期刊论文详细信息
JOURNAL OF ALGEBRA 卷:442
On symmetric quotients of symmetric algebras
Article; Proceedings Paper
Kessar, Radha1  Koshitani, Shigeo2  Linckelmann, Markus1 
[1] City Univ London, Dept Math Sci, London EC1V 0HB, England
[2] Chiba Univ, Grad Sch Sci, Dept Math, Inage Ku, Chiba 2638522, Japan
关键词: Symmetric algebra;    Finite group;   
DOI  :  10.1016/j.jalgebra.2014.05.035
来源: Elsevier
PDF
【 摘 要 】

We investigate symmetric quotient algebras of symmetric algebras, with an emphasis on finite group algebras over a complete discrete valuation ring Omicron. Using elementary methods, we show that if an ordinary irreducible character chi of a finite group G gives rise to a symmetric quotient over Omicron which is not a matrix algebra, then the decomposition numbers of the row labelled by chi are all divisible by the characteristic p of the residue field of Omicron. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2014_05_035.pdf 757KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次