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We investigate symmetric quotient algebras of symmetric 
algebras, with an emphasis on finite group algebras over 
a complete discrete valuation ring O. Using elementary 
methods, we show that if an ordinary irreducible character 
χ of a finite group G gives rise to a symmetric quotient over 
O which is not a matrix algebra, then the decomposition 
numbers of the row labelled by χ are all divisible by the 
characteristic p of the residue field of O.
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1. Introduction

Let p be a prime and O a complete discrete valuation ring having a residue field k
of characteristic p and a quotient field K of characteristic zero. Unless stated otherwise, 
we assume that K and k are splitting fields for all finite groups under consideration. 
Let G be a finite group. Any subset M of the set IrrK(G) of irreducible K-valued 
characters of G gives rise to an O-free quotient algebra, namely the image of a structural 
homomorphism OG → EndO(V ), where V is an O-free OG-module having character 
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∑
χ∈M χ. This image is isomorphic to OG(

∑
χ∈M e(χ)), where e(χ) denotes the primitive 

idempotent in Z(KG) corresponding to χ. Any O-free quotient algebra of OG arises in 
this way; in particular, OG has only finitely many O-free algebra quotients. Any quotient 
of OG admits a decomposition induced by the block decomposition, and hence finding 
symmetric quotients of OG is equivalent to finding symmetric quotients of the block 
algebras of OG. We denote by IBrk(G) the set of irreducible Brauer characters of G, 
and by dG : Z IrrK(G) → Z IBrk(G) the decomposition map, sending a generalised 
character of G to its restriction to the set Gp′ of p′-elements in G. For B a block algebra 
of OG, we denote by IrrK(B) and IBrk(B) the sets of irreducible K-characters and 
Brauer characters, respectively, associated with B. We denote by dB : Z IrrK(B) →
Z IBrk(B) the decomposition map obtained from restricting dG. We denote by DG =
(dχϕ) the decomposition matrix of OG, with rows indexed by χ ∈ IrrK(G) and columns 
indexed by ϕ ∈ IBrk(G); that is, the dχϕ are the nonnegative integers satisfying dG(χ) =∑

ϕ∈IBrk(G) dχϕ · ϕ, for any χ ∈ IrrK(G). Equivalently, dχϕ = χ(i), where i is a primitive 
idempotent in OG such that OGi is a projective cover of a simple kG-module with Brauer 
character ϕ. If χ, ϕ belong to different blocks, then dχϕ = 0. For B a block algebra of OG, 
we denote by DB the submatrix of DG labelled by χ ∈ IrrK(B) and ϕ ∈ IBrk(B). We 
say that χ ∈ IrrK(G) lifts the irreducible Brauer character ϕ ∈ IBrk(G) if dG(χ) = ϕ, 
or equivalently, if dχϕ = 1 and dχϕ′ = 0 for all ϕ′ ∈ IBrk(G) different from ϕ. In that 
case, OGe(χ) is a matrix algebra over O, hence trivially symmetric (see Proposition 4.1
below).

Theorem 1.1. Let G be a finite group and χ ∈ IrrK(G). Suppose that OGe(χ) is sym-
metric. Then either χ lifts an irreducible Brauer character, or dχϕ is divisible by p for all 
ϕ ∈ IBrk(G).

This is a special case of the slightly more general result Theorem 4.6 below. We note 
some immediate consequences.

Corollary 1.2. Let G be a finite group and χ ∈ IrrK(G) such that dχϕ is prime to p for 
some ϕ ∈ IBrk(G). Then the O-algebra OGe(χ) is symmetric if and only if χ lifts ϕ.

By a result of Dade [1], all decomposition numbers of blocks with cyclic defect are 
either 0 or 1.

Corollary 1.3. Let G be a finite group and B a block with cyclic defect groups. Let χ ∈
IrrK(B). Then OGe(χ) is symmetric if and only if χ corresponds to a nonexceptional 
vertex at the end of a branch of the Brauer tree of B.

By Erdmann’s results in [2], every row of the decomposition matrix of a nonnilpotent 
tame block contains an entry equal to 1.
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Corollary 1.4. Suppose that p = 2. Let G be a finite group and B a nonnilpotent block of 
OG having a defect group P which is either dihedral, generalised quaternion, or semidi-
hedral. Then for any χ ∈ IrrK(B), the algebra OGe(χ) is symmetric if and only if χ lifts 
an irreducible Brauer character in IBrk(B).

Many blocks of quasi-simple groups also seem to have the property that every row has 
an entry prime to p. Any row of the decomposition matrix of a finite group corresponding 
to a height zero character has at least one entry which is prime to p. Hence Corollary 1.2
yields the following.

Corollary 1.5. Let G be a finite group, B a block of OG, and χ ∈ IrrK(B). Suppose that 
χ has height zero. Then the O-algebra OGe(χ) is symmetric if and only if χ lifts an 
irreducible Brauer character.

By the main result of the first author and Malle [4], every irreducible character of a 
finite group lying in a p-block with abelian defect groups has height zero (the proof in 
[4] requires the classification of finite simple groups). Hence any irreducible character of 
a finite group lying in a p-block with abelian defect groups gives rise to a symmetric 
quotient if and only if the character lifts an irreducible Brauer character.

The symmetric algebras arising in the corollaries above are matrix algebras (see Propo-
sition 4.1 below). By contrast, the symmetric algebras obtained from nonlinear characters 
in the next result are not isomorphic to matrix algebras.

Proposition 1.6. Let P be a finite p-group having a normal cyclic subgroup of index p. 
Then OPe(χ) is symmetric for any χ ∈ IrrK(P ).

This will be proved in Section 3. Since a nilpotent block is isomorphic to a matrix 
algebra over one of its defect group algebras, this proposition, specialised to p = 2, has 
the following consequence (which includes nilpotent tame blocks).

Corollary 1.7. Suppose that p = 2. Let G be a finite group and B a nilpotent block of OG

having a defect group P which is either dihedral, generalised quaternion or semidihedral. 
Then for any χ ∈ IrrK(B), the algebra OGe(χ) is symmetric.

Further examples of characters χ with symmetric quotient OGe(χ) which are not 
isomorphic to matrix algebras can be obtained from characters of central type. An irre-
ducible character χ of a finite group G is of central type if χ(1)2 = |G : Z(G)|.

Proposition 1.8. Let G be a finite group and χ ∈ IrrK(G) a character of central type. 
Then OGe(χ) is symmetric.

This is shown as a special case of a slightly more general situation in Proposition 2.4. 
As a consequence of Propositions 1.6 and 1.8, if P is a finite p-group of order at most p3, 
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then OPe(χ) is symmetric for all χ ∈ IrrK(P ). In Section 6 we give an example showing 
that this is not the case in general for irreducible characters of finite p-groups of order p4.

As is explained in the remarks following Proposition 2.5, for G a finite group, the 
set of ideals I of OG such that OG/I is O-free corresponds bijectively to the set of 
subsets of IrrK(G). If χ is an ordinary irreducible character of G then OGe(χ) is the 
quotient of OG by the ideal which corresponds under the above bijection to the subset 
IrrK(G) − {χ} of IrrK(G). The next two propositions consider the complementary case 
of quotients OG/I, where I corresponds to a one element subset of IrrK(G). We first 
consider the case that I corresponds to the trivial character of G, in which case I can 
be explicitly described as O(

∑
x∈G x). The hypothesis of K, k being large enough is not 

necessary for the following result.

Proposition 1.9. Let G be a finite group. The following are equivalent.

(i) The O-algebra OG/O(
∑

x∈G x) is symmetric.
(ii) The group G is p-nilpotent and has cyclic Sylow-p-subgroups.

Corollary 1.10. Let G be a finite group. The Z-algebra ZG/Z(
∑

x∈G x) is symmetric if 
and only if G is cyclic.

The arguments used in the proof of Proposition 1.9 can be adapted to yield the 
following block theoretic version; we need k to be large enough for the block B in the 
next result.

Proposition 1.11. Let G be a finite group, B a block algebra of OG, and let χ ∈ IrrK(B). 
Suppose that χ lifts an irreducible Brauer character. Set I = B ∩ (K ⊗O B)e(χ), where 
we identify B with its image 1 ⊗B in K ⊗O B. The following are equivalent.

(i) The algebra B/I is symmetric.
(ii) The block B is nilpotent with cyclic defect groups.

2. Notation and basic facts

If A is an O-algebra which is free of finite rank as an O-module, we denote by IrrK(A)
the set of characters of the simple K⊗OA-modules. Taking characters of K⊗OA-modules 
yields an isomorphism between the Grohendieck group RK(A) of finitely generated 
K ⊗O A-modules and the free abelian group with basis IrrK(A), inducing a bijection 
between the isomorphism classes of simple K ⊗O A-modules and IrrK(A). If in addition 
the K-algebra K⊗O A is semisimple, hence a direct product of simple K-algebras corre-
sponding to the isomorphism classes of simple K ⊗O A-modules, we denote by e(χ) the 
primitive idempotent of Z(K⊗OA) which acts as identity on the simple K⊗OA-modules 
with character χ and which annihilates all other simple K ⊗O A-modules. In this case 
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we have K ⊗O A ∼=
∏

χ∈IrrK(A) (K ⊗O A)e(χ), and each factor (K ⊗O A)e(χ) is a sim-
ple K-algebra. An O-algebra A is symmetric if A is finitely generated projective as an 
O-module and if A is isomorphic to its O-dual A∨ = HomO(A, O) as an A–A-bimodule 
(this definition makes sense with O replaced by an arbitrary commutative ring). The 
image s in A∨ of 1A under some bimodule isomorphism A ∼= A∨ is called a symmetrising 
form of A. If s, s′ are two symmetrising forms of A, then s′ = z·s for a unique z ∈ Z(A)×, 
because any bimodule automorphism of A is given by left or right multiplication with 
an invertible element in Z(A). The ring O has the property that every finitely generated 
projective O-module is free. In particular, if A is a symmetric O-algebra, then A is free 
as an O-module, and hence any symmetrising form s ∈ A∨ of A satisfies s(A) = O. Let 
A be an O-algebra which is finitely generated as an O-module. Since O is Noetherian, 
a submodule V of a finitely generated A-module U is O-pure if and only if V is a direct 
summand of U as an O-module (see e.g. [5, §4J] for more details on the notion of pure 
submodules over arbitrary commutative rings). We use without further comments the 
following well-known facts. See e.g. [3, 17.2], and also [9, Theorem 1] for an application 
in the context of blocks with cyclic defect groups.

Lemma 2.1. Let A be an O-algebra and let U be an A-module which is finitely generated 
free as an O-module. Let V be a submodule of U . Then U ∩ (K ⊗O V ) is the unique 
minimal O-pure submodule of U containing V , where we identify U with its image 1 ⊗U

in K ⊗O U . Moreover, the following are equivalent.

(i) The A-module V is O-pure in U .
(ii) The A-module U/V is O-free.
(iii) We have J(O)V = J(O)U ∩ V .
(iv) The image of V in k ⊗O U is isomorphic to k ⊗O V .
(v) We have V = U ∩ (K ⊗O V ), where we identify U to its image 1 ⊗ U in K ⊗O U .

Thus if I is an ideal in an O-algebra A which is finitely generated free as an O-module, 
then the quotient algebra A/I is O-free if and only if I is O-pure in A. Any O-pure ideal 
I of A is equal to A ∩MI for a unique ideal MI in K ⊗O A, where we have identified A
to its canonical image 1K ⊗A in K ⊗O A. If K ⊗O A is in addition semisimple, hence a 
direct product of simple algebras, then every ideal of K⊗O A is a product of a subset of 
those simple algebras. In particular, in that case the set of O-pure ideals in A is finite and 
corresponds bijectively to the set of subsets of a set of representatives of the isomorphism 
classes of simple K ⊗O A-modules.

The next result holds with O replaced by an arbitrary commutative Noetherian ring. 
For symmetric algebras over a field, this result is due to Nakayama [7]. The generalisation 
to algebras over commutative Noetherian rings is straightforward (we include a proof for 
the convenience of the reader). Note that the left and right annihilators of an ideal I in 
a symmetric algebra A are always equal, denoted by ann(I).
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Proposition 2.2. (Cf. [7, Theorem 13].) Let A be a symmetric O-algebra, and let I be 
an O-pure ideal in A. The quotient algebra A/I is a symmetric O-algebra if and only if 
there is an element z ∈ Z(A) such that ann(I) = Az.

Proof. Set Ā = A/I, and denote by π : A → Ā the canonical surjection. Since I is 
O-pure, it follows that A/I is finitely generated projective as an O-module. Let s : A → O
be a symmetrising form for A; that is, s is symmetric and the map sending a ∈ A

to the form a · s defined by (a · s)(b) = s(ab) for all b ∈ A is an isomorphism A ∼=
A∨ = HomO(A, O). (Since s is symmetric, this map is automatically a homomorphism 
of A–A-bimodules.) Suppose that ann(I) = Az for some z ∈ Z(A). Then t = z · s
annihilates I, hence induces a form t̄ ∈ Ā defined by t̄(ā) = s(za), where a ∈ A and 
ā = a +I ∈ Ā. Since s is symmetric and z ∈ Z(A), the forms t and t̄ are again symmetric. 
It suffices to show that the map sending ā ∈ Ā to ā · t̄ ∈ Ā∨ is surjective. Let ū ∈ Ā∨. 
Then u = ū ◦ π ∈ A∨, hence u = a · s for a uniquely determined element a ∈ A. Since 
I ⊆ ker(u), we have s(aI) = {0}, hence a ∈ ann(I). Thus a = cz for some c ∈ A. It 
follows that u = c · (z · s) = c · t, and hence ū = c̄ · t̄, which shows that Ā is symmetric. 
Suppose conversely that Ā is symmetric. Let t̄ : Ā → O be a symmetrising form, and set 
t = t̄ ◦π. Then t is symmetric (because t̄ is) and hence t = z · s for some z ∈ Z(A). Since 
I ⊆ ker(t) we have s(zI) = {0}, hence z ∈ ann(I). Let b ∈ ann(I). Then u = b · s has I
in its kernel, hence induces a form ū on Ā satisfying ū(ā) = s(ab). Since Ā is symmetric, 
there is c̄ ∈ Ā such that ū = c̄ · t̄, hence such that u = c · t = (cz) · s. Thus (cz) · s = b · s, 
and hence b = cz ∈ Az, whence the equality ann(I) = Az. �

Let A be a symmetric O-algebra. If z ∈ Z(A) such that Az is the annihilator of 
an O-pure ideal I in A, then Az is O-pure. Thus finding symmetric quotients of A is 
equivalent to finding elements z ∈ Z(A) with the property that Az is O-pure in A.

Corollary 2.3. Let A be a symmetric O-algebra and z ∈ Z(A). If Az is O-pure, then the 
annihilator I = ann(z) = ann(Az) is an O-pure ideal satisfying ann(I) = Az, and the 
O-algebra A/I is symmetric. Moreover, any symmetric O-algebra quotient of A arises 
in this way.

Proof. This follows from Proposition 2.2 and the preceding remarks. �
Proposition 2.4. Let G be a finite group and N a normal subgroup of G. Suppose that K
is a splitting field for N . Let η ∈ IrrK(N), and suppose that η is G-stable. If ONe(η) is 
symmetric, then OGe(η) is symmetric.

Proof. Suppose that ONe(η) is symmetric. By Proposition 2.2 there exists an element 
z ∈ Z(ON) such that ONz is the annihilator of the kernel of the map ON → ONe(η). 
Thus z ∈ Z(ON)e(η) = Oe(η), where we use that K is large enough for N . In particular, 
there is λ ∈ O such that z = λe(η), and hence z ∈ Z(OG). Since OG is free as a right 
ON -module and ONz is O-pure in ON , it follows that OGz is O-pure in OG. The 
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annihilator of the kernel of the map OG → OGe(η) is therefore equal to OGz. The 
result follows from Proposition 2.2. �
Proof of Proposition 1.8. Since χ is of central type, there is a unique (hence G-stable) 
linear character ζ : Z(G) → O× such that e(χ) = e(ζ). We have OZ(G)e(ζ) ∼= O, which 
is trivially symmetric, and hence OGe(ζ) = OGe(χ) is symmetric by Proposition 2.4. �

The argument in the proof of Proposition 2.4 to describe a central element z which 
generates a pure ideal admits the following generalisation.

Proposition 2.5. Let A be a symmetric O-algebra such that K ⊗O A is semisimple. Let 
χ ∈ IrrK(A) be the character of an absolutely simple K ⊗O A-module, and denote by 
e(χ) the corresponding primitive idempotent in Z(K ⊗O A). Let λ ∈ O be an element 
having minimal valuation such that λe(χ) ∈ A, where we identify A with its image 1 ⊗A

in K ⊗O A. The following are equivalent.

(i) The O-algebra Ae(χ) is symmetric.
(ii) The A-module Aλe(χ) is O-pure in A.
(iii) We have Aλe(χ) = A ∩ (K ⊗O A)e(χ).

Proof. The equivalence of (ii) and (iii) is a general fact (cf. Lemma 2.1). Let I be the 
kernel of the algebra homomorphism A → Ae(χ) sending a ∈ A to ae(χ). Multiplication 
by e(χ) in K ⊗O A yields the projection of K ⊗O A =

∏
ψ∈IrrK(A) (K ⊗O A)e(ψ) onto 

the factor (K ⊗O A)e(χ); this is a matrix algebra as χ is the character of an absolutely 
simple K ⊗O A-module. Thus I is the O-pure ideal corresponding to the complement 
of {χ} in IrrK(A); that is, I = A ∩

∏
ψ (K ⊗O A)e(ψ), where ψ runs over the set 

IrrK(A) − {χ}. It follows that the annihilator of I is equal to A ∩ (K ⊗O A)e(χ), and 
hence Z(A) ∩ (K⊗OA)e(χ) ⊆ Oe(χ). Thus A/I is symmetric if and only if Az is O-pure 
for some z ∈ A ∩ Oe(χ), hence if and only if Aλe(χ) is O-pure for some λ ∈ O. In that 
case, λ has necessarily the smallest possible valuation such that λe(χ) ∈ A. The result 
follows. �
Remark 2.6. Let A be an O-algebra which is finitely generated free as an O-module, and 
let I be an O-pure ideal in A. Then the image of the canonical map A → EndO(A/I)
sending a ∈ A to left multiplication by a +I in A/I has kernel I, hence image isomorphic 
to A/I. Thus any O-free algebra quotient of A is isomorphic to the image of the structural 
homomorphism A → EndO(V ) sending a ∈ A to left multiplication by a on V , for some 
A-module V which is free of finite rank as an O-module. Since V is O-free, this image 
is isomorphic to the canonical image of A in EndK(K ⊗O V ). Thus, if K ⊗O V is a 
semisimple K ⊗O A-module, then this image depends only on the isomorphism classes 
of simple K ⊗O A-modules occurring in a decomposition of K ⊗O V , but not on the 
multiplicity of the simple factors of K ⊗O V .
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Remark 2.7. It follows from the formal properties of Morita equivalences that a Morita 
equivalence between two algebras induces a bijection between quotients of the two al-
gebras, in such a way that quotients corresponding to each other are again Morita 
equivalent. In particular, symmetric quotients are preserved under Morita equivalences. 
We describe this briefly for the convenience of the reader. Let A, B be Morita equivalent 
O-algebras; that is, there is an A–B-bimodule M and a B–A-bimodule N such that M , 
N are finitely generated projective as left and right modules, and such that we have iso-
morphisms of bimodules M ⊗B N ∼= A and N ⊗A M ∼= B. The functor M ⊗B − induces 
an equivalence between the categories of B–B-bimodules and of A–B-bimodules, sending 
B to M . Thus this functor induces a bijection between ideals in B and subbimodules 
of M , sending an ideal J in B to the subbimodule MJ . Note that since M is finitely 
generated projective as a right B-module, we have MJ ∼= M ⊗B J . Similarly, we have 
a bijection between ideals in A and subbimodules in M sending an ideal in I in A to 
the subbimodule IM ∼= I ⊗A M . Combining these bijections yields a bijection between 
ideals in A and ideals in B, with the property that the ideal I in A corresponds to the 
ideal J in B if and only if IM = MJ , which in turn holds if and only if JN = NI. 
If I, J correspond to each other through this bijection, then M/IM and N/JN induce 
a Morita equivalence between A/I and B/J . Indeed, M/IM is finitely generated pro-
jective as a left A/I-module, since M is finitely generated as a left A-module. Using 
IM = MJ , this argument shows that M/IM is finitely generated projective as a right 
B/J-module. Similarly, N/JN is finitely generated projective as a left and right mod-
ule. Moreover, we have M/IM ⊗B/J N/JN ∼= M/MJ ⊗B N/JN ∼= M ⊗B N/JN ∼=
M ⊗B N/M ⊗B JN ∼= M ⊗B N/M ⊗B NI ∼= A/I. The same argument with reversed 
roles yields N/NI ⊗A/I M/IM ∼= B/J . Since Morita equivalences preserve the property 
of being symmetric, this shows that A/I is symmetric if and only if B/J is symmetric.

3. Proof of Proposition 1.6

Let G be a finite p-group having a cyclic normal subgroup H of index p, and let 
χ ∈ IrrK(G). In order to prove Proposition 1.6 we may assume that G is nonabelian, 
hence H has order at least p2.

Suppose first that p is odd. Then the automorphism of H induced by an element 
t ∈ G − H acts trivially on the subgroup Hp of index p in H, hence Z(G) = Hp has 
index p2 in G. Any nonlinear character of G has degree p, hence is a character of central 
type. It follows from Proposition 1.8 that OGe(χ) is symmetric.

Suppose now that p = 2. The previous arguments remain valid so long as the action of 
G on the cyclic normal 2-subgroup H of index 2 is trivial on the subgroup H2 of index 2
in H. This includes the case of semidihedral 2-groups (where t is an involution which 
acts on the cyclic subgroup H of order 2n by sending a generator s of H to s1+2n−1). 
If n = 2, then |G| = 8, hence χ is a character of central type, and so the symmetry 
of OGe(χ) follows from Proposition 1.8. Suppose that n ≥ 3 and that G does not act 
trivially on the subgroup of index 2 in H. Then G is dihedral or generalised quaternion 
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(corresponding in both cases to the action of an element t ∈ G − H of order either 2
or 4 on H sending s to s−1) or quasidihedral (corresponding to the action of t sending 
s to s−1+2n−1). We will need the following elementary facts (a proof is included for the 
convenience of the reader).

Lemma 3.1. Let n ≥ 3 and let ζ be a primitive 2n-th root of unity in O. Let a, b ∈ Z

such that b − a is even. The following hold.

(i) The numbers ζa ± ζb are divisible by (1 − ζ)2 in O.
(ii) The numbers ζ±ζ−1

(1−ζ)2 are invertible in O.

Proof. The integer 2 is divisible by (1 − ζ)3 in O, as n ≥ 3. In particular, 2
(1−ζ)2 ∈ J(O), 

and hence, in order to prove (i), it suffices to show that ζa+ζb is divisible by (1 −ζ)2. Write 
b − a = 2c for some integer c. Then ζa + ζb = ζa(1 + ζb−a) = ζa(1 + ζ2c). Thus we may 
assume that a = 0 and b = 2c. We have 1 +ζ2c = 1 −ζ2c+2ζ2c = (1 −ζc)(1 +ζc) +2ζ2c =
(1 − ζc)(1 − ζc + 2ζc) + 2ζ2c, which is divisible by (1 − ζ)2 because 1 − ζ divides 1 − ζc

and (1 − ζ)2 divides 2. This shows (i). Again, since 2
(1−ζ)2 ∈ J(O), in order to prove (ii), 

it suffices to prove that ζ−ζ−1

(1−ζ)2 is invertible in O. Observe that 1−ζ2

(1−ζ)2 = 1+ζ
1−ζ = 1 + 2ζ

1−ζ

is invertible in O. Multiplying this by ζ−1 shows (ii). �
We complete the proof of Proposition 1.6. Let G be a dihedral or generalised quater-

nion group of order 2n+1. In order to show that OGe(χ) is symmetric, we may assume 
that χ(1) > 1, hence χ(1) = 2. Let H be the cyclic subgroup of order 2n of G. Since 
χ(1) = 2 we have χ = IndG

H(η) for some nontrivial linear character η ∈ IrrK(H). Arguing 
by induction, we may assume that η is faithful. Let ζ be a root of unity of order 2n and 
let s be a generator of H such that η(s) = ζ. Let η̄ be the character of H sending s
to ζ−1. Then ResGH(χ) = η + η̄, and χ vanishes outside H. In particular,

e(χ) = e(η) + e(η̄) = 1
2n

2n−1∑
a=0

(
ζa + ζ−a

)
sa.

By Lemma 3.1 the coefficients ζa + ζ−a in this sum are all divisible by (1 − ζ)2. Set 
λ = 2n

(1−ζ)2 , and set z = λe(χ). By Lemma 3.1(i) we have z ∈ OG and by Lemma 3.1(ii) 
we have that λ has minimal valuation such that λe(χ) ∈ OG. Thus, by Proposition 2.5, 
it suffices to show that OGz is O-pure in OG. Since e(χ) ∈ OH, and hence z ∈ OH, it 
suffices to show that OHz is O-pure in OH . For any a such that 0 ≤ a ≤ 2n−1 we have

saz = λ
(
sae(η) + sae(η̄)

)
= λ

(
ζae(η) + ζ−ae(η̄)

)
.

We claim that the set {z, 2ne(η)} is an O-basis of OHz. Note first that by Proposition 2.5

sz − ζ−1z = ζ−1(ζ2 − 1
)
λe(η) = μ2ne(η)
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for some μ ∈ O×. Thus both z and 2ne(η) belong to OHz. We need to show that any of 
the elements saz with a as before is an O-linear combination of z and 2ne(η). We have

saz − ζ−az = λζ−a
(
ζ2a)e(η) = ν2ne(η)

for some ν ∈ O, whence the claim. It remains to show that OHz is O-pure in OH. Let 
u =

∑2n−1
a=0 μas

a be an element in OHz such that all coefficients μa ∈ O are divisible by 
1 − ζ. Write u = βz + γ2ne(η) with β, γ ∈ O. We need to show that β, γ are divisible 
by 1 − ζ. Comparing coefficients for the two expressions of u above yields

μa = β
ζa + ζ−a

(1 − ζ)2 + γζa

for 0 ≤ a ≤ 2n − 1. If a = 2n−2, then ζa + ζ−a = 0, hence μa = γζa, which implies that 
γ is divisible by 1 − ζ, as μa is divisible by 1 − ζ. We consider the above equation for 
a = 1, which reads

μ1 = β
ζ + ζ−1

(1 − ζ)2 + γζ.

By Lemma 3.1 we have ζ+ζ−1

(1−ζ)2 ∈ O×. Since μ1 and γ are divisible by 1 − ζ, this implies 
that β is divisible by 1 −ζ. Thus OHz is O-pure in OH, and hence OGe(χ) is symmetric.

Let finally G be quasidihedral; that is, conjugation by the involution t sends s to 
s−1+2n−1 . The calculations are similar to the previous case; we sketch the modifications. 
Let η̄ be the character of H sending s to ζ−1+2n−1 = −ζ−1. Then e(χ) = e(η) + e(η̄) =∑2n−1

a=0 (ζa +(−1)aζ−a). As before, setting z = 2n−1

(1−ζ)2 e(χ), it suffices to show that OHz

is O-pure in OH. One verifies as before, that {z, 2ne(η)} is an O-basis of OHz. Let 
u =

∑2n−1
a=0 μas

a be an element in OHz such that all coefficients μa ∈ O are divisible by 
1 − ζ. Write u = βz+γ2ne(η) with β, γ ∈ O. We need to show that β, γ are divisible by 

1 −ζ. Comparing coefficients yields μa = β ζa+(−1)aζ−a

(1−ζ)2 +γζa. If a = 2n−2, then a is even 
and ζa + ζ−a = 0, implying μa = γζa, which in turn implies that γ is divisible by 1 − ζ. 
Comparing coefficients for a = 1 yields that β is divisible by 1 − ζ. Thus OHz is O-pure 
in OH, and hence OGe(χ) is symmetric. This completes the proof of Proposition 1.6.

4. On symmetric subalgebras of matrix algebras

Let G be a finite group. By the remarks following Lemma 2.1, the O-free O-algebra 
quotients of OG correspond to O-pure ideals, hence to subsets of IrrK(G), and by Re-
mark 2.6 any O-free quotient of OG is the image of a structural map α : OG → EndO(V )
for some finitely generated O-free OG-module V . Moreover, the kernel of this map de-
pends only on the set of irreducible characters of G arising as constituents of the character 
of V . If the character χ of V is irreducible, then the image of α is isomorphic to the 
algebra OGe(χ), where e(χ) = χ(1) ∑

x∈G χ(x−1)x. In that case, Im(α) ∼= OGe(χ) has 
|G|
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the same O-rank χ(1)2 as EndO(V ). If χ ∈ IrrK(G) has degree one, then OGe(χ) ∼= O is 
trivially symmetric. If χ has defect zero, then OGe(χ) is a matrix algebra over O, hence 
also symmetric. Both examples are special cases of the following well-known situation:

Proposition 4.1. Let G be a finite group, K a splitting field for G, and χ ∈ IrrK(G). 
The algebra OGe(χ) is isomorphic to a matrix algebra over O if and only if χ lifts an 
irreducible Brauer character.

Proof. We include a proof for the convenience of the reader. Let X be an O-free 
OG-module with character χ. The character χ lifts an irreducible Brauer character if 
and only if k⊗O X is a simple kG-module. The kG-module k⊗O X is simple if and only 
if the structural map kG → Endk(k ⊗O X) is surjective. By Nakayama’s Lemma, this 
is the case if and only if the structural map OG → EndO(X) is surjective. The result 
follows. �

If OGe(χ) is symmetric but not a matrix algebra, then the following observation 
narrows down the possible symmetrising forms.

Proposition 4.2. Let V be a free O-module of finite rank n, and let A be a symmetric 
subalgebra of EndO(V ) of rank n2. Then Z(A) ∼= O, and there is an integer r ≥ 0 such 
that the restriction to A of the map π−r trV : EndO(V ) → K sends A to O and induces 
a symmetrising form on A. Moreover, r is the smallest nonnegative integer satisfying 
πr EndO(V ) ⊆ A.

Proof. Since the O-rank of A is n2, we have K ⊗O A ∼= EndK(K ⊗O V ), whence 
Z(A) ∼= O. Any symmetrising form on EndK(K⊗OV ) is a nonzero linear multiple of the 
trace map trK⊗OV , and hence a symmetrising form on A is of the form π−r trV for some 
integer r such that π−r trV (A) = O. Since trV (A) ⊆ O, this forces r ≥ 0. Let s be the 
smallest nonnegative integer satisfying πs EndO(V ) ⊆ A. Let e be a primitive idempotent 
in EndO(V ). Then trV (e) = 1. We have πse ∈ A, hence π−r trV (πse) = πs−r ∈ O. This 
implies that s ≥ r. Since πs−1 EndO(V ) is not contained in A, there is an element c ∈ A

such that π−1c /∈ A and c ∈ πs EndO(V ). Thus Oc is a pure O-submodule of A. Thus 
there is an O-basis of A containing c. By considering the dual O-basis with respect to 
the symmetrising form π−r trV , it follows that π−r trV (cA) = O. Since c ∈ πs EndO(V ), 
we have trV (cA) ⊆ πsO, hence π−r trV (cA) ⊆ πs−rO. This yields the inequality s ≤ r, 
whence the equality s = r. �
Corollary 4.3. Let V be a free O-module of finite rank n, and let A be a proper symmetric 
subalgebra of EndO(V ) of rank n2. Then for any idempotent i ∈ A, the integer trV (i) is 
divisible by p. In particular, p divides n.

Proof. If A is a proper symmetric subalgebra of EndO(V ), then the smallest nonnegative 
integer r satisfying πr EndO(V ) ⊆ A is positive. It follows from Proposition 4.2 that A has 
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a symmetrising form which is the restriction to A of π−r trV for some positive integer r. 
In particular, if i is an idempotent in A, then π−r trV (i) is an element in O. Since trV (i)
is an integer and r > 0, this implies that p divides trV (i). Applied to i = 1A = IdV yields 
that p divides n = trV (IdV ). �
Corollary 4.4. Let V be a free O-module of finite rank n. Suppose that (n, p) = 1. Then 
EndO(V ) has no proper symmetric subalgebra of O-rank n2.

Proof. This is clear by Corollary 4.3. �
Corollary 4.5. Let V be a free O-module of finite rank p. Every proper symmetric subal-
gebra of rank p2 of EndO(V ) is local.

Proof. If i is an idempotent in a proper symmetric subalgebra A of EndO(V ), then p
divides trV (i) ≤ trV (IdV ) = p. Thus i = IdV . The result follows. �

In order to prove a slightly more general version of Theorem 1.1, we use the following 
notation. Let A be an O-algebra which is finitely generated free as an O-module, such 
that K⊗O A is split semisimple and k⊗O A is split. Let X be a simple K⊗O A-module. 
Then there is an O-free A-module V such that K ⊗O V ∼= X. It is well-known that 
for any simple k ⊗O A-module S the number dXS of composition factors isomorphic to 
S in a composition series of k ⊗O V does not depend on the choice of V . This follows, 
for instance, from the fact that dXS = dimK(iX), where i is a primitive idempotent in 
A such that Ai/J(A)i ∼= S. We denote by e(X) the central primitive idempotent in 
K ⊗O A which acts as identity on X. We say that X lifts a simple k ⊗O A-module S if 
k ⊗O V ∼= S, or equivalently, if dXS = 1 and dXS′ = 0 for any simple k ⊗O A-module S′

not isomorphic to S. Theorem 1.1 is the special case A = OG of the following result.

Theorem 4.6. Let A be an O-algebra which is finitely generated free as an O-module, 
such that K ⊗O A is split semisimple and k ⊗O A is split. Let X be a simple K ⊗O
A-module. Suppose that the O-algebra Ae(X) is symmetric. Then either X lifts a simple 
k ⊗O A-module, or dXS is divisible by p for any simple k ⊗O A-module S.

Proof. Let V be an O-free A-module such that K ⊗O V ∼= X. Suppose that X does not 
lift a simple k ⊗O A-module; that is, k ⊗O V is not simple. Thus the image, denoted 
by E, of the structural map A → EndO(V ) is a proper subalgebra of EndO(V ). Note 
that E ∼= Ae(X). Moreover, for any idempotent i ∈ A we have trV (i) = rankO(iV ) =
dimK(iX). As Ae(X) is assumed to be symmetric, it follows from Corollary 4.3 that 
for any idempotent i ∈ A, the integer dimK(iX) is divisible by p. Applied to primitive 
idempotents, this shows that dXS is divisible by p for any simple k ⊗O A-module S. �



JID:YJABR AID:14815 /FLA [m1L; v 1.134; Prn:8/07/2014; 14:43] P.13 (1-15)
R. Kessar et al. / Journal of Algebra ••• (••••) •••–••• 13
5. Proofs of Propositions 1.9 and 1.11

If χ : G → O× is a linear character, then the corresponding O-pure ideal Iχ =
KGe(χ) ∩ OG has O-rank 1 and is equal to O(

∑
x∈G χ(x−1)x). There is a unique 

O-algebra automorphism of OG sending x ∈ G to χ(x)x. This automorphism sends ∑
x∈G χ(x−1)x to 

∑
x∈G x. Thus the linear characters of OG are permuted transi-

tively by the group of O-algebra automorphisms of OG, and therefore, in order to 
address the question whether OG/Iχ is symmetric, it suffices to consider the case 
where χ = 1 is the trivial character, in which case the corresponding pure ideal is 
I1 = OG(

∑
x∈G x) = O(

∑
x∈G x). The annihilator of I1 in OG is the augmentation ideal 

I(OG). Combining these observations with Proposition 2.2 and some block theory yields 
a proof of Proposition 1.9, which we restate in a slightly more precise way.

Proposition 5.1. Let G be a finite group. The following are equivalent.

(i) The O-algebra OG/O(
∑

x∈G x) is symmetric.
(ii) There exists an element z ∈ Z(OG) such that I(OG) = OGz.
(iii) The group G is p-nilpotent and has a cyclic Sylow-p-subgroup.

Proof. The equivalence of (i) and (ii) is clear by Proposition 2.2. Suppose that (ii) 
holds. Let b be the principal block idempotent of OG. Then I(OG)b = OGzb is a 
proper ideal in OGb; in particular, zb is not invertible in Z(OGb). Since Z(OGb) is 
local, it follows that zb is in the radical of Z(OGb), and hence the ideal OGzb is con-
tained in J(OGb). Since OGb/I(OG)b ∼= OG/I(OG) ∼= O, this implies that OGb is 
a local algebra, and that kGz̄b̄ = J(kGb̄), where z̄, b̄ are the canonical images of z, 
b in kG, respectively. It follows that the finite group G is p-nilpotent (see [6, Chap-
ter 5, Theorems 8.1 and 8.2]). Since J(kGb̄) = kGz̄b̄ is a principal ideal, it follows 
from a result of Nakayama [8] that kGb̄ is uniserial, and hence P is cyclic. Thus (ii) 
implies (iii). Conversely, if (iii) holds, then the principal block algebra OGb of OG is iso-
morphic to OP , where P is a Sylow-p-subgroup of G, and if y is a generator of P , then 
I(OP ) = OP (y − 1). Note that I(OG) contains all nonprincipal block algebras of OG. 
Set z = (y − 1)b +

∑
b′ b′, where in the sum b′ runs over all nonprincipal block idempo-

tents. By the above, this is an element in Z(OG) satisfying I(OG) = OGz, completing 
the proof. �
Proof of Corollary 1.10. Suppose that ZG/Z(

∑
x∈G x) is symmetric. Tensoring by O

over Z implies that the O-algebra OG/O(
∑

x∈G x) is symmetric. Thus G is p-nilpotent 
with a cyclic p-Sylow subgroup. This holds for any prime p. It follows that G is a direct 
product of its Sylow subgroups all of which are cyclic, and hence G is cyclic. Suppose 
conversely that G is cyclic. Let y be a generator of G. Then the augmentation ideal 
of ZG is equal to (y − 1)ZG, and this is also equal to the annihilator of Z(

∑
x∈G x). 
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It follows from Proposition 2.2, applied with the Noetherian ring Z instead of O, that 
ZG/Z(

∑
x∈G x) is symmetric. �

Proof of Proposition 1.11. Suppose that B/I is symmetric. By Proposition 2.2 the an-
nihilator J of I is of the form J = Bz for some z ∈ Z(B). Let X be an O-free B-module 
with character χ. By the assumptions, X̄ = k⊗OX is a simple module over B̄ = k⊗OB. 
By Proposition 4.1, and using that k is large enough, the structural map B → EndO(X)
is surjective, and the kernel of this map is J . Since J = Bz is a proper ideal in B and 
Z(B) is local, it follows that z ∈ J(B). Thus the image J̄ of J in B̄ is equal to J(B̄), 
and B̄ has a single isomorphism class of simple modules. Since J(B̄) = B̄z̄, where z̄ is 
the image of z in Z(B̄), it follows as before from [8] that B̄ is uniserial. Thus B has 
cyclic defect groups. A block with cyclic defect and a single isomorphism class of simple 
modules is nilpotent, which shows that (i) implies (ii). Conversely, if (ii) holds, then B
is Morita equivalent to OP , where P is a defect group of B (and P is cyclic by the 
assumptions). Since χ lifts an irreducible Brauer character it follows that under some 
Morita equivalence, χ corresponds to the trivial character of OP , and hence (i) holds by 
Proposition 1.9 applied to P . �
6. An Example

As was pointed out after Proposition 1.8, all irreducible characters of finite p-groups 
of order at most p3 have the symmetric quotient property. The next example shows that 
for any odd prime p there is a finite p-group of order pp+1 having at least one irreducible 
character which does not have the symmetric quotient property.

Example 6.1. Let p be an odd prime. G = Q � R = H � R, where Q, R are cyclic of 
order p, and where H is a direct product of p copies of Q which are transitively permuted 
by R. Let s be a generator of Q and ζ be a primitive p-th root of unity. For 1 ≤ i ≤ p

let ψi : H → O× be the linear character sending (sa1 , sa2 , .., sap) ∈ H to ζai ; that is, the 
kernel of ψi contains all but the i-th copy of Q in H, the ψi are pairwise different, and 
they are permuted transitively by the action of G. Set χ = IndG

H(ψ1). Then χ ∈ IrrK(G), 
and the O-algebra OGe(χ) is not symmetric.

The irreducibility of χ is a standard result. In order to show the symmetry of OGe(χ), 
observe first that ResGH(χ) =

∑p
i=1 ψi because the ψi form a G-orbit in IrrK(H). We 

have

e(χ) =
p∑

i=1
e(ψi) = 1

|H|
∑
h∈H

(
p∑

i=1
ψi

(
h−1))h.

The coefficients 
∑p

i=1 ψi(h−1) are divisible by 1 −ζ because they are sums of p (arbitrary) 
powers of ζ. Moreover, for h = (s, 1, .., 1) ∈ H one sees that 1 − ζ is the highest power 
of 1 − ζ dividing this coefficient. Thus if OGe(χ) were symmetric, then OGz would have 
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to pure in OG, where z = |H|
1−ζ e(χ). Since z ∈ OH, this is the case if and only if OHz

is pure in OH. We will show that OHz is not pure in OH. If u = (sa1 , sa2 , .., sap) ∈ H, 
then

uz = |H|
1 − ζ

p∑
i=1

ue(ψi) = |H|
1 − ζ

p∑
i=1

ζaie(ψi).

Applied to the identity element and v = (1, 1, ..1, s, 1, ..1), with s in the i-th component, 
and taking the difference yields z − vz = |H|e(ψi) ∈ OGz. For any u ∈ H, the above 
formula yields uz − z ∈ ⊕p

i=1 O|H|e(ψ). Thus the set

{
z, |H|e(ψi) (2 ≤ i ≤ p)

}
is an O-basis of OHz. Since p is odd, this basis has at least three elements. Suppose that 
w =

∑
h∈H μhh is an element in OHz. Write w = αz+

∑p
i=2 βi|H|e(ψi) with α, βi ∈ O. 

Thus

μh = α

∑p
i=1 ψ(h−1)

1 − ζ
+

p∑
i=2

βiψi

(
h−1).

Note that if 
∑p

i=2 βi is divisible by 1 − ζ then any sum of the form 
∑p

i=2 βiψi(h−1) is 
divisible by 1 − ζ because any character value ψi(h−1) is a power of ζ. This shows that if 
1 − ζ divides both α and the sum 

∑p
i=2 βi, then 1 − ζ divides μh for all h ∈ H. But since 

p > 2 we may choose invertible elements βi satisfying 
∑p

i=2 βi = 0. This shows that even 
if all μh are divisible by 1 −ζ, this does not imply that α and all βi are divisible by 1 −ζ, 
hence OHz is not O-pure in OH.

References

[1] E.C. Dade, Blocks with cyclic defect groups, Ann. of Math. 84 (1966) 20–48.
[2] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math., 

vol. 1428, Springer-Verlag, Berlin, Heidelberg, 1990.
[3] W. Feit, The Representation Theory of Finite Groups, North Holland, Amsterdam, 1982.
[4] R. Kessar, G. Malle, Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. of Math. 178 

(2013) 321–386.
[5] T.Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math., vol. 189, Springer-Verlag, New 

York, 1999.
[6] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, 1988.
[7] T. Nakayama, On Frobeniusean algebras. I, Ann. of Math. 40 (1939) 611–633.
[8] T. Nakayama, Note on uni-serial and generalized uni-serial rings, Proc. Imp. Acad. (Tokyo) XVI 

(1940) 285–289.
[9] J. Thompson, Vertices and sources, J. Algebra 6 (1967) 1–6.

http://refhub.elsevier.com/S0021-8693(14)00344-5/bib446164656379636C6963s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4572646D616E6E74616D65s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4572646D616E6E74616D65s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib46656974s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4B65737361724D616C6C65s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4B65737361724D616C6C65s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4C616Ds1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4C616Ds1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4E6167547375s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4E616B3339s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4E616B3430s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib4E616B3430s1
http://refhub.elsevier.com/S0021-8693(14)00344-5/bib54686F6D70736F6E3637s1

	On symmetric quotients of symmetric algebras
	1 Introduction
	2 Notation and basic facts
	3 Proof of Proposition 1.6
	4 On symmetric subalgebras of matrix algebras
	5 Proofs of Propositions 1.9 and 1.11
	6 An Example
	References


