期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:390 |
Verma modules over p-adic Arens-Michael envelopes of reductive Lie algebras | |
Article | |
Schmidt, Tobias | |
关键词: p-Adic number theory; Representation theory; Lie algebras; BGG theory; | |
DOI : 10.1016/j.jalgebra.2013.04.038 | |
来源: Elsevier | |
【 摘 要 】
Let K be a locally compact p-adic field, g a split reductive Lie algebra over K and U(g) its universal enveloping algebra. We investigate the category C-g of coadmissible modules over the p-adic Arens-Michael envelope (U) over cap (g) of U(2). Let p subset of g be a parabolic subalgebra. The main result gives a canonical equivalence between the classical parabolic BGG category of g relative to p and a certain explicitly given highest weight subcategory of C-g. This completely clarifies the Verma module theory over (U) over cap (g). (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2013_04_038.pdf | 334KB | download |