期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:442 |
On symmetric quotients of symmetric algebras | |
Article; Proceedings Paper | |
Kessar, Radha1  Koshitani, Shigeo2  Linckelmann, Markus1  | |
[1] City Univ London, Dept Math Sci, London EC1V 0HB, England | |
[2] Chiba Univ, Grad Sch Sci, Dept Math, Inage Ku, Chiba 2638522, Japan | |
关键词: Symmetric algebra; Finite group; | |
DOI : 10.1016/j.jalgebra.2014.05.035 | |
来源: Elsevier | |
【 摘 要 】
We investigate symmetric quotient algebras of symmetric algebras, with an emphasis on finite group algebras over a complete discrete valuation ring Omicron. Using elementary methods, we show that if an ordinary irreducible character chi of a finite group G gives rise to a symmetric quotient over Omicron which is not a matrix algebra, then the decomposition numbers of the row labelled by chi are all divisible by the characteristic p of the residue field of Omicron. (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2014_05_035.pdf | 757KB | download |