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1. Introduction

Let p be a prime number and let K be a locally compact p-adic field. Let G be a d-dimensional
p-adic Lie group defined over K with a split reductive Lie algebra g. Let U (g) denote the universal
enveloping algebra of g.

The Arens–Michael envelope Û (g) of U (g) equals the completion of U (g) with respect to all sub-
multiplicative seminorms. Being an interesting p-adic power series envelope of U (g) in its own right
it is also an important technical tool in the study of locally analytic G-representations (e.g. [30] for a
short introduction). As a ring it is best understood as Fréchet–Stein algebra (in the sense of Schneider
and Teitelbaum, cf. [28]), i.e. a noncommutative version of the ring of holomorphic functions on rigid
analytic affine d-space. From this angle the coherent module sheaves on affine d-space are generalized
to the abelian category Cg of coadmissible (left) Û (g)-modules. Due to the close relation of Û (g) to the
locally analytic distribution algebra of G the latter category is a first approximation to the category
of admissible locally analytic G-representations. Besides the short note [26] there are practically no
results about the specific structure of Cg so far.

In this note we single out certain full subcategories of Cg and establish canonical equivalences
to certain well-known highest weight categories over g. In particular, this completely clarifies the
“Verma module theory” over Û (g). To be more precise, let p ⊆ g be a parabolic subalgebra. On
the one hand, we then have the well-known parabolic BGG category Op in the sense of Bernstein,
Gelfand, and Gelfand and Rocha-Caridi [5,24]. This is a certain full abelian subcategory of finitely
generated g-modules with appropriate finiteness conditions for the action of the Levi subalgebra and
the nilpotent radical of p respectively. It is known to be artinian and noetherian and allows a block
decomposition with respect to the central action. Any block is equivalent to a category of finitely
generated modules over a quasi-hereditary finite dimensional K -algebra. The structure of the latter
algebras was made explicit by work of W. Soergel [29]. Prominent objects in Op are the generalized
Verma modules in the sense of J. Lepowsky [19].

In defining a genuine p-adic counterpart of Op over Û (g) we build upon a certain weight theory
for topological Fréchet modules over commutative Fréchet algebras [13]. Applying it to the Arens–
Michael envelope Û (h) of a Cartan subalgebra h of g enables us to explicitly define certain highest
weight categories Ôp within Cg by imposing appropriate compactness conditions on the weights re-
lated to p. The main objects turn out to be certain Verma type modules whose properties closely
parallel the classical case. In particular, they admit unique irreducible quotients parametrized by the
linear dual of h and any irreducible object in Ôp occurs like this. To go further, the existence of
the p-adic Harish–Chandra homomorphism (see [18]) leads to a decomposition of Ôp with respect
to central characters χ of Û (g). The blocks Ôp

χ are noetherian and artinian. This makes possible to
prove the following main result.

As with any Arens–Michael envelope there is a natural map U (g) → Û (g). We show that base

change along this map induces an equivalence of categories Op
∼=−→ Ôp which preserves the central

blocks, the Verma modules and their irreducible quotients. A quasi-inverse can be given explicitly. The
proof of our main result builds on results of [26] and well-known properties of the categories Op.

We assemble some information on quasi-hereditary algebras and BGG-reciprocity in Appendix A.

2. Diagonalisable modules

We begin by reviewing a notion of semisimplicity for topological Fréchet-modules (developed by
T. Féaux de Lacroix, cf. [13]). The exposition is adapted to our purposes. For all notions of nonar-
chimedean functional analysis we refer to P. Schneider’s monograph [27].
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Let K be a locally compact p-adic field and H a commutative K -algebra. Let H∗ denote the set of
K -valued weights of H, i.e. the set of K -algebra homomorphisms H → K . A subset Y ⊆ H∗ is called
relatively compact if there are finitely many elements h1, . . . ,hl in H such that the map

Y −→ K l, λ �→ (
λ(h1), . . . , λ(hl)

)

is injective with relatively compact image. Let M(H) denote the category whose objects are
K -Fréchet spaces M endowed with an action of H by continuous K -linear endomorphisms. Mor-
phisms are continuous K -linear maps compatible with H-actions.

Let λ ∈ H∗ . Following [13] a nonzero m ∈ M is called a λ-weight vector if h.m = λ(h).m for all
h ∈ H. In this case λ is called a weight of M . The closure Mλ in M of the K -vector space generated
by all λ-weight vectors is called the λ-weight space of M . The module M is called H-diagonalisable
if there is a set of weights Π(M) ⊆ H∗ with the property: to every m ∈ M there exists a family
{mλ ∈ Mλ}λ∈Π(M) converging cofinite against zero in M and satisfying

m =
∑

λ∈Π(M)

mλ.

Given an H-diagonalisable module M we may form the abstract H-module

Mss = ⊕
λ∈Π(M)Mλ

(depending on the choice of Π(M)).

Proposition 2.0.1. Let M be H-diagonalisable with a relatively compact set of weights Π(M). The following
hold:

(i) Given m = ∑
λ∈Π(M) mλ in M the weight components mλ are uniquely determined by m. If M is contained

in a closed H-invariant subspace of M then so are all mλ .
(ii) M has no other weights besides the set Π(M).

(iii) Suppose additionally that dimK Mλ < ∞ for all λ ∈ Π(M). The map

N �→ N ∩ Mss (∗)

induces an inclusion preserving bijection between the H-invariant closed subspaces of M and the abstract
H-invariant subspaces of Mss. The inverse is given by passing to the closure in M.

(iv) If in the situation of (iii) M admits additionally an action of a K -algebra H ⊆ A that stabilizes Mss then
the bijection (∗) descends to A-invariant objects.

Proof. This follows from Satz 1.3.19 and Kor. 1.3.22 of [13]. Note that K -Fréchet spaces are Hausdorff,
complete and barreled. �

We let D(H) denote the full subcategory of M(H) whose objects are H-diagonalisable modules
M over a relatively compact set of weights Π(M) ⊆H∗ with finite dimensional weight spaces Mλ . By
the proposition, given M ∈ D(H) the definition of Mss depends solely on M and coincides with the
socle of the abstract H-module M . Let VecK be the category of abstract K -vector spaces. The following
proposition is easily checked.

Proposition 2.0.2. The forgetful functor to VecK endowes D(H) with the structure of exact category. The
latter is stable under passage to closed H-invariant subspaces and to the corresponding quotients. The functor
on D(H)
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M �→ Mss

into the category of abstract H-modules is faithful and exact.

3. Highest weight categories

Let p be a prime number. Throughout this section K denotes a locally compact p-adic field. Let |.|
be a nonarchimedean valuation on K with |p| = p−1 inducing its topology.

3.1. Fréchet–Stein algebras

In [28] P. Schneider and J. Teitelbaum introduce the notion of Fréchet–Stein algebra and show
that locally analytic distribution algebras of compact p-adic Lie groups are of such type (see remark
below). Since Arens–Michael envelopes of Lie algebras over K are another example of this type (see
below) we briefly review the definition.1 A K -Fréchet algebra A is called (two-sided) Fréchet–Stein if
there is a sequence q1 � q2 � · · · of algebra norms on A defining its Fréchet topology and such that for
all m ∈N the completion Am of A with respect to qm is a left and right noetherian K -Banach algebra
and a flat left and right Am+1-module via the natural map Am+1 → Am . Any such algebra A gives
rise to a certain full subcategory CA of all (left) A-modules, the coadmissible modules. As Fréchet–Stein
algebras are typically non-noetherian CA serves as a well-behaved replacement for the category of all
finitely generated (left) A-modules. Instead of giving all details of the construction (cf. [28], §3) we
summarize some basic properties of CA in the following proposition.

Proposition 3.1.1. Let A be a Fréchet–Stein algebra.

(i) The direct sum of two coadmissible A-modules is coadmissible.
(ii) The (co)kernel and (co)image of an arbitrary A-linear map between coadmissible A-modules is coadmis-

sible.
(iii) The sum of two coadmissible submodules of a coadmissible A-module is coadmissible.
(iv) Any finitely generated submodule of a coadmissible A-module is coadmissible.
(v) Any finitely presented A-module is coadmissible.

(vi) CA is an abelian category.
(vii) Any coadmissible A-module M is equipped with a canonical Fréchet topology making it a topological

A-module. Any A-linear map between two coadmissible A-modules is continuous and strict with closed
image with respect to canonical topologies.

Proof. [28], Cors. 3.4/3.5 and Lem. 3.6. �
Let A be a Fréchet–Stein algebra. We will make much use of the following basic property of the

canonical topology.

Lemma 3.1.2. For any coadmissible A-module M and any abstract A-submodule N ⊆ M the following are
equivalent:

(i) N is coadmissible.
(ii) M/N is coadmissible.

(iii) N is closed in the canonical topology of M.

Proof. [28], Lem. 3.6. �
1 Our definition is adapted to our purposes and slightly more restrictive than in [28].
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Remark 3.1.3. Let G denote a locally K -analytic group. With respect to the convolution product the
strong dual D(G) of the K -vector space of locally analytic functions on G is a topological algebra,
the so-called locally analytic distribution algebra of G . The main result of [28] proves that, in case G
is compact, D(G) is a Fréchet–Stein algebra. This enables the authors to develop a general theory of
admissible locally analytic G-representations generalizing the classical notion (see [7]) of an admissible
smooth G-representation.

The theory is modeled according to the example G = Zp , the additive group of p-adic integers.
In this case, the Fourier isomorphism of Y. Amice [1] identifies D(G) with the ring of holomor-
phic functions on the rigid analytic open unit disc. The latter is a quasi-Stein space in the sense
of R. Kiehl [17].

3.2. Arens–Michael envelopes

An Arens–Michael K -algebra is a locally convex K -algebra topologically isomorphic to a projective
limit of K -Banach algebras. For the theory of such algebras (over the complex numbers) we refer
to the book by A.Y. Helemskii [14], Chap. V. Given a locally convex K -algebra A its Arens–Michael
envelope Â equals the Hausdorff completion of A with respect to the family of all continuous submul-
tiplicative seminorms on A. It is universal with respect to continuous K -algebra homomorphisms of
locally convex K -algebras into Arens–Michael algebras. It comes equipped with a continuous algebra
homomorphism

A −→ Â

with dense image. This construction gives a functor

A �→ Â

from locally convex K -algebras to Arens–Michael algebras which is compatible with projective tensor
products and passage to quotients by two-sided ideals (cf. [22], 6.1 for the complex case; the proofs
generalize).

Let g be a Lie algebra over K of dimension d and let U (g) be its universal enveloping algebra
endowed with the finest locally convex topology. Let Û (g) be its Arens–Michael envelope. It will
be convenient to realize Û (g) in the following explicit way. Fix a K -basis x1, . . . , xd of g. Using the
associated PBW-basis for U (g) we may define for each r > 0 a vector space norm on U (g) via

∥∥∥∥
∑

α

dαX
α

∥∥∥∥
X,r

= sup
α

|dα|r|α| (3.2.0)

where Xα := x
α1
1 · · · xαd

d , α ∈Nd
0 and |α| := α1 + · · · + αd .

Proposition 3.2.1. The Hausdorff completion of U (g) with respect to the family of norms ‖.‖X,r , r > 1 is an
Arens–Michael algebra. The canonical homomorphism from Û (g) into it is a topological algebra isomorphism.

Proof. It is easy to see that each norm ‖.‖X,r, r > 1 is submultiplicative and that this family is cofinal
in the directed set of all submultiplicative seminorms on U (g) (cf. [26]). �
Remark 3.2.2. In analogy to the complex hyperenveloping algebra introduced by P.K. Rasevskii (cf.
[23]) the completion of U (g) with respect to the norms ‖.‖X,r, r > 1 is sometimes called the p-adic
hyperenveloping algebra of g [26,30].
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The above discussion shows that we have a functor

g �→ Û (g)

from finite dimensional Lie algebras over K to Arens–Michael K -algebras satisfying the obvious
compatibilities with respect to products/projective tensor products and passage to quotients. It is
immediate that everything we said above may be applied mutatis mutandis to the symmetric algebra
S(g) of g.

Proposition 3.2.3. The algebras Û (g) and Ŝ(g) are Fréchet–Stein algebras which are integral domains. The
K -linear isomorphism U (g) � S(g) induced by the choice of basis x1, . . . , xd extends to a topological isomor-
phism Û (g) � Ŝ(g).

Proof. [25], Thm. 2.3 and [26], Thm. 2.1. The corresponding noetherian Banach algebras arise as the
completions with respect to single norms ‖.‖X,r . �

For future reference we denote the completion of U (g) with respect to the norm ‖.‖X,r by Ur(g).
It is a noetherian Banach algebra and the natural map Û (g) → Ur(g) is flat [28], Rem. 3.2.

Let V and W be two locally convex K -spaces. We denote the completed projective tensor product
of V and W over K by V ⊗̂K W .

Lemma 3.2.4. Suppose g1, . . . ,gn are Lie subalgebras of g such that g1 ⊕ · · · ⊕ gn = g as K -vector spaces.
There exists a unique isomorphism f of topological bimodules

Û (g1) ⊗̂K · · · ⊗̂K Û (gn)
∼=−→ Û (g)

such that f (u1 ⊗̂ · · · ⊗̂ un) = u1 · · · un for ui ∈ Û (gi). Similarly for S instead of U .

Proof. We have the usual PBW-isomorphism of bimodules

U (g1) ⊗K · · · ⊗K U (gn)
∼=−→ U (g)

(see [9], Prop. 2.2.10) and similarly for S . In the case of S the latter is even an isomorphism of
K -algebras and compatibility of Arens–Michael envelopes with projective tensor products yields the
claim. The second claim of Proposition 3.2.3 applied to all algebras g1, . . . ,gn and g then yields the
claim for U . �

We conclude this paragraph with some remarks in case g is abelian. By the universal property
of the Arens–Michael envelope any weight Û (g) → K (cf. Section 2) is automatically continuous. The
map

Û (g)∗
∼=−→ g∗, λ �→ [

x �→ λ(x)
]

therefore identifies the set Û (g)∗ canonically with the K -linear dual g∗ of g. This identification is
compatible with the isomorphism of locally convex K -algebras (cf. Proposition 3.2.3)

X : Û (g)
∼=−→ O

(
Ad,an

K

)
(3.2.4)

mapping a chosen Lie algebra basis X := {x1, . . . , xd} to a system of coordinates on Ad,an
K . Here, Ad,an

K

denotes the rigid analytic affine d-space over K (see [6], 9.3.4) and O(Ad,an
K ) equals its ring of rigid

analytic functions viewed as a locally convex algebra in the usual way.
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3.3. Reductive Lie algebras

From now on g is a split reductive Lie algebra over K. We refer to [9] for the basic structure of
such algebras. Let h be a Cartan subalgebra of g, b be a Borel subalgebra containing h, Φ the root
system of g with respect to h, and Φ+ and � the set of positive and simple roots, respectively. Let
W denote the Weyl group of Φ . Denote by n and n− the nilpotent radicals of b and b− respectively.
We have n = [b,b] and h � b/n canonically. Let h∗ denote the K -linear dual and put l := dimK h. For
each root α ∈ Φ let gα be the one dimensional root space in g. Finally, we let Λr ⊆ Λ be the root
lattice and the integral weight lattice respectively. Λ contains the subsemigroup of dominant integral
weights Λ+ .

In the following we will fix a Chevalley basis {xβ, β ∈ Φ, hα, α ∈ �} of the derived algebra
g′ = [g,g]. We fix once and for all a K -basis for the center c of g which, together with {hα}α∈� gives
rise to a K -basis of h. Throughout this work we will work with this fixed choice of K -basis of h and
call it H.

3.4. Generalized Verma modules

Generalized Verma modules (GVM) for parabolic subalgebras of reductive Lie algebras were first in-
troduced by J. Lepowsky [19]. For an extensive treatment of such modules we refer to V. Mazorchuk’s
monograph [20].

Let pI be a parabolic subalgebra of g containing b and let I ⊆ � be the associated subset of simple
roots. Let ΦI ⊆ Φ be the corresponding root system with positive roots Φ+

I , negative roots Φ−
I and

Weyl group W I ⊆ W . Let

pI = lI ⊕ uI

be a Levi decomposition of pI with Levi subalgebra lI and nilpotent radical uI ⊆ b. Since lI is reductive
there is a further decomposition

lI = gI ⊕ zI

where gI and zI denote the derived algebra and the center of lI respectively.
Setting hI := ⊕

α∈I Khα defines a Cartan subalgebra of the semisimple algebra gI such that

h= hI ⊕ zI .

This induces a decomposition h∗ = h∗
I ⊕ z∗I . For each λ ∈ h∗ denote by λI its projection to h∗

I . Finally,
let α∨ denote the dual root to a given α ∈ Φ and define

Λ+
I := {

λ ∈ h∗ ∣∣ 〈
λ,α∨〉 ∈ Z�0 for all α ∈ I

}
.

Let λ ∈ Λ+
I . Denote by LI (λ) the irreducible finite dimensional gI -module with highest weight

λI viewed as lI -module (by letting zI act through the projection of λ to z∗I ). The generalized Verma
module (GVM) of weight λ relative to pI is the left U (g)-module

MI (λ) := U (g) ⊗U (pI ) LI (λ)

where LI (λ) is inflated to a pI -module via the projection pI → pI/uI = lI .
In case I = ∅ let M(λ), N(λ), L(λ) be the classical Verma module of weight λ, its unique maxi-

mal submodule and its unique irreducible quotient respectively. The module MI (λ) is generated by a
maximal vector m+ ∈ MI (λ) (i.e. n.m+ = 0) and, thus, admits a surjection M(λ) → MI (λ). Hence L(λ)

equals the unique irreducible quotient of MI (λ).
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3.5. The parabolic BGG category

We keep the notation of the preceding subsections and fix a parabolic subalgebra p = pI of g. Let
Mod(U (g)) denote the category of all left U (g)-modules. Let us recall the parabolic BGG category2 in
the sense of A. Rocha-Caridi [24]. It equals the full subcategory of Mod(U (g)) consisting of modules
M such that

(i) M is finitely generated as U (g)-module;
(ii) viewed as a U (lI )-module, M is the direct sum of finite dimensional simple modules;

(iii) M is locally uI -finite.

Here, (iii) means that U (uI )m is finite dimensional for each m ∈ M .
It is known that Op is a K -linear, abelian, artinian and noetherian category which is closed under

submodules and quotients [15]. There are two extreme cases: the case I = ∅ recovers the classical
category O in the sense of Bernstein, Gelfand, and Gelfand [4], while I = � yields the (semisimple)
category of finite dimensional U (g)-modules. Obviously, p ⊂ p′ implies Op′ ⊂ Op. We summarize a
few more properties of Op in the following theorem. Let Z(g) denote the center of U (g) and χ a
central character Z(g) → K .

Theorem 3.5.1.

(i) The modules MI (λ), λ ∈ Λ+
I belong to Op;

(ii) the modules LI (λ), λ ∈ Λ+
I exhaust the set of irreducible objects in Op;

(iii) Op = ⊕
χ Op

χ where Op
χ consists of modules Mχ such that (kerχ)n(m).m = 0 for some n(m) � 1 and

all m ∈ Mχ ;
(iv) Op has enough projective objects;
(v) there is a bijection between irreducible objects and indecomposable projective objects in Op;

(vi) each Op
χ is (noncanonically) equivalent to a category of finitely generated right modules over a finite

dimensional K -algebra Ap
χ .

Proof. The proofs mentioned in [20], §5 all generalize immediately to our setting of a split reductive
K -algebra g. Note that the K -rationality of the block decomposition in (iii) follows from the (gener-
alized) Harish–Chandra map [20], §4.3 (compare also the argument in the proof of Proposition 4.2.1
below) like this. Let M ∈Op. Viewed as an lI -module M decomposes into the direct sum over isotypic
components Mλ where λ equals an isomorphism class of finite dimensional simple lI -modules. Since
g is split the highest weight of any such finite dimensional simple lI -module is an element, denoted
λ again, of the K -linear dual of h. If we decompose λ into a sum of two linear forms on the Cartan
subalgebra of gI and the center zI of lI respectively we obtain a character of the tensor product of
the algebras Z(gI ) and S(zI ). Here, S(·) refers as usual to the symmetric algebra. Let K ′ be a finite
field extension of K and let m be an element of K ′ ⊗K Mλ on which Z(g) acts through a K ′-valued
character χ . By the very construction of the generalized Harish–Chandra map

ϕI : Z(g) −→ Z
(
gI

) ⊗K S(zI )

we then have χ = λ ◦ ϕI and, thus, χ takes values in K . �
The category Op

χ satisfies an analogue of the classical BGG reciprocity principle (see [5]) or, equiv-
alently, the algebra Ap

χ appearing in (v) is a so-called BGG algebra. For more information in this
direction and on the related class of quasi-hereditary algebras we refer to Appendix A.

2 Traditionally, the categories Op are defined for semisimple (complex) Lie algebras. Following [21] we extend their definition
here to general reductive Lie algebras over K .
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Let ΓI ⊆ h∗ be the positive cone over the set Φ+ \ Φ+
I , i.e.

ΓI := Z�0
(
Φ+ \ Φ+

I

)
.

Put Γ = Γ∅ . For λ,μ ∈ h∗ we define a partial order on h∗ as usual via

λ � μ

if λ − μ ∈ Γ . It will be convenient to have the following weight characterization of Op as a subcate-
gory of O.

Lemma 3.5.2. Let M ∈ O. Then M ∈ Op if and only if the h-weights of M lie in a finite union of cosets of the
form λ − ΓI .

Proof. Put n
−
I := ⊕

α∈Φ−
I
gα so that n− = n

−
I ⊕ u

−
I . According to [15], Prop. 9.3, we are reduced to

show that M satisfies the above condition on weights if and only if it is locally n
−
I -finite.

In any case, M ∈ O is finitely generated by h-weight vectors m1, . . . ,ms . Since any U (g)mi ⊆ M is
h-semisimple it suffices to treat the case s = 1. From the decompositions

g = u
−
I ⊕ pI = u

−
I ⊕ lI ⊕ uI = u

−
I ⊕ gI ⊕ zI ⊕ uI

and

gI = n
−
I ⊕ hI ⊕ nI

with h= hI ⊕ zI and hI the Cartan subalgebra of the semisimple algebra gI we obtain

g= u
−
I ⊕ h⊕ n

−
I ⊕ n

and therefore

U (g) = U
(
u

−
I

) ⊗K U (h) ⊗K U
(
n

−
I

) ⊗K U (n)

as bimodules. Now if M ∈ O is additionally locally n
−
I -finite then multiplying m with U (n−

I ) ⊗K
U (n) produces a finite dimensional h-stable subspace generated by finitely many h-weight vectors of
weights λ. Multiplying these with U (u−

I ) produces only weights of the form λ − ΓI .
Conversely, let M satisfy the assumption on weights. If λ denotes the weight of m, multiplying m

by elements in (n−
I )n , n > 0, produces weights of the form λ−β with β ∈ Z�0Φ

+
I . By assumption only

finitely many of such weights can occur whence (n−
I )n.m = 0 for some n > 0. Hence dimK U (n−

I )m <

∞ and M is locally n
−
I -finite. �

3.6. A p-adic counterpart

We keep the notation developed so far. Recall that Û (g) is Fréchet–Stein and denote the category
of coadmissible Û (g)-modules by Cg (and similarly for appropriate subalgebras of g). By functoriality
we have a continuous homomorphism Û (h) → Û (g) extending the inclusion h ⊂ g. We apply the
notions of Section 2 to the commutative K -algebra Û (h) and the set of elements in H. Restriction of
scalars via Û (h) → Û (g) induces a faithful and exact functor

Cg −→ M
(
Û (h)

)
.



T. Schmidt / Journal of Algebra 390 (2013) 160–180 169
Lemma 3.6.1. Let M ∈ M(Û (h)) be Û (h)-diagonalisable with a set of weights Π(M) ⊆ h∗ contained in
finitely many cosets of the form λ − ΓI . Then Π(M) is relatively compact.

Proof. Invoking the basis elements H = {h1, . . . ,hl} the map

ι : Π(M) −→ K l, λ �→ (
λ(h1), . . . , λ(hl)

)

is injective. It suffices to see that ι(ΓI ) is relatively compact. Since each root in Φ is trivial on c this
image lies in the closed subspace K |�| ⊆ K l . Since each hα , α ∈ �, is part of a Chevalley basis we have
hα(β) ∈ Z for all β ∈ Φ . It follows that the closure of ι(ΓI ) lies in the closure of Z|�| , i.e. in Z|�|

p . �
This lemma enables us to single out the following subcategory of Cg. Let p= pI .

Definition 3.6.2. The category Ôp for Û (g) equals the full subcategory of Cg consisting of coadmissible
modules M satisfying:

(1) M is Û (h)-diagonalisable with Π(M) contained in the union of finitely many cosets of the form
λ − ΓI , λ ∈ h∗ .

(2) All weight spaces Mλ, λ ∈ Π(M) are finite dimensional over K .

We let Ô := Ôb in case I = ∅. Obviously p ⊂ p′ implies Ôp′ ⊂ Ôp. Before we exhibit a class of
interesting objects in Ôp we list some basic formal properties.

Proposition 3.6.3.

(i) The direct sum in Cg of two objects of Ôp is in Ôp;
(ii) the (co)kernel and (co)image of an arbitrary Û (g)-linear map between objects in Ôp is in Ôp;

(iii) the sum of two coadmissible submodules of an object in Ôp is in Ôp;
(iv) any finitely generated submodule of an object in Ôp is in Ôp;
(v) Ôp is an abelian category.

Proof. This follows from Proposition 3.1.1 and Lemma 2.0.2. �
Lemma 3.6.4. For any object M in Ôp and any abstract Û (g)-submodule N ⊆ M the following are equivalent:

(i) N ∈ Ôp;
(ii) M/N ∈ Ôp;

(iii) N is closed in the canonical topology of M.

Proof. Lemma 3.1.2. �
Recall the exact category D(Û (h)) of Section 2.

Lemma 3.6.5. Let M ∈ Ôp. The map N �→ N ∩ Mss defines an inclusion preserving bijection between subob-
jects of M ∈ D(Û (h)) and abstract U (h)-submodules of Mss. It descends to a bijection between subobjects of
M ∈ Ôp and abstract U (g)-submodules of Mss.

Proof. M is U (h)-diagonalisable with set of weights Π(M) and finite dimensional weight spaces. The
first statement follows thus from Propositions 2.0.1 and 2.0.2. For the second statement observe that
the K -subalgebra A of Û (g) generated by Û (h) and U (g) stabilizes Mss (e.g. [9], Prop. 7.1.2). Again by
Proposition 2.0.1 the bijection descends to closed A-invariant subobjects of M ∈D(Û (h)) and abstract
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U (g)-submodules of Mss . The A-action on such a subobject N ⊆ M uniquely extends to Û (g) making
N a subobject of M ∈ Ôp according Lemma 3.6.4. �
Example 3.6.6. Let M be a finite dimensional g-module. Since the endomorphism algebra EndK (M)

has a natural and unique K -Banach topology the U (g)-action uniquely extends to Û (g) yielding
M ∈ Cg. By standard highest weight theory for reductive Lie algebras (see [9]) M is Û (h)-diagonalisable
with a finite set of weights contained in Λ+ . Hence M ∈ Ôp and we have an exact and fully faithful
embedding from the finite dimensional g-modules into Ôp.

3.7. p-adic Verma modules

We exhibit Verma type modules in Ôp. Let λ ∈ Λ+
I . Consider the finite dimensional irreducible

lI -module LI (λ). As explained in the example above the lI -action extends to Û (lI ). Invoking the map
Û (pI ) → Û (lI ) we may form the left Û (g)-module

M̂I (λ) := Û (g) ⊗Û (pI )
LI (λ).

Proposition 3.7.1. The module M̂I (λ) lies in Ôp and we have M̂I (λ)ss = MI (λ). There is a canonical inclusion
preserving bijection between subobjects of M̂ I (λ) and abstract U (g)-submodules of MI (λ). In particular, the
topological Û (g)-module M̂I (λ) is topologically irreducible if and only if the abstract U (g)-module MI (λ) is
irreducible.

Proof. We first show that M̂ I (λ) is coadmissible. The left module M = Û (g) ⊗K LI (λ) is coadmissible
being isomorphic to a direct sum over finitely many copies of Û (g). Its submodule N generated by the
elements x ⊗ 1 − 1 ⊗ x where x runs through a K -basis of pI is coadmissible. Being closed it contains
all elements of the form y ⊗ 1 − 1 ⊗ y with y ∈ Û (pI ) whence M/N coincides with M̂ I (λ). Hence
M̂ I (λ) is coadmissible and its canonical topology arises as a quotient topology from M . In particular,
the natural map

M̂I (λ)
∼=−→ Û (g) ⊗̂Û (pI )

LI (λ)

into the completed projective tensor product of the locally convex U (pI )-modules Û (g) and LI (λ) is
a topological isomorphism. Let now u

−
I = ⊕

Φ−\Φ−
I
gα so that u

−
I ⊕ pI = g. Applying Lemma 3.2.4 to

the latter decomposition and recalling that the completed projective tensor product is associative we
obtain that

M̂I (λ) = Û
(
u

−
I

) ⊗K LI (λ)

as left Û (u−
I )-modules. Contemplating the Û (h)-action on this representation we see that M̂ I (λ) ∈ Ôp

and that M̂ I (λ)ss = U (u−
I ) ⊗K LI (λ) = MI (λ). The final two statements follow now from Lem-

ma 3.6.5. �
We recall at this point that the irreducibility properties of generalized Verma modules are

dependent—at least in the case of regular weights—on antidominance properties of the inducing char-
acter. To be more precise, let ρ := 1/2

∑
α∈Φ+ α and consider the following condition on a weight

λ ∈ Λ+
I :

〈
λ + ρ,β∨〉

/∈ Z>0 for all β ∈ Φ+ \ ΦI . (∗)
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In case I = ∅ we recover the usual definition of antidominance [9]. Put w ·λ = w(λ+ρ)−ρ, w ∈ W
for the usual dot-action of W on h∗ . If the stabilizer with respect to this action of λ is trivial we call
λ regular.

Theorem 3.7.2. Let λ ∈ Λ+
I .

(i) If λ satisfies (∗), then MI (λ) is irreducible.
(ii) If λ is regular and MI (λ) is irreducible, then λ satisfies (∗).

The preceding theorem is due to Wallach, Conze, Berline, Duflo, and Jantzen for which we refer
to [15], Thm. 9.12. In case I = ∅ it holds true without the regularity condition in (ii) and is due to
Bernstein, Gelfand, and Gelfand for which we refer to [9], Thm. 7.6.24. We also mention that there
is a much deeper irreducibility criterion for generalized Verma modules which avoids any regularity
conditions and is due to H.C. Jantzen. We refer to [15], 9.13 for a concise account.

3.8. Highest weight modules

In the following it will be convenient—at least in case I = ∅—to introduce in our setting the notion
of a highest weight module.

So let p = b be the Borel subalgebra. Let M be for a moment an arbitrary coadmissible
Û (g)-module. As usual, a maximal vector of weight λ ∈ h∗ in M is a nonzero element m ∈ Mλ such
that n.m = 0. We call a coadmissible module M a highest weight module with highest weight λ if it is a
cyclic Û (g)-module on a maximal vector in Mλ .

Remark 3.8.1. It follows directly from the definition of Ô that any M ∈ Ô has a maximal vector.
In particular, any irreducible object in Ô is a highest weight module according to property (iv) of
Proposition 3.6.3.

Lemma 3.8.2. The coadmissible module M̂(λ) is a highest weight module of weight λ.

Proof. This follows as a special case from (the proof of) Proposition 3.7.1. �
Proposition 3.8.3. Let M ∈ Cg be a highest weight module on a maximal vector m ∈ M of weight λ ∈ h∗ .
We have the following:

(a) M is Û (h)-diagonalisable with a compact set of weights Π(M) satisfying μ � λ for μ ∈ Π(M).
(b) One has dimK Mμ < ∞ and dimK Mλ = 1 for all μ ∈ Π(M). In particular, M ∈ Ô and M is a finite

length object in Ô.
(c) Each nonzero quotient of M by a coadmissible submodule is again a highest weight module.
(d) Each coadmissible submodule of M generated by a maximal vector m ∈ M of weight μ < λ is proper. In

particular, if M is a simple object then all its maximal vectors lie in K .m and hence EndÛ (g)
(M) = K .

(e) M has a unique maximal subobject and a unique simple quotient object and, hence, is indecomposable
in Cg .

(f) Let M, N be two highest weight modules of weights λ and μ respectively. We have
dimK HomÛ (g)

(M, N) < ∞. If λ �= μ then M and N are nonisomorphic. If M and N are simple objects
and λ = μ then M � N.

Proof. Since M is a quotient object of M̂(λ) in Cg we obtain a U (g)-linear surjection

M(λ) = M̂(λ)ss −→ Mss

by right exactness of (.)ss . In particular, Mss is a highest weight module of weight λ in O. All proper-
ties follow then from classical results on highest weight modules in O (e.g. [15], Thm. 1.2). �
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Let L̂(λ) denote the unique simple quotient of M̂(λ) so that

L̂(λ)ss � L(λ). (3.8.3)

Corollary 3.8.4. The map λ �→ [L̂(λ)] is a bijection from h∗ onto the set of isomorphism classes of irreducible
objects of Ô.

Proof. This follows as in the classical case of category O using 3.8.3. �
4. Block decomposition and the main result

4.1. p-adic Harish–Chandra homomorphism

We begin by recalling some standard results on the center Z(g) of U (g) [9]. Recall that the usual
adjoint action of g on itself extends to an action of g by derivations on U (g) and S(g). Let U (g)g and
S(g)g denote the K -algebras of invariants.

Let γ � be the algebra automorphism of S(h) sending a polynomial function f on h∗ to the function
λ �→ f (λ − ρ). Let U (g)0 be the commutant of h in U (g). Then

I := U (g)n+ ∩ U (g)0 = n−U (g) ∩ U (g)0

is a two-sided ideal in U (g)0 such that U (g)0 = U (h) ⊕ I . The corresponding algebra surjection ϕ :
U (g)0 → U (h) is called the Harish–Chandra homomorphism relative to b. The map

ψ := γ � ◦ ϕ|Z(g) : Z(g)
∼=−→ S(h)W

is an algebra isomorphism independent of the choice of b.

Remark 4.1.1. There is an important extension of this construction to the case of a general parabolic
subalgebra p ⊂ g. This generalized Harish–Chandra homomorphism is due to Drozd, Ovsienko, and Fu-
tornyı̆ [11] and is a central tool in the study of generalized Verma modules. Since we will not make
use of it here (but see proof of Theorem 3.5.1 above) we refer to [20], 4.3 for a detailed description.

It will be convenient to extend the above isomorphism ψ to Arens–Michael envelopes. That this
is possible follows from work of J. Kohlhaase on the center of p-adic distribution algebras [18]. We
summarize the relevant results.

Proposition 4.1.2. The g-action on S(g) and U (g) extends to Arens–Michael envelopes and the same holds for
the Weyl action on S(h). The algebra of invariants Û (g)g coincides with the center Ẑ(g) of Û (g) and equals
the closure of Z(g). The homomorphism ψ extends to a topological isomorphism of K -Fréchet algebras

ψ̂ : Ẑ(g)
∼=−→ Ŝ(h)W .

Proof. All this is contained in [18], Sect. 2.1. For example the last statement follows from Prop. 2.1.5
and (proof of) Thm. 2.1.6. �
Remark 4.1.3. Let X = Al,an

K . The basis H = {h1, . . . ,hl} induces an isomorphism H : Ŝ(h)
∼=−→ O(X)

(cf. (3.2.4)). It follows that W acts on X by rigid analytic automorphisms. The rigid analytic quotient
X/W exists by finiteness of W according to general principles [18]. The projection

X −→ X/W
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is a finite morphism (see [6], 9.4.4) and as such has finite fibers (see [6], Cor. 9.6.3/6). Alltogether H

induces a topological isomorphism

H : Ŝ(h)W ∼=−→ O(X/W ).

Finally, this situation is the analytification of an algebraic action on algebraic affine space via the finite
group W . The usual description of S(h)W as l-dimensional polynomial ring over K (see [9]) therefore
extends to completions yielding an isomorphism of K -Fréchet algebras

O(X/W )
∼=−→ O

(
Al,an

K

)

onto the algebra of holomorphic functions on affine l-space. The above proposition gives thus a very
explicit description of the center of Û (g). For more details we refer to [18].

4.2. Central characters

Recall that the usual dot-action of W on h∗ is given by w · λ = w(λ + ρ) − ρ for λ ∈ h∗ , w ∈ W .
Since translating the origin of X = Al,an

K to −ρ is a rigid isomorphism, say γ , the action extends

to a dot-action of W on X giving γ̄ : X/W
∼=−→ X/(W , ·). Invoking Proposition 4.1.2 the composite

(γ̄ �)−1 ◦H ◦ ψ̂ is a canonical topological isomorphism

Ẑ(g)
∼=−→ Ŝ(h)W ∼=−→ O(X/W )

∼=−→ O
(

X/(W , ·)) (4.2.0)

of K -Fréchet algebras.
Now let λ ∈ h∗ and choose an irreducible highest weight module M ∈ Ô with maximal vector

m ∈ Mλ . By Proposition 3.6.5 we have EndÛ (g)
(M) = K whence a continuous character χλ : Ẑ(g) → K .

Since ψ̂ extends the γ �-twisted Harish–Chandra homomorphism and since Z(g) ⊆ Ẑ(g) is dense the
resulting map λ �→ χλ is induced by the rigid analytic quotient morphism

π : X −→ X/(W , ·).

In particular, any continuous character χ : Ẑ(g) → K arises, up to a finite extension of K , as some χλ .
Moreover, a highest weight module of weight λ has finite length (Proposition 3.6.5) and visibly all

Jordan–Hölder factors of such a module have highest weights contained in the fiber of π in χ = π(λ).
We turn back to the general case of a parabolic subalgebra p = pI of g. We propose the following

straightforward variant of the classical decomposition of Op in terms of central characters [15,5]. Let
M ∈ Ôp and let χ : Ẑ(g) → K be a central character. Then Ẑ(g) acts on the weight spaces Mλ (λ being
a Û (h)-weight) and we may form the subspace

Mχ
λ := {

m ∈ Mλ: (kerχ)n.m = 0 for some n = n(m) � 1
}
.

Since
⊕

λ Mχ
λ is a U (g)-submodule of Mss its closure Mχ in M is a subobject of M (Lemma 3.6.5).

We define the following full subcategory of Ôp:

Ôp
χ := {

M ∈ Ôp: Mχ = M
}
.

In case I = ∅ we write Ôχ := Ôb
χ .
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Proposition 4.2.1. The category Ôp
χ is abelian. The functor

Ôp −→ Ôp
χ , M �→ Mχ

is exact and induces an exact and faithful embedding of Ôp into the direct product
∏

χ Ôp
χ (where χ runs

through the K -valued central characters).

Proof. Since the inclusion Ôp ⊆ Ô is defined solely in terms of weights (Definition 3.6.2) we are
easily reduced to the case I = ∅. Giving Ôχ the exact structure coming from Ô let us show that

M �→ Mχ is an exact functor. Given a morphism M → N in Ô we certainly have maps Mλ → Nλ

and Mχ
λ → Nχ

λ for every χ . Taking the sum over all λ and passing to closures with respect to the

induced subspace topologies we see that M �→ Mχ is indeed functorial. Using strictness of maps in Ô
with respect to canonical topologies (Proposition 3.1.1(vii)) the same argument yields its exactness [6],
Cor. 1.1.9/6. It is now clear that the subcategory Ôχ is closed under passage to kernels and cokernels
and, thus, abelian.

Now choose topological generators z1, . . . , zl of Ẑ(g) according to Remark 4.1.3. Then Mχ
λ equals

the simultaneous generalized eigenspace of the finitely many commuting operators z1, . . . , zl on the
finite dimensional space Mλ corresponding to the ordered set of eigenvalues χ(z1), . . . ,χ(zl). In par-
ticular, there exists a finite field extension K ⊆ K ′ of K such that

K ′ ⊗K Mλ = ⊕
χ ′

(
K ′ ⊗K Mλ

)χ ′

where the sum runs over all K ′-valued central characters χ ′ and (K ′ ⊗K Mλ)
χ ′

is defined in the
obvious way. We claim that

(
K ′ ⊗K Mλ

)χ ′ �= 0 ⇒ χ ′( Ẑ(g)
) ⊆ K .

Indeed, let m ∈ K ′ ⊗K Mλ and let n � 1 be minimal such that (kerχ ′)n.m = 0. On a nonzero m′ ∈
(kerχ ′)n−1.m the center Ẑ(g) operates via χ ′ and hence π(λ) = χ ′ . In particular, χ ′ is a K -valued
point of X/(W , ·) which proves the claim.

We therefore have Mλ = ⊕
χ Mχ

λ with χ running through the K -valued characters of Ẑ(g). To-

gether with the obvious equality Mss ∩ Mχ = ⊕
λ Mχ

λ this implies Mss = ⊕
χ (Mχ ∩ Mss). It follows

from this and properties of (·)ss that the sum
∑

χ Mχ is dense and direct in M . In particular, the

functor Ô → ∏
χ Ôχ , M �→ (Mχ )χ is faithful. �

Proposition 4.2.2. The categories Ôp
χ are artinian and noetherian.

Proof. With the p-adic Harish Chandra map at hand we may imitate the classical argument (see [5,9])
as follows. Since Ôp

χ ⊆ Ôχ is a full subcategory we may suppose I = ∅. Let M ∈ Ôχ be given and put
V := ∑

μ∈π−1(χ) Mμ . Since π has finite fibers we have dimK V < ∞. Suppose N ′ � N ⊆ M are two

subobjects. Let m ∈ N/N ′ be a maximal vector of some weight μ. Since the subobject Û (g).m ⊆ N/N ′
is a highest weight module Ẑ(g) operates on m via χμ . Hence χμ = χ and μ ∈ π−1(χ). By definition
m ∈ N ∩ V whence dimK N ∩ V > dimK N ′ ∩ V . This shows M to be artinian and noetherian. �
4.3. The main result

In this section we prove the following main result. As with any Arens–Michael envelope (compare
Section 3.2) we have a natural map

U (g) −→ Û (g).
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Theorem 4.3.1. The functor M �→ Û (g) ⊗U (g) M induces an equivalence of categories

Op
∼=−→ Ôp.

A quasi-inverse is given by (·)ss . The equivalence identifies Op
χ � Ôp

χ for any K -valued central character χ

and hence Ôp = ∏
χ Ôp

χ .

According to well-known properties of Op (cf. [15], Thm. 9.8, [20], 5.2) we obtain

Corollary 4.3.2. The category Ôp has enough injectives and projectives and a duality. Each block Ôp
χ is a

highest weight category and (noncanonically) equivalent to a category of finitely generated right modules over
a BGG algebra.

To begin the proof of the theorem let us first assume I = ∅. Recall (Example 3.6.6) the fully faithful
embedding from the finite dimensional g-modules into Ô. Any finitely generated (left) U (g)-module
is finitely presented and therefore M �→ Û (g) ⊗U (g) M constitutes a functor F from such modules
into Cg (Proposition 3.1.1(v)). Our further investigation relies on the following fact.

Theorem 4.3.3. The extension U (g) → Û (g) is flat.

Proof. This is a direct consequence of the main result of [26]. Alternatively, one may pass to a finite
extension of K and use flatness of adic completion at central ideals of noetherian rings. This yields the
flatness of the map U (g) → Ur(g) for r ∈ pQ and then [28], (proof of) Thm. 4.11 gives the claim. �

In particular, F is exact. It is almost obvious that F (M(λ)) = M̂(λ) and hence any highest weight
module of O is mapped to a highest weight module in Ô. Since any module M in O has a finite
filtration with graded quotients being highest weight modules (see [15], Cor. 1.2) there is a surjection
⊕

i Mi
Σ−→ M where the source is a finite direct sum of highest weight modules. Since F commutes

with direct sums we see F (M) ∈ Ô. We have thus established an exact functor

F : O −→ Ô

extending the aforementioned embedding of the finite dimensional modules into Ô.

Proposition 4.3.4. The functor F is fully faithful. A left quasi-inverse is given by (·)ss .

Proof. If M ∈O and m ∈ Mλ the map m �→ 1⊗m induces a U (h)-linear homomorphism from Mλ into
the λ-weight space of F (M)ss . It extends to a U (g)-linear homomorphism M → F (M)ss natural in M .
If M is a Verma module it is bijective according to Proposition 3.7.1. If M ∈ O is a highest weight
module we consider an exact sequence

0 −→ N −→ M(λ) −→ M −→ 0

for suitable λ ∈ h∗ . Writing N as a subquotient of the left regular module U (g) and recalling (proof
of Proposition 3.7.1) that M̂(λ) equals the completion of U (g)/U (g) J = M(λ) with respect to the
(separated) quotient topology one sees that the natural injection F (N) → M̂(λ) has image equal to
the closure of N in M̂(λ). Hence, N � F (N)ss by Proposition 2.0.1(iii) and therefore M � F (M)ss .
Now let M ∈ O be arbitrary. By devissage we may assume that M is an extension of highest weight
modules. But then M � F (M)ss by the Five Lemma. �
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Next we will fix a number r > 1 in pQ and consider the noetherian Banach algebra Ur(g) (Sec-
tion 3.2). Working with our standard basis (Section 3.3) of g we see that the inclusion U (h) ⊆ U (g)

extends to an isometry Ur(h) ⊆ Ur(g). Similarly we obtain isometries Ur(n), Ur(n
−) ⊆ Ur(g). We de-

note by

Ur
(
n−) ⊗̂K Ur(h) ⊗̂K Ur(n)

the completion of the tensor product of these subalgebras with respect to the usual tensor product
norm (which coincides with the completed projective tensor product, [27], Lem. 17.2).

Lemma 4.3.5. There PBW-decomposition of Lemma 3.2.4 extends to an isometry of Banach (Ur(n
−), Ur(n))-

bimodules

Ur
(
n−) ⊗̂K Ur(h) ⊗̂K Ur(n)

∼=−→ Ur(g).

Proof. The algebra structure being irrelevant here we may replace U by S . Since r ∈ pQ passing to
a finite extension of K reduces us, by faithfully flat descent, to the case r ∈ |K ×|. We may therefore
assume r = 1 in which case the result is well-known [6], Cor. 6.1.1/8. �

Given a coadmissible module M we let

Mr := Ur(g) ⊗U (g) M.

By the general Fréchet–Stein formalism Mr is a finitely generated Banach Ur(g)-module and the nat-
ural map M → Mr has dense image [28], §3. The following lemma is due to Benjamin Schraen and I
thank him for allowing me to reproduce it here.

Lemma 4.3.6. We have L̂(λ)r �= 0 for any weight λ ∈ h∗ .

Proof. Consider the kernel Q of the natural map M̂(λ) → L̂(λ). Since U (g) → Ur(g) is flat the kernel
of M̂(λ)r → L̂(λ)r equals Q r . Applying the above lemma we see that

M̂(λ)r � Ur
(
n−) ⊗K Kλ

whence M̂(λ)r is Ur(h)-diagonalisable with

M̂(λ)ss = (
M̂(λ)r

)ss

via the inclusion M̂(λ) ⊆ M̂(λ)r . By Proposition 2.0.2 the modules Q r and L̂(λ)r are Ur(h)-diago-
nalisable and it suffices to see that

(Q r)
ss �

(
M̂(λ)r

)ss
.

Now (Q r)
ss ⊆ Q r is dense. Similarly, the composite map Q ss ⊆ Q ⊆ Q r has dense image. According to

Proposition 2.0.1 we therefore obtain Q ss = (Q r)
ss as abstract Ur(h)-submodules of Q r . Since L̂(λ) �= 0

we arrive at

(Q r)
ss = Q ss � M̂(λ)ss = (

M̂(λ)r
)ss

. �
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Lemma 4.3.7. The category Ô is artinian and noetherian.

Proof. Let M ∈ Ô. Recall that
⊕

χ Mχ is dense in M according to Proposition 4.2.1. Letting r > 1

in pQ we compute

Mr = Ur(g) ⊗U (g) M ⊇ Ur(g) ⊗U (g)

(⊕
χ Mχ

) = ⊕
χ

(
Mχ

)
r .

Any nonzero Mχ has a composition series (Proposition 4.2.2) whence L̂(λ)r ⊆ (Mχ )r for some weight
λ ∈ h∗ and then (Mχ )r �= 0 by the preceding lemma. Since Mr is finitely generated and Ur(g) is
noetherian this means that Mχ = 0 for all but finitely many χ . But then

⊕
χ Mχ is closed in M

according to Proposition 3.1.1. �
Lemma 4.3.8. Given M ∈ Ô the abstract U (g)-module Mss lies in O. The correspondence M �→ Mss is a
quasi-inverse to F .

Proof. By the preceding result we may assume that M is an extension of two simple objects. Ac-
cording to the result (3.8.3) we see that Mss is a finitely generated U (g)-module on which h acts
semisimple. By our assumption on the weights Π(M) the algebra n acts locally finite. This means
Mss ∈ O. To prove the second statement it suffices, according to Proposition 4.3.4, to show that (·)ss

is right quasi-inverse to F . Let M ∈ Ô. If we apply Û (g) ⊗U (g) (·) to the inclusion Mss ⊆ M and com-
pose with the map u ⊗ m �→ um we obtain a morphism F (Mss) → M in Ô. If K and Q denote its
kernel and cokernel respectively we have K ss = Q ss = 0 by Proposition 4.3.4 whence K = Q = 0 by
Proposition 2.0.1. �

This ends the proof of the theorem in case I = ∅. Now consider the case of a general parabolic
subalgebra p = pI . Since the functors F and (·)ss preserve h-weight spaces Lemma 3.5.2 shows that
our established equivalence Ô �O identifies the full subcategories Op ⊆O and Ôp ⊆ Ô. It is obvious
that this identification respects the central blocks. This finishes the proof of the theorem.
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Appendix A. Quasi-hereditary algebras and highest weight categories

We recall some basic facts on quasi-hereditary algebras and highest weight categories. The follow-
ing formulation is adapted to our purposes. For more details we refer to [10] and [12].

Let K be a field, A a finite dimensional K -algebra, Modfg(A) the category of finitely generated
right A-modules and K0(A) the Grothendieck group of Modfg(A). Let

(Λ,�)

be a fixed partially ordered finite set indexing a full set of representatives (Lλ)λ∈Λ for the isomor-
phism classes of simple right A-modules. The multiplicity of Lλ in a Jordan–Hölder series of a module
M will be denoted by [M : Lλ]. Given λ ∈ Λ let Pλ and Iλ be a projective cover and injective hull of Lλ

in Modfg(A) respectively.
A collection of standard modules for A (relative to the partially ordered set Λ) is a set � of modules

�λ ∈ Modfg(A) with the properties [�λ : Lλ] = 1 with Top(�λ) � Lλ and [�λ : Lμ] = 0 if μ� λ. Given
such a set � let F(�) be the full subcategory of Modfg(A) consisting of modules M admitting a finite
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filtration with graded quotients isomorphic to members of �. Given M ∈ F(�) the element [M] of
K0(A) can be written as

[M] =
∑

λ∈Λ

nλ[�λ] =
∑

λ∈Λ

nλ

∑

μ∈Λ

[�λ : Lμ][Lμ]

with suitable nλ ∈ N. Choose a numbering λ1, . . . , λs of the elements in Λ such that λi < λ j implies
i > j. The matrix ([�λ : Lμ])λ,μ is then unipotent upper triangular and since the elements [Lμ] form
a Z-basis of K0(A), the coefficients nλ are uniquely determined. The filtration multiplicities (M : �λ)

are therefore independent of the choice of filtration. Finally, the standard module �λ is called schurian
if EndA(�λ) is a division ring.

Recall that in this situation A is called (right) quasi-hereditary if all standard modules are schurian
and we have Pμ ∈ F(�) such that (Pμ : �μ) = 1 and (Pμ : �λ) = 0 if μ � λ for all λ,μ ∈ Λ

(cf. [10], §1).

Remark A.0.9. Let A be quasi-hereditary with set of standard modules �. If �1 is a total ordering
on Λ that contains � then, trivially, (A,�1) is quasi-hereditary with the same set of standard mod-
ules. In dealing with quasi-hereditary algebras we may therefore always assume that Λ = {1, . . . ,n},
some n, equipped with its natural ordering. In other words, the issue of a non-adapted Λ (in the sense
of [10]) does not arise here.

Remark A.0.10. Let A be quasi-hereditary. Without recalling a precise definition we remark that
Modfg(A) is a highest weight category in the sense of Cline, Parshall, and Scott (cf. [8], Lem. 3.4).

If A is a quasi-hereditary algebra it is easy to see that each Iλ has a unique largest submodule ∇λ

with [∇λ : Lμ] = 0 for μ� λ. The modules ∇λ are sometimes called the costandard modules associated
to A (cf. [10,12]).

Proposition A.0.11. Let A be quasi-hereditary. Then A has (right) global dimension bounded by 2|Λ|.

Proof. This follows from [10], Lem. 2.2. �
Remark A.0.12. If the (right) global dimension of a finite dimensional K -algebra A is � 1 then A is
(right) hereditary, i.e. all right ideals are projective [2], Cor. 5.2. For the extensive and well-understood
theory of hereditary algebras we refer to [2], Chap. VIII.

Proposition A.0.13. Let A be a quasi-hereditary algebra. Then

(Pμ : �λ) · dλ = [∇λ : Lμ] · dμ

where dλ := dimK EndA(�λ) for all λ,μ ∈ Λ.

Proof. [10], Lem. 2.5, and [12], Thm. 3. �
A quasi-hereditary algebra is called a BGG algebra if there exists a contravariant involutive auto-

functor D on Modfg(A) such that D(Lλ) � Lλ for all λ ∈ Λ [16]. Such an algebra satisfies the so-called
strong BGG reciprocity:

Proposition A.0.14. Let A be a BGG algebra. Then

(Pμ : �λ) · dλ = [�λ : Lμ] · dμ

where dλ := dimK EndA(�λ) for all λ,μ ∈ Λ.
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Proof. It is easy to see that D(∇λ) � �λ for all λ [12], Lem. 4. The claim follows thus from the above
proposition using that D preserves Jordan–Hölder multiplicities. �
Example A.0.15. Let K be a p-adic local field, g a split reductive Lie algebra over K , b a Borel subal-
gebra and p ⊆ g a parabolic subalgebra containing b. Denote by Op the parabolic BGG category of g

relative to p (cf. 3.5). Let χ be a K -valued character of Z(g) and Op
χ the corresponding central block

of Op. Then Op
χ is (noncanonically) equivalent to the category of finitely generated (right) modules

over a BGG algebra Ap
χ . A set of schurian standard modules is given by the GVM’s MI (λ) contained

in Op
χ (where p = pI ). The algebra Ap

χ arises (a direct consequence of the theorem of Gabriel and
Mitchell (see [3], Thm. II.1.3 and subsequent exercise)) as the endomorphism algebra of a suitable
projective generator of the artinian and noetherian category Op

χ . By work of W. Soergel its structure—
at least in the case p= b—can be explicitly determined [29].

In case of a complex semisimple algebra and a Borel subalgebra this is the ur example in the
theory of quasi-hereditary algebras (cf. [5] and [8], Exmp. 3.3(c)).
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