期刊论文详细信息
JOURNAL OF ALGEBRA 卷:423
On lattices over valuation rings of arbitrary rank
Article
Zemel, Shaul
关键词: Lattices;    Bilinear forms;    Valuation rings;   
DOI  :  10.1016/j.jalgebra.2014.10.022
来源: Elsevier
PDF
【 摘 要 】

We show how several results about p-adic lattices generalize easily to lattices over valuation ring of arbitrary rank having only the Henselian property for quadratic polynomials. If 2 is invertible we obtain the uniqueness of the Jordan decomposition and the Witt Cancellation Theorem. We show that the isomorphism classes of indecomposable rank 2 lattices over such a ring in which 2 is not invertible are characterized by two invariants, provided that the lattices contain a primitive norm divisible by 2 of maximal valuation. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2014_10_022.pdf 789KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次