph then, the result follows from [17, Theorem 3.9]. So, assume that G′ is not complete. 
Therefore, by Theorem 5.2, we have depthS′/JG′ ≥ 4, where S′ = K[xi, yi : i ∈ V (G′)]. 
This, together with [17, Theorem 4.3] and [17, Theorem 4.4], imply the result. �
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