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characterized by two invariants, provided that the lattices 
contain a primitive norm divisible by 2 of maximal valuation.
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Introduction

A well-known result states that for any odd prime p, the isomorphism classes of p-adic 
lattices correspond to the possible symbols of the form 

∏N
e=0(pe)εene , where εe ∈ {±1}

and ne ∈ N for every e. Moreover, the Witt Cancellation Theorem holds for p-adic 
lattices, as is shown in [7]. The same assertions hold for lattices over the ring of integers 
O in a finite field extension of Qp. In all references known to the author (e.g., [7,9,4,13], 
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etc.) the proof is based on the p-adic valuation being discrete, or at least of rank 1 (see 
[5]). Recall that a valuation has rank 1 if the value group can be embedded in (R, +) as 
an ordered group. The first aim of this paper is to generalize these assertions to lattices 
over any 2-Henselian valuation ring with a finite residue field whose characteristic is 
not 2. Indeed, a very simple variation of the short argument appearing in Section 4 of 
Chapter 1 of [12] suffices to prove this result (see also Section 3 in Chapter 8 of [4] for 
the case of lattices over the ring Zp of p-adic numbers).

We remark that several texts deal with non-unimodular lattices (also in the Hermitian 
setting) under various degrees of generality (see, e.g., [2] or [3]). However, these references
use abstract tools such as quadratic forms over Hermitian categories. The book [11] also 
deals with related topics, but mostly in the quadratic setting, while we do not assume that 
our bilinear form comes from a quadratic form (in the sense of [1] in characteristic 2—see 
more details in Section 4). The book [10] considers bilinear forms over valuation rings, 
but treats them up to isomorphism over the quotient field rather than just over the 
valuation ring itself. It seems that our results are independent of the results appearing 
in [11] and [10]. In any case our proofs are very concrete and simple, and show how the 
desired assertions can be obtained solely from 2-Henselianity.

Next we consider unimodular rank 2 lattices, which contain the only non-trivial inde-
composable lattices over valuation rings (up to multiplying the bilinear form by a scalar). 
We focus on the residue characteristic 2 case, where indeed such indecomposable lattices 
exist. We define an invariant for isomorphism classes of these lattices, which in some 
sense generalizes the Arf invariant defined in [1]. We then show how two invariants char-
acterize the isomorphism classes of such lattices, in case they contain a primitive element 
whose norm is divisible by 2. We conclude by giving some relations between different Jor-
dan decompositions (in residue characteristic 2) which yield isomorphic lattices, taking 
a Jordan decomposition of a lattice to a “more canonical” one.

In Section 1 we prove the existence of Jordan decompositions over any valuation ring, 
and show that an approximated isomorphism between lattices over a 2-Henselian valua-
tion ring is a twist of a true isomorphism. Section 2 proves the “uniqueness of the symbol” 
result. In Section 3 we present the conventions for unimodular rank 2 lattices, with their 
generalized Arf invariants. Section 4 considers isomorphisms between unimodular rank 2 
lattices containing a primitive vector of norm divisible by 2, and shows that the fine Arf 
invariant and the class of minimal norms characterize the isomorphism class of such 
lattices. Finally, in Section 5 we define when one Jordan decomposition in residue char-
acteristic 2 is “more canonical” than another Jordan decomposition, and present certain 
transformations of Jordan decompositions which makes them “more canonical”.

I am thankful to U. First for reading this manuscript and providing several enlight-
ening insights. Many thanks are due to the anonymous referee, whose suggestions have 
helped to greatly improve many aspects of this paper, as well as the clarity of several 
arguments.
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1. Jordan decompositions

Let R be a commutative ring, and let M be a finite rank free R-module with a 
symmetric bilinear form. We denote the bilinear form by (·,·) : M × M → R, and for 
x ∈ M we write x2 for (x, x) (this element of R is called the norm of x). The bilinear 
form maps M to the dual module M∗ = HomR(M, R), and we call the bilinear form 
non-degenerate if this map M → M∗ is injective. In this case we call M an R-lattice. 
Note that our non-degeneracy condition is weaker than the inner product condition 
considered in [12], where the map M → M∗ is required to be bijective. In case this map 
is bijective we call the lattice M unimodular. We consider only the case where R is an 
integral domain, so we assume this from now on. In this case we can extend scalars to 
the field of fractions K of R, and obtain a K-lattice, or equivalently an inner product 
space over K. Then non-degeneracy is equivalent to requiring a non-zero determinant for 
the Gram matrix of the bilinear form using any basis for M .

Some authors (e.g., [12]) assume that a module underlying lattice is projective (and 
not necessarily free). However, our main interest here is the case where R is a valuation 
ring, hence a local ring, where these two conditions are equivalent.

Elements x and y of a lattice M are called orthogonal and denoted x ⊥ y if (x, y) = 0. 
For a submodule N of M we denote N⊥ its orthogonal complement, the submodule of M
consisting of those x ∈ M such that x ⊥ y for all y ∈ N . Our non-degeneracy condition 
is equivalent to the assertion that M⊥ = {0}. A direct sum of lattices is orthogonal
if every two elements from different lattices are orthogonal. Then an orthogonal direct 
sum of bilinear form modules is a lattice (i.e., non-degenerate) if and only if all the 
summands are lattices. Two lattices M and N are called isomorphic, denoted M ∼= N , if 
there exists an R-module isomorphism between them which preserves the bilinear form. 
A non-degenerate lattice M has an orthogonal basis if and only if it is isomorphic to 
a direct sum of rank 1 lattices. For a lattice M and an element 0 �= a ∈ R, we denote 
M(a) the lattice obtained from M by multiplying the bilinear form by a. This lattice 
is non-degenerate if and only if M has this property, and a basis for the module M is 
orthogonal for the lattice M if and only if it is orthogonal for M(a).

We denote the group of invertible elements in the ring R by R∗, and the multiplicative 
group of K by K∗. The determinant of a Gram matrix of a basis of M is independent 
of the choice of basis up to elements of (R∗)2. Hence a statement of the form “the 
determinant of the bilinear form on M divides an element of R” is well-defined. We 
note that M is unimodular (hence non-degenerate in the sense of [12]) if and only if its 
determinant is in R∗.

An element x of a lattice M is called primitive if the module M/Rx is torsion-free. 
This condition is equivalent to x being an element of some basis of M , and it is preserved 
under multiplication from R∗. Note that this notion depends only on the structure of M
as an R-module, and not on the bilinear form on M .

We call an R-lattice M uni-valued if it can be written as L(σ) with L unimodular 
and σ ∈ R. This notion (at least over valuation rings) is closely related to the notion of 
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a-unimodularity considered, for example, in [13]. A Jordan decomposition of a lattice M
is a presentation of M as 

⊕t
k=1 Mk with Mk uni-valued, such that if Mk = Lk(σk) with 

Lk unimodular then v(σk) �= v(σl) wherever k �= l. Note that if M and N are uni-valued 
with the same σ then so is M ⊕ N . Hence the condition about the σk having different 
valuations can be easily achieved by successive combination of two uni-valued lattices 
with the same v(σ) into one.

We now prove the existence of Jordan decompositions for lattices over arbitrary valua-
tion rings. We follow closely the arguments in Chapter 1 of [12] (where bilinear forms over 
fields are considered) and [7] or Chapter 8 of [4] (which considers the p-adic numbers).

Let N be a (free) submodule of M which is non-degenerate of rank r. First we prove 
a simplified version of Lemma 1 of [7]:

Lemma 1.1. Let ei, 1 ≤ i ≤ r be a basis for N , and let A ∈ Mr(R) be the matrix whose 
ij-entry is (ei, ej). For any x ∈ M and 1 ≤ i ≤ r, denote by Ai,x the matrix whose 
ij-entry (with the same i) is (x, ej) and all the other entries coincide with those of A. If 
detA divides detAi,x in R for any i and x then M decomposes as N ⊕N⊥ (as lattices).

Proof. Since N is non-degenerate, we have N ∩N⊥ = {0}, hence N⊕N⊥ is a sub-lattice 
of M . We need to show equality. Given x ∈ M , we claim that there exists some y =∑r

i=1 aiei ∈ N (with ai ∈ R) such that (x, ej) = (y, ej) for any 1 ≤ j ≤ r. Indeed, 
these equalities (one for each 1 ≤ j ≤ r) yield a system of linear equations for the 
coefficients ai, which we can solve over K since the corresponding matrix is A (hence 
of non-zero determinant). But the solution is given using Cramer’s formula, i.e., ai =
det Ai,x

det A ∈ K, and our assumptions imply that these coefficients are in R. Now, since y ∈ N

and our assumption on y implies x − y ∈ N⊥, we obtain that x = y+(x − y) ∈ N ⊕N⊥, 
as desired. This proves the lemma. �

Assume now that R is a valuation ring. This means that there is a totally ordered 
(additive) group Γ (the value group) and a surjective homomorphism v : K∗ → Γ (called 
the valuation) satisfying v(x + y) ≥ min{v(x), v(y)} for every x and y in K. Here and 
throughout, we extend v to a function on K by setting v(0) = ∞ and considering it 
larger than any element of Γ . The statement that R is the valuation ring of v means 
that R consists precisely of those elements x ∈ K such that v(x) ≥ 0 (with 0 here is the 
trivial element of Γ ). For any γ ∈ Γ we define Iγ = {x ∈ K∗ | v(x) > γ}. It is a (proper) 
ideal in R if γ ≥ 0. In particular, I0 is the unique maximal ideal of R. We remark that an 
ideal of the sort {x ∈ K∗ | v(x) ≥ γ} is just the principal (perhaps fractional, if γ < 0) 
ideal σR with v(σ) = γ, hence requires no further notation.

In many references (e.g., [5]), the ordered group Γ is considered as a subgroup of 
the additive group of R. Such valuations are called of rank 1. In particular, the discrete
valuations, in which Γ ∼= Z (covering the case of the p-adic numbers and their finite 
extensions) have rank 1. However, we pose no restrictions on v or Γ in this paper, hence 
the rank is arbitrary.
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For any R-lattice M we define the valuation of M , denoted v(M), to be min{v(x, y) |
x, y ∈ M}, where we use the shorthand v(x, y) for v((x, y)). This value equals 
mini,j v(ei, ej) wherever ei, 1 ≤ i ≤ r is a basis for R, since (x, y) lies in the R-module 
generated by these elements for any x and y in R. In particular v(M) is well-defined. If M
is uni-valued, then by writing M = L(σ) with L unimodular we have v(M) = v(σ). In a 
Jordan decomposition 

⊕t
k=1 Mk of a lattice M the condition on the elements σk ∈ R dis-

tinguishing the uni-valued components from being unimodular reduces to the assertion 
that these components have different valuations. We can thus assume, by changing the 
order if necessary, that v(Mk) < v(Mk+1) for every 1 ≤ k < t. Using these definitions, 
Lemma 1.1 yields

Proposition 1.2. Any lattice M over a valuation ring R admits a Jordan decomposition.

Proof. We apply induction on the rank of M . For rank 1 lattices the assertion is trivial. 
Let v = v(M). Assume first that there is an element x ∈ M such that v(x2) = v. Then 
N = Rx satisfies the condition of Lemma 1.1, so that we can write M = N ⊕ N⊥. On 
the other hand, if no such x exists, then we take x and y in M such that v(x, y) = v, 
and our assumption implies v(x2) > v and v(y2) > v. We claim that x and y are linearly 
independent over R. Indeed, the equality ax + by = 0 implies ax2 + b(x, y) = 0 and 
a(x, y) + by2 = 0, hence a ∈ bI0 and b ∈ aI0, which is possible only if a = b = 0. 
Moreover, N = Rx ⊕ Ry satisfies the condition of Lemma 1.1. Indeed, the valuation of 
the determinant is 2v, while the valuation of any other 2 × 2 determinant with entries in 
the image of the bilinear form has valuation at least 2v. Thus also here M = N ⊕N⊥. It 
remains to verify that in both cases N is uni-valued. To see this, observe that any rank 1 
lattice is uni-valued, and in the second case dividing the bilinear form on N by (x, y)
gives a unimodular lattice. The induction hypothesis allows us to decompose N⊥ into 
uni-valued lattices, and adding N to the component of valuation v in N⊥ (if it exists) 
completes the proof of the proposition. �

The decomposition of Proposition 1.2 is called a Jordan splitting in [13]. From the 
proof of Proposition 1.2 we deduce

Corollary 1.3. If 2 ∈ R∗ then the components Mk have orthogonal bases. If 2 /∈ R∗ then 
either Mk has an orthogonal basis or it admits an orthogonal decomposition into lattices 
of rank 2 each having a basis {x, y} such that v(x2) and v(y2) are both strictly larger 
than v(x, y).

Proof. First we show that if 2 ∈ R∗ then there exists an element x ∈ M with v(x2) =
v(M). Indeed, if v(x, y) = v and v(2) = 0 while v(x2) > v and v(y2) > v then (x + y)2 =
x2 + y2 + 2(x, y) has valuation v. In view of the proof of Proposition 1.2, this proves 
the corollary in this case. Assume now 2 /∈ R∗. The proof of Proposition 1.2 shows that 
Mk can be written as an orthogonal direct sum of rank 1 lattices and rank 2 lattices of 
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the sort described above. It remains to show that if a lattice of rank 1 appears in Mk

then Mk has an orthogonal basis. It suffices (by induction) to prove that if N is the 
direct sum of one rank 1 lattice and one rank 2 lattice of this form having the same 
valuation then N has an orthogonal basis. Let now N = Rx ⊕ Ry ⊕ Rz be a lattice in 
which x ⊥ z, y ⊥ z, and (x, y) and z2 have common (finite) valuation v while v(x2) > v

and v(y2) > v. One checks directly that the three elements tx + z, (z2)y − t(x, y)z, and 
(y2z2 + t2(x, y)2)x − (x, y)(t2x2 + z2)y − t(x2y2 − (x, y)2)z form an orthogonal basis for 
N for any t ∈ R∗. This proves the corollary. �

Recall that a valuation ring R is called Henselian if Hensel’s Lemma holds in R, namely 
if given three monic polynomials f , g0, and h0 in the polynomial ring R[x] such that 
f − g0h0 lies in I0[X] (i.e., all the coefficients of that difference have positive valuation) 
and the resultant of g0 and h0 is in R∗ then there exist monic polynomials g and h in 
R[x] such that f = gh and g − g0 and h − h0 are in I0[X]. In particular, taking g to be 
of degree 1 renders this statement equivalent to the assertion that if a ∈ R and monic 
f ∈ R[x] satisfy v(f(a)) > 0 and v(f ′(a)) = 0 then f has a root b ∈ R with b − a ∈ I0. 
We call a valuation ring R 2-Henselian if the last assertion holds for any polynomial f of 
degree 2, and if 2 �= 0 in R. We note that a more general assertion holds in a Henselian
ring, stating that for f ∈ R[x] (not necessarily monic!) and an element a ∈ R such that 
v(f(a)) > 2v(f ′(a)) there exists a root b of f with b − a ∈ Iv(f ′(a)). Indeed, following 
the proof of the equivalence of (e) and (f) in Theorem 18.1.2 of [6], we use the Taylor 
expansion to write f(a − f(a)

f ′(a)y) as f(a)(1 − y + f(a)
f ′(a)2 y

2g(y)) for some polynomial g, 
and we present this expression as f(a)ydh( 1

y ) where d is the degree of f and h(x) has 
the form xd − xd−1 +

∑d−2
i=0 cix

i with ci ∈ I0. Since v(h(1)) > 0 and v(h′(1)) = 0 there 
exists a root λ ∈ 1 + I0 ⊆ R∗ of h, so that the required root of f is b = a − f(a)

f ′(a) ·
1
λ . 

Since λ ∈ R∗ we know that v(b −a) = v( f(a)
f ′(a) ). In a 2-Henselian valuation ring this more 

general condition holds for any f ∈ R[x] of degree 2. As Theorem 7 in Chapter 2 of [14]
shows that every complete valuation ring is Henselian (and in particular 2-Henselian), 
our results hold for a variety of interesting valuation rings.

The following property of 2-Henselian rings will be used below.

Lemma 1.4. An element of R of the form 1 +y with v(y) > 2v(2) lies in (R∗)2, and has a 
unique square root 1 + z such that v(z) > v(2). Moreover, the equality v(y) = v(z) + v(2)
holds in this case. Let A, B, and C be three elements of K such that v(AC) > 2v(B)
(hence B �= 0). Then the equation At2 +Bt +C = 0 has one solution in K with valuation 
v(CB ) (so that this solution is in R if v(C) ≥ v(B)). If A �= 0 then the other solution has 
valuation v(BA ), which is strictly smaller.

Proof. Consider the polynomial f(t) = t2 − 1 − y and the approximate root 1. The 
2-Henselianity of R yields a root of this polynomial, which we write as 1 + z, such that 
z ∈ Iv(2) since f ′(1) = 2. We also have v(z) = v( f(1)

f ′(1) ) = v(y) − v(2). The second square 
root of 1 + y is −1 − z, and by subtracting 1 we obtain the element −2 − z of R, which 
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has valuation precisely v(2) since v(z) > v(2). Next, the equation At2 + Bt + C = 0
has only one solution t = −C

B if A = 0, and otherwise its two solutions are given by 
−B±

√
B2−4AC
2A (in an appropriate extension of K if necessary). Now, B2−4AC = B2(1 +y)

for y = −4AC
B2 , and the inequality v(y) > 2v(2) allows us to write 

√
B2 − 4AC as B(1 +z)

with z ∈ R such that v(z) = v(y) − v(2) = v(2AC
B2 ). The two solutions B

2A (−1 ± (1 + z))
of the equation lie in K. The solution with + is Bz

2A and has the required valuation v(CB )
(like in the case A = 0), and the other solution has valuation v(BA ) since v(2 − z) = v(2). 
As v(AC) > v(B2) implies v(CB ) > v(BA ), this proves the lemma. �

Note that the condition 2 �= 0 was implicitly used in Lemma 1.4, in assumptions in 
which some elements have valuations strictly larger than v(2), as well as dividing by 2 
in K. All the assertions of Lemma 1.4 collapse if 2 = 0 in R.

Our first result states that the existence of an approximate isomorphism between 
lattices over 2-Henselian valuation rings implies that the lattices are indeed isomorphic. 
See Theorem 2 of [5] for the special case of complete valuation rings of rank 1, and 
Corollary 36a of [9] or Lemma 5.1 of [4] for the case R = Zp.

Theorem 1.5. Let M and N be R-lattices. Decompose M as in Proposition 1.2, and 
assume that M and N are isomorphic when we reduce modulo Iv(Mt)+2v(2). Then M ∼= N

as R-lattices.

Proof. Denote Iv(Mt)+2v(2) by I. An isomorphism over R/I can be lifted to an R-module 
homomorphism ϕ : M → N (since M is a free module). Moreover, ϕ must be bijective: 
Observe that M and N must have the same rank, and by choosing bases for both modules 
the determinant of ϕ is a unit modulo I hence lies in R∗. ϕ preserves the bilinear form 
up to I, and we now show how to alter ϕ to a lattice isomorphism from M to N . We 
apply induction on the (common) rank of M and N .

Assume first that M1 has an orthogonal basis, and let x be an element of the basis 
of M1. Then v(x2) is minimal in M , and the fact that x2 /∈ I implies the equal-
ity v(ϕ(x)2) = v(x2). This valuation is also minimal in N . Moreover, the inequality 
v( x2

ϕ(x)2 − 1) > 2v(2) holds, so that by Lemma 1.4 there is c ∈ R∗ with v(c −1) > v(2) such 

that c2 = x2

ϕ(x)2 . Lemma 1.1 implies that M = Rx ⊕ (Rx)⊥, and we define ψ : M → N

by taking x to cϕ(x) and u ∈ (Rx)⊥ to ϕ(u) − (ϕ(u),ϕ(x))
ϕ(x)2 ϕ(x). Since (ϕ(u), ϕ(x)) ∈ I

(as (u, x) = 0), we have (ϕ(u),ϕ(x))
ϕ(x)2 ∈ I2v(2) ⊆ R. Now, ψ(x)2 = x2, and if u ⊥ x then we 

have ψ(u) ⊥ ψ(x). If w ∈ M is another vector such that w ⊥ x as well, then we have

(
ψ(u), ψ(w)

)
=

(
ϕ(u), ϕ(w)

)
− (ϕ(u), ϕ(x))(ϕ(w), ϕ(x))

ϕ(x)2 .

The congruence (ϕ(u), ϕ(w)) ≡ (u, w)(mod I) and the relations (ϕ(u),ϕ(x))
ϕ(x)2 ∈ R and 

(ϕ(w), ϕ(x)) ∈ I now imply (ψ(u), ψ(w)) ≡ (u, w)(mod I) for any u and w in (Rx)⊥.
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On the other hand, if M1 has no orthogonal basis, then we take some x and y in 
M1 such that v(x, y) is minimal in M , and then v(ϕ(x), ϕ(y)) = v(x, y) is minimal 
in N . Moreover, v(ϕ(x)2) and v(ϕ(y)2) are both larger than v(x, y). We need to modify 
ϕ(x) and ϕ(y) in order to obtain elements spanning a rank 2 sublattice of N which 
is isomorphic to Rx ⊕ Ry. We claim that there exist elements s and t in Iv(2) and 
c ≡ 1(mod Iv(2)) such that

(
cϕ(x) + csϕ(y)

)2 = x2,
(
ϕ(y) + tϕ(x)

)2 = y2,

and
(
cϕ(x) + csϕ(y), ϕ(y) + tϕ(x)

)
= (x, y).

First we apply Lemma 1.4 with the numbers A = ϕ(x)2, B = 2(ϕ(x), ϕ(y)), and C =
ϕ(y)2−y2 ∈ I (these numbers satisfy the assumptions of that lemma). The corresponding 
solution t, of valuation v(CB ) > v(2), satisfies (ϕ(y) + tϕ(x))2 = y2 as required.

Further, denote x2y2 − (x, y)2 by Δ and ϕ(x)2ϕ(y)2 − (ϕ(x), ϕ(y))2 by Δϕ, so that 
v(Δ) = v(Δϕ) = 2v(x, y) (see Corollary 1.3). Observe that

(
ϕ(x), ϕ(y)

)2 − (x, y)2 =
((
ϕ(x), ϕ(y)

)
− (x, y)

)((
ϕ(x), ϕ(y)

)
+ (x, y)

)

and

ϕ(x)2ϕ(y)2 − x2y2 = ϕ(x)2
(
ϕ(y)2 − y2) + y2(ϕ(x)2 − x2)

are elements of (x, y)I, so that Δϕ−Δ lies in the same ideal and x2(Δϕ

Δ − 1) ∈ I. Hence 

C = ϕ(x)2−x2 Δϕ

Δ ∈ I, while B = 2(ϕ(x), ϕ(y)) +2tx2 Δϕ

Δ has valuation v(x, y) +v(2) and 

A = ϕ(y)2 − t2x2 Δϕ

Δ has valuation v(x2) ≥ v(x, y). Thus, we can use Lemma 1.4 again 
and obtain a solution s, of valuation v(CB ) > v(2), to As2+Bs +C = 0. Furthermore, since 

s and t are in Iv(2), the number (1+st)(ϕ(x),ϕ(y))+sϕ(y)2+tϕ(x)2
(x,y) is congruent to 1 modulo 

Iv(2) (hence lies in R∗). We denote by c the inverse of this number, hence v(c −1) > v(2)
as well. The two elements cϕ(x) + csϕ(y) and ϕ(y) + tϕ(x) span Rϕ(x) ⊕ Rϕ(y) since 
the determinant c(1 − st) of the transition matrix is in R∗, and the choice of c implies 
(cϕ(x) + csϕ(y), ϕ(y) + tϕ(x)) = (x, y).

In order to evaluate (cϕ(x) + csϕ(y))2 we write the square of the denominator of c as

[
s2(ϕ(x), ϕ(y)

)2 + 2sϕ(x)2
(
ϕ(x), ϕ(y)

)
+
(
ϕ(x)2

)2]
t2

+ 2
[
s2ϕ(y)2

(
ϕ(x), ϕ(y)

)
+ sϕ(x)2ϕ(y)2 + s

(
ϕ(x), ϕ(y)

)2 + ϕ(x)2
(
ϕ(x), ϕ(y)

)]
t

+
[
s2(ϕ(y)2

)2 + 2sϕ(y)2
(
ϕ(x), ϕ(y)

)
+

(
ϕ(x), ϕ(y)

)2]
.

Substituting the quadratic equation for t in each of the coefficients of s2, s, and 1 takes 
the latter expression to the form
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[
y2ϕ(y)2 − Δϕt

2]s2 + 2
[
y2(ϕ(x), ϕ(y)

)
+ Δϕt

]
s +

[
y2ϕ(x)2 − Δϕ

]
.

Multiplying (cϕ(x) + csϕ(y))2 − x2 by the latter expression yields (recall the numerator 
(x, y) of c)

[
(x, y)2ϕ(y)2 − x2y2ϕ(y)2 + x2Δϕt

2]s2

+ 2
[
(x, y)2

(
ϕ(x), ϕ(y)

)
− x2y2(ϕ(x), ϕ(y)

)
− x2Δϕt

]
s

+
[
(x, y)2ϕ(x)2 − x2y2ϕ(x)2 + x2Δϕ

]
.

The coefficients of s2, s, and 1 are t2x2Δϕ − ϕ(y)2Δ, −2tx2Δϕ − 2(ϕ(x), ϕ(y))Δ, and 
x2Δϕ − ϕ(x)2Δ respectively, so the quadratic equation for s shows that the latter ex-
pression vanishes. This shows that (cϕ(x) + csϕ(y))2 = x2 as desired.

Let u ∈ (Rx ⊕ Ry)⊥ be given. As in the proof of Lemma 1.1, we can find, using 
Cramer’s rule, the coefficients of ϕ(x) and ϕ(y) which should be subtracted from ϕ(u)
in order to obtain a vector perpendicular to ϕ(x) and ϕ(y). These coefficients are of the 
form det Ai,u

Δ , hence lie in R, and in fact in I2v(2). We define a map ψ : M → N by sending 
x to cϕ(x) + csϕ(y), y to ϕ(y) + tϕ(x), and u ∈ (Rx ⊕ Ry)⊥ to ϕ(u) modified by the 
appropriate multiples of ϕ(x) and ϕ(y). The map ψ is an isomorphism of Rx ⊕Ry onto 
its image Rϕ(x) ⊕Rϕ(y) and it takes (Rx ⊕Ry)⊥ onto the orthogonal complement of the 
latter space. In addition, (ψ(u), ψ(w)) ≡ (u, w)(mod I) for every u and w in (Rx ⊕Ry)⊥
by arguments similar to the previous case, using the orthogonality of ψ(u) and ψ(w) to 
ϕ(x) and to ϕ(y).

In both cases M decomposes as K ⊕ K⊥ and we have altered ϕ to a map ψ which 
is an isomorphism on K and preserves the orthogonality between K and K⊥. Since the 
restriction of ψ to K⊥ (denoted ψ|K⊥) becomes an isomorphism when reducing modulo I, 
the induction hypothesis allows us to alter ψ|K⊥ to an isomorphism η : K⊥ → ψ(K⊥). 
The map which takes x ∈ K to ψ(x) and u ∈ K⊥ to η(u) is the desired isomorphism 
from M to N . �

We note that in each induction step in Theorem 1.5 the element c − 1 of R, as 
well as s and t in the second case, lie in Iv(2). Moreover, the coefficients we use when 
changing the map on the orthogonal complement in each step lie in I2v(2). This proves 
the stronger statement, that reducing any “isomorphism-up-to-I” modulo the (larger) 
ideal Iv(2) yields the image (modulo Iv(2)) of a true isomorphism from M to N .

2. Uniqueness of the decomposition if 2 ∈ R∗

We recall that for odd p there are two isomorphism classes of unimodular p-adic 
lattices of rank n, and the isomorphism classes correspond to the possible values of the 
Legendre symbol of the discriminant of the lattice over the prime p (see, for example, 
Section 3 of [17]). Then the decomposition of a general p-adic lattice as described in 
Section 1 allows us to define the symbol of the p-adic lattice, which is an expression 
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of the form 
∏m

k=0(pk)εknk with nk ∈ N being the rank of the uni-valued component of 
valuation k and εk ∈ {±1} is the appropriate Legendre symbol. Moreover, the possible 
symbols are in one-to-one correspondence with isomorphism classes of p-adic lattices. We 
now use a simple argument to show that a similar assertion holds over any 2-Henselian 
valuation ring (of arbitrary rank) with a finite residue field in which 2 is invertible.

Following Section 4 of [12], we define, for a decomposition of M as an orthogonal 
direct sum K ⊕ L, the reflection corresponding to this decomposition to be the map 
r : M → M which takes x ∈ K to x and y ∈ L to −y. This map is an involution, which 
preserves the bilinear form on M . First we prove

Lemma 2.1. Let R be a valuation ring in which 2 ∈ R∗, let M be an R-lattice, and let x
and y be elements in M having the same norm. Let v be the valuation of this common 
norm, and assume further that the norm of any z ∈ M is at least v. Then there is a 
reflection on M taking x to y.

Proof. Write x = u +w and y = u −w for u = x+y
2 and w = x−y

2 . The norm equality x2 =
y2 implies u ⊥ w, hence this common norm equals u2+w2. Under our assumption on v we 
have v(u2) ≥ v, v(w2) ≥ v, and v(u2+w2) = v, whence at least one of the two inequalities 
is an equality. Since 2 ∈ R∗, the proof of Corollary 1.3 shows that the 1-dimensional 
sublattice generated by the corresponding element (u or w) satisfies the conditions of 
Lemma 1.2, giving a decomposition of M . Observing again that u ⊥ w, we find that 
if v(u2) = v then the reflection with respect to the decomposition M = Ru ⊕ (Ru)⊥
gives the desired outcome, while if v(w2) = v we can use the one corresponding to the 
decomposition M = (Rw)⊥ ⊕Rw. This proves the lemma. �

As an application of Lemma 2.1 we deduce

Corollary 2.2. Every automorphism of a rank n lattice M over a valuation ring R such 
that 2 ∈ R∗ is the composition of at most n reflections.

Proof. We apply induction on n, the case n = 1 being trivial (since Aut(M) is just {±1}
in this case). Corollary 1.3 yields an orthogonal basis for M , and let x be an element 
of this basis whose norm has minimal valuation. Given an automorphism f of M , the 
elements x and f(x) of M satisfy the conditions of Lemma 2.1, hence there exists a 
reflection r on M taking f(x) to x. Lemma 1.1 implies M = Rx ⊕ (Rx)⊥, and the 
composition r◦f fixes x, hence restricts to an automorphism of (Rx)⊥. By the induction 
hypothesis, the latter automorphism is a composition of at most n − 1 reflections on 
(Rx)⊥, and by extending each such reflection to M by leaving x invariant we obtain that 
r ◦ f is the composition of at most n − 1 reflections on M . Composing with r−1 = r

completes the proof of the corollary. �
Next we prove a special case of the Witt Cancellation Theorem, which holds for lattices 

over any valuation ring in which 2 is invertible.
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Proposition 2.3. Let M and N be lattices over a valuation ring R in which v(2) = 0, and 
define v = min{v(M), v(N)}. Let L be a rank 1 lattice spanned by an element x whose 
norm has valuation not exceeding v, and assume that M ⊕L and N ⊕L are isomorphic. 
Then the lattices M and N are isomorphic.

Proof. Let f : M ⊕L → N ⊕L be an isomorphism. The elements 0N +x and f(0M +x)
of N ⊕L satisfy the conditions of Lemma 2.1, yielding a reflection r on N ⊕L taking the 
latter element to the former. Writing g = r ◦ f , we obtain an isomorphism from M ⊕ L

to N ⊕L which takes the direct summand L of the first lattice onto the direct summand 
L in the second one. This isomorphism must therefore take M isomorphically onto N , 
which proves the proposition. �

Proposition 2.3 generalizes a special case of Theorem 1 of [7], with a simpler proof.
We can now prove the main result for the case v(2) = 0:

Theorem 2.4. Let M and N be lattices over a 2-Henselian valuation ring R such that 
2 ∈ R∗. Decompose M and N , using Proposition 1.2, as 

⊕t
k=1 Mk and 

⊕s
k=1 Nk re-

spectively. If M ∼= N then t = s and for any k we have Mk
∼= Nk (and in particular 

v(Mk) = v(Nk)).

Proof. The ranks of M and N must be equal, and we apply induction on this common 
rank. The case of rank 1 is immediate. Let y ∈ M1 be a basis element as in Corollary 1.3. 
Then v(y2) is minimal in M , and let w ∈ N be an element having the same norm as y

(such w exists since M ∼= N). v(w2) is also minimal in N , hence v(N1) = v(M1). 
Write w =

∑s
k=1 wk with wk ∈ Nk for any 1 ≤ k ≤ s. The minimality of v(w2)

implies v(w2
k) > v(w2) for any k ≥ 2. Thus, the image of w2

w2
1

modulo I0 is 1. Since 

v(2) = 0, Lemma 1.4 yields the existence of c ∈ R∗ such that w2 = c2w2
1, so that 

z = cw1 ∈ N1 has the same norm as y. Lemma 1.1 allows us to write M as Ry ⊕ (Ry)⊥
and N as Rz ⊕ (Rz)⊥. Let L be a rank 1 lattice generated by an element x having the 
same norm as y and z. The sublattices (Ry)⊥ of M and (Rz)⊥ of N , together with 
this element x, satisfy the conditions of Proposition 2.3 (indeed, M ∼= L ⊕ (Ry)⊥ and 
N ∼= L ⊕ (Rz)⊥ are isomorphic, and the valuation condition holds by our choice of y
and z), so that (Ry)⊥ ∼= (Rz)⊥ by that proposition. Applying Lemma 1.1 to M1 with y
and to N1 with z yields the decompositions M1 = Ry⊕ (Ry)⊥M1

and N1 = Rz⊕ (Rz)⊥N1
, 

where the orthogonal complements (Ry)⊥M1
and (Ry)⊥N1

are uni-valued with valuation 
v(M1) = v(N1). Therefore we can write (Ry)⊥ = (Ry)⊥M1

⊕
⊕t

k=2 Mk and (Rz)⊥ =
(Rz)⊥N1

⊕
⊕s

k=2 Nk as uni-valued decompositions with increasing valuations, and the 
induction hypothesis implies t = s, Mk

∼= Nk for k ≥ 2, and (Ry)⊥M1
∼= (Rz)⊥N1

. As 
Ry ∼= Rz as well, we deduce also M1 ∼= N1, which completes the proof of the theorem. �

The Witt Cancellation Theorem for 2-Henselian valuation rings in which 2 is invertible 
follows as
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Corollary 2.5. Let M , N , and L be three lattices over such a ring R. If M ⊕L ∼= N ⊕L

then M ∼= N .

Proof. Write M =
⊕t

k=1 Mk, N =
⊕t

k=1 Nk, and L =
⊕t

k=1 Lk as in Proposition 1.2, 
where we assume that v(Mk) = v(Nk) = v(Lk) for any 1 ≤ k ≤ t (allowing empty 
components if necessary for such a unified notation). Then we can write M ⊕ L and 
N⊕L as 

⊕t
k=1(Mk⊕Lk) and 

⊕t
k=1(Nk⊕Lk), both being decompositions to uni-valued 

lattices of increasing valuations. Theorem 2.4 yields Mk⊕Lk
∼= Nk⊕Lk for any 1 ≤ k ≤ t, 

and we claim that Mk
∼= Nk for every such k. One way to establish this assertion is by 

dividing the bilinear forms on Mk, Nk, and Lk by a suitable element of R to make them 
unimodular, and then use the Witt Cancellation Theorem for unimodular lattices proved 
in Theorem 4.4 of [12]. Alternatively, Lk has an orthogonal basis by Corollary 1.3, and 
we can “cancel” these basis elements iteratively using Proposition 2.3 since the valuation 
condition is satisfied. In any case, this assertion implies M =

⊕t
k=1 Mk

∼=
⊕t

k=1 Nk = N

as desired. �
Theorem 2.4 generalizes Theorem 4 of [5] to (2-Henselian) valuation rings of arbitrary 

rank, and Corollary 2.5 generalizes Theorem 2 of [7] and Theorem 5 of [5] to this case, 
again with simplified proofs.

There are classical examples showing that without the condition 2 ∈ R∗, both The-
orem 2.4 and Corollary 2.5 no longer hold. Over Z2 the lattice M generated by two 
orthogonal elements of norms 1 and 2 is isomorphic to the lattice N having an or-
thogonal basis consisting of vectors of norms 3 and 6. Since v(1) = v(3) = 0 and 
v(2) = v(6) = 1 but 3

1 = 6
2 = 3 /∈ (Z∗

2)2, this example demonstrates that Theorem 2.4
fails for R = Z2 (for the analysis of Z2-lattices, see [8]). Still over Z2, taking x2 = y2 = 0
and (x, y) = z2 = t = 1 in the proof of Corollary 1.3 shows that adding an orthog-
onal norm 1 vector to the hyperbolic plane generated by two norm 0 vectors x and y
with (x, y) = 1 (denoted M0,0 in the notation of Sections 3 and 4) one obtains a lattice 
admitting an orthonormal basis consisting of three elements with norms 1, 1, and −1
respectively, which gives a counter-example to Corollary 2.5 over Z2. The 2-Henselianity 
is also important: Consider the ring ZpZ obtained from Z by localizing in the prime ideal 
pZ for some odd prime p. It is a discrete valuation ring with quotient field Fp of odd 
characteristic, which is not complete. As in the first example over Z2, the lattice gener-
ated by two orthonormal vectors of norms 1 and p also admits an orthogonal basis whose 
norms are 1 +p and p +p2, and unless 1 +p is a square in Z, this shows that Theorem 2.4
does not hold over ZpZ (in case 1 + p is a square, one may use a similar argument with 
1 + t2p for other t ∈ Z fur this purpose). As for the general Witt Cancellation Theorem 
for valuation rings which are not 2-Henselian but with 2 ∈ R∗, finding counter-examples 
seems complicated, in view of Proposition 2.3 and the fact that the Witt Cancellation 
Theorem holds in general when M , N , and L all have rank 1. We leave this question for 
further research.
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Theorem 2.4 shows that the classification of general R-lattices (for R a 2-Henselian 
valuation ring with 2 ∈ R∗) reduces to the classification of unimodular R-lattices in the 
following sense. For every v ≥ 0 fix some element σv ∈ R with valuation v, with σ0 = 1. 
By Theorem 2.4 every R-lattice M can be written uniquely up to an isomorphism as ⊕

v Mv(σv) with Mv unimodular such that Mv = 0 for all but finitely many v. Moreover, 
in this case the unimodular lattices are determined up to isomorphism by their (non-
degenerate) restriction to the residue field F of R (see, for example, Theorem 1.5—note 
that v(2) = 0 by our assumption on R and v(Mt) = 0 by unimodularity). Hence, the 
classification of R-lattices simplifies to the classification of lattices over the field F, whose 
characteristic differs from 2, for which many methods have been developed. For general 
fields this problem is not at all simple: For example, for F a global field the isomorphism 
classes depend on all the completions of F. However, if F is finite then the isomorphism 
class of an F-lattice M is determined by its rank and sign (i.e., the image of the de-
terminant of a Gram matrix of a basis of M in the order 2 group F∗/(F∗)2)—see, for 
example, Proposition 5 in Chapter IV of [15]. Let 1εn denote a unimodular R-lattice 
(R as above, with a finite residue field F) whose restriction modulo I0 has rank n and 
sign ε ∈ F∗/(F∗)2 ∼= {±1}. Using the shorthand σεn

v for 1εn(σv), we have thus proved

Proposition 2.6. Any isomorphism class of lattices over a 2-Henselian valuation ring R
with finite residue F of odd characteristic contains a unique representative of the form ⊕

v σ
εvnv
v (where the direct sum is finite).

Proof. The existence of such a representative follows from Proposition 1.2 and the fact 
that every uni-valued R-lattice is (up to isomorphism) of the form σεvnv

v for unique v, nv, 
and εv (see the previous paragraph). The uniqueness follows from Theorem 2.4. This 
proves the proposition. �

In the case where R is a discrete valuation ring we can take σv for v ∈ N to by the vth 
power of a uniformizer π of R. In particular, Proposition 2.6 yields the known symbols 
for lattices over p-adic rings (for odd p), but it holds in much greater generality.

3. Unimodular rank 2 lattices

Corollary 1.3 implies that there are only two types of lattices over a valuation ring 
R which are indecomposable (namely, cannot be written as the orthogonal direct sum of 
two proper sublattices). Such a lattice is either generated by one element, or is spanned 
by two elements x and y such that v(x, y) is strictly smaller than the valuations of the 
norms of both x and y. Both such lattices are uni-valued, hence (after fixing av for each 
possible valuation v) it suffices for the description of the isomorphism classes of such 
lattices to consider just unimodular lattices. For rank 1 lattices the task is easy: Each 
isomorphism class of unimodular rank 1 lattices corresponds to an element of R∗/(R∗)2, 
which is the norm of a generator of a lattice in this isomorphism class. We consider 
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classes modulo (R∗)2 since multiplying the generator by c ∈ R∗ yields a generator for 
the same module, with norm multiplied by c2. In fact, if the unimodularity assumption is 
relaxed, the isomorphism classes of non-degenerate rank 1 lattices correspond to classes 
in (R \ {0})/(R∗)2, and these assertions hold over any integral domain R.

We now consider unimodular rank 2 lattices, in which the basis elements x and y
satisfy (x, y) ∈ R∗. In fact, every unimodular rank 2 lattice L over a valuation ring 
admits such a basis: If for a given basis x and y of L we have (x, y) /∈ R∗ (i.e., (x, y) ∈ I0) 
then without loss of generality unimodularity implies v(x2) = 0. Thus, x and x + y form 
a basis for L such that (x, x + y) ∈ R∗. Multiplying x or y by an element of R∗, we may 
assume (x, y) = 1.

Given α and β in R, we denote the rank 2 lattice spanned by elements x and y with 
x2 = α, (x, y) = 1, and y2 = β by Mα,β. Without loss of generality, we always assume 
v(α) ≤ v(β). An interesting question, which will be answered under some assumptions in 
Section 4 below, is finding necessary and sufficient conditions on α, β, γ and δ such that 
Mα,β

∼= Mγ,δ. The present section is devoted to the description of the lattices Mα,β, and 
is divided into three subsections. In Subsection 3.1 we classify the lattices Mα,0 and prove 
a technical lemma which will later have various applications. Subsection 3.2 considers 
conditions for existence of a primitive element with norm of maximal valuation in Mα,β. 
Finally, Subsection 3.3 defines the generalized Arf invariant of such a lattice (under this 
maximality assumption on β) and proves that it is an invariant of the isomorphism class 
of the lattice. Unless stated otherwise, R is a 2-Henselian valuation ring.

3.1. Isotropic lattices and general technicalities

Recall that a non-zero norm 0 vector is called isotropic, and a lattice is called isotropic
if it contains an isotropic vector. Our first observation is

Lemma 3.1. If v(α) + v(β) > 2v(2) then Mα,β is isotropic.

Proof. Write (y + tx)2 = αt2 + 2t + β. Then the coefficients A = α, B = 2, and C = β

satisfy the condition of Lemma 1.4. Hence there exists some t ∈ K which annihilates 
this expression, and the inequality v(C) > v(B) (which follows from v(α) ≤ v(β) and 
v(α) + v(β) > 2v(2)) implies that we can take t ∈ R (and even t ∈ I0). The vector y+ tx

of Mα,β is then isotropic, which proves the lemma. �
We now prove another assertion about the possible values of norms of elements of 

Mα,β having minimal valuation under certain conditions. In the case v(2) > 0 the Artin–
Schreier map ρ : F → F is defined by ρ(x) = x2 − x. It is an additive homomorphism 
on F, whose kernel is the prime subfield F2 ⊆ F, and its image is denoted FAS . By some 
abuse of notation, the map from R to R defined by the same formula x �→ x2 −x will be 
also denoted ρ, though it is no longer a homomorphism of additive groups. We denote 
ρ(R) by RAS . First we need

Lemma 3.2. If y ∈ R then y ∈ RAS holds if and only if y + I0 ∈ FAS .
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Proof. If y = ρ(x) then y + I0 = ρ(x + I0). Conversely, if y + I0 = ρ(x + I0) for some 
x ∈ R then substitute t = s + x in the polynomial f(t) = t2 − t − y in order to obtain 
g(s) = s2−(1 −2x)s +(x2−x −y). The coefficients A = 1, B = 2x −1, and C = x2−x −y

satisfy v(AC) > v(B2) since v(C) > 0 and v(A) = v(B) = 0 (recall that 2 ∈ I0). Hence 
Lemma 1.4 yields a root s ∈ I0 ⊆ R of this polynomial. The element x +s of R (with the 
same F-image as x) satisfies ρ(x + s) = y, which completes the proof of the lemma. �

We now prove an important technical result which will be needed later.

Lemma 3.3. Let α and β be two elements of R such that v(β) ≥ v(2) and v(β) ≥ v(α). 
We define the set T to be (R∗)2 · (α+2R) in case v(β) > v(2) and as (R∗)2 · (α+ 4

βRAS)
if v(β) = v(2). (i) If v(α) ≥ v(2) and v(β) > v(2) then T = 2R, and this is the set of 
all norms of elements in Mα,β. (ii) In the case v(2) > v(α) the set T consists of all the 
norms of elements of Mα,β having minimal valuation, which then equals v(α). (iii) In 
the boundary case v(β) = v(2) = v(α) an element lies in T precisely when it is the norm 
of a primitive element of Mα,β.

Proof. First we show that an element of R lies in T if and only if it is the norm of some 
element z ∈ Mα,β of the form z = cx + dy with c ∈ R∗. Indeed, such an element of 
Mα,β can be written as c(x + sy) with s ∈ R, and its norm c2(α + 2s + s2β) is of the 
form c2(α + 2r) since 2|β. Moreover, if v(β) = v(2) then by writing s = − 2

βx we find 
that r = 2

βρ(x) ∈ 2
βRAS . Conversely, given r and c we need to show that c2(α + 2r)

can be obtained as the norm of such z ∈ Mα,β . By writing z = c(x + sy) again this 
assertion reduces to finding s ∈ R such that r = s + s2 β

2 . Consider the polynomial 
f(s) = β

2 s
2 + s − r. If v(β) > v(2) and r is arbitrary, then the coefficients A = β

2 ∈ I0, 
B = 1 ∈ R∗, and C = −r ∈ R satisfy the conditions of Lemma 1.4, yielding a solution 
s ∈ R (of valuation v(CB ) = v(r) ≥ 0). On the other hand, if v(β) = v(2) and r ∈ 2

βRAS

then the substitution s = − 2
β t takes f(s) to the form 2

β (t2 − t + β
2 r), which has a root t

by our assumption on r.
Now, if v(β) > v(2) and v(α) ≥ v(2) then T = 2R, and since for every element 

z = ax + by ∈ Mα,β the three terms a2α, 2ab, and b2β of z2 are divisible by 2, we 
obtain T = {z2 | z ∈ Mα,β}. This proves (i). On the other hand, assume v(α) < v(2), 
and let z ∈ Mα,β be an element whose norm has the same valuation as α. We write 
z = cx + dy, and if c ∈ I0 then the three terms c2α, 2cd, and d2β of (cx + dy)2 lie in 
Iv(α). Since this contradicts the assumption v(z2) = v(α) we deduce c ∈ R∗, and we 
have already seen that z2 ∈ T for such z. This proves (ii). It remains to consider the 
case v(β) = v(2) = v(α). In this case a primitive element of Mα,β not considered in the 
above paragraph takes the form z = h(y + tx) with h ∈ R∗ and t ∈ I0, and satisfies 
z2 = h2(β + 2t + t2α). But the element w = h[( 2

α + t)x − y] has the same norm as z and 
the coefficient of x in w is in R∗ (since 2

α ∈ R∗ and t ∈ I0), so that the norm of z lies in 
T for such z as well. This proves (iii) and completes the proof of the lemma. �
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We remark that the element w ∈ Mα,β defined at the end of the proof of Lemma 3.3
is the image of z under the reflection with respect to x, taking u ∈ Mα,β to u − 2(u,x)

α x. 
This element is well-defined as an automorphism of Mα,β since 2

α ∈ R, though it is not a 
reflection with respect to a decomposition since Mα,β does not decompose as Rx ⊕(Rx)⊥
if v(α) > 0.

The proof of parts (i) and (ii) of Lemma 3.3 allows us to classify isotropic rank 2 
unimodular lattices over any valuation ring (not necessarily 2-Henselian):

Proposition 3.4. Let R be any valuation ring. The lattices Mα,0 and Mγ,0 are isomorphic 
if and only if γ = c2(α + 2r) for some c ∈ R∗ and r ∈ R. Therefore the isomorphism 
classes of isotropic unimodular rank 2 lattices are in one-to-one correspondence with the 
set (R/2R)/(R∗)2.

Proof. The only place where we used the 2-Henselian property of R in the proof of 
Lemma 3.3 was in our search for a solution to the equation β2 s

2 + s = r for r ∈ R. But if 
β = 0 then s = r is a solution, so that Lemma 3.3 with β = 0 holds over any valuation 
ring R. Thus, if x and y form the basis for Mα,0 as above then c(x + ry) and yc span the 
same lattice and define an isomorphism with Mγ,0 for γ = c2(α+2r). It remains to show 
that if Mα,0 ∼= Mγ,0 then γ = c2(α+2r) for some r ∈ R and c ∈ R∗. If 2|α then γ, as the 
norm of some element of Mα,0, is divisible by 2 (the proof of Lemma 3.3 again), which 
completes the proof for this case. Assume now v(α) < v(2). The isomorphism from Mγ,0
to Mα,0 takes the isotropic generator of Mγ,0 to a primitive isotropic vector w ∈ Mα,0, 
which can be either yc or 1

c (y −
2
αx) for c ∈ R∗. The other basis vector of Mγ,0 must be 

taken to some z ∈ Mα,0 with (z, w) = 1. In the first case we have z = c(x + ry) for some 
r ∈ R, and the norm of z is c2(α + 2r) as shown above. Otherwise w = 1

c (y − 2
αx), and 

writing z = ax + by with a and b in R, the equality (z, w) = 1 implies a = −c − 2
αb. It 

follows that z takes the form −cx + b(y − 2
αx) for some b ∈ R, and its norm c2α − 2bc

also has the asserted form. This proves the proposition. �
The reflection with respect to x appears implicitly also in the proof of Proposition 3.4, 

since it takes the element yc of Mα,0 to 1
c (y −

2
αx).

We remark that if α ∈ R∗ then Mα,0 is decomposable, since the elements x and 
t = x − αy are orthogonal and have the norms α and −α respectively. Conversely, 
a direct sum of two unimodular rank 1 lattices which is isotropic must be of this form: If 
z and w are perpendicular and have norms in R∗ then for some combination az + bw to 
have be isotropic we must have a2z2 = −b2w2. Hence v(a) = v(b), and by replacing w by 
u = b

aw we obtain a generator u for Rw such that u2 = −z2. Therefore Proposition 3.4
implies the following

Corollary 3.5. For α ∈ R∗ (R being any valuation ring) denote Hα,0 the lattice generated 
by two orthogonal elements of norms α and −α. Given α and γ in R∗, the relation 
Hα,0 ∼= Hγ,0 holds if and only if γ = c2α + 2r for c ∈ R∗ and r ∈ R.
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Proof. The previous paragraph shows that for any α ∈ R∗ the lattices Hα,0 and Mα,0
are isomorphic. Hence the assertion follows from Proposition 3.4. �

In particular, if v(2) = 0 then R/2R is trivial, and Proposition 3.4 implies that every 
isotropic unimodular rank 2 lattice over R is a hyperbolic plane (namely, a lattice iso-
morphic to M0,0 in the notation of Proposition 3.4). This statement is in correspondence 
with the results at the end of Section 2, since the same assertion holds over F if the 
characteristic of F is not 2. Corollary 3.5 implies in this case that all the lattices of the 
form Hα,0 with α ∈ R∗ are isomorphic. On the other hand, if v(2) > 0 then the elements 
of (I0/2R)/(R∗)2 correspond to indecomposable isotropic unimodular lattices of rank 2. 
If v(2) = 0 then I0/2R is not well-defined and can be considered as the empty set (since 
I0 is the complement of R∗ and the image of R∗ in R/2R is the entire set R/2R), which 
corresponds to the fact that there exist no indecomposable rank 2 lattices in this case 
(Corollary 1.3 again).

3.2. Primitive vectors with norms of maximal valuation

The anisotropic case is more delicate. Lemma 3.1 allows us to restrict attention to 
the case v(α) +v(β) ≤ 2v(2) when we consider anisotropic lattices. The following lemma 
will turn out useful in what follows.

Lemma 3.6. If v(α) + v(β) ≤ 2v(2) then the valuation of the norm of a non-zero element 
of Mα,β of the form tx + sy with t and s in R can be evaluated as min{v(t2α), v(s2β)}, 
provided that the two terms t2α and s2β have different valuations. In case v(t2α) =
v(s2β) and v(α) + v(β) < 2v(2), the valuation of (tx + sy)2 is larger than the common 
valuation of t2α and s2β if and only if v(t2α + s2β) ≥ v(t2α) = v(s2β).

Proof. The element in question has norm t2α + 2st + s2β, and we claim that v(2st) >
min{v(t2α), v(s2β)} under our assumptions. If s = 0 this is clear, so assume s �= 0. 
Now, assuming by contradiction that v(2st) ≤ v(s2β) and v(2st) ≤ v(t2α), we obtain 
the inequalities v( t

s ) ≤ v(β2 ) and v( t
s ) ≥ v( 2

α ), the combination of which yields v(β2 ) ≥
v( 2

α ). But the latter inequality implies v(α) + v(β) ≥ 2v(2), and this may occur with 
v(α) + v(β) ≤ 2v(2) only if v(α) + v(β) = 2v(2) and v(t2α) = v(s2β), a case which we 
have excluded in our assumptions. This establishes the claim. It follows that comparing 
v((sx + ty)2) with min{v(t2α), v(s2β)} is the same as comparing v(t2α+ s2β) with that 
minimum, which completes the proof of the lemma. �

If v(α) ≤ v(2) (and v(α) ≤ v(β), as always), then x is a primitive element of Mα,β

whose norm has minimal valuation. This is obvious, since the three terms appearing 
in the expansion of the norm of any element ax + by of M have valuations of at least 
v(α). Maximal valuation is a more complicated property, whose existence is guaranteed 
only under some conditions on R in Proposition 3.10 below. We shall restrict attention, 
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from now on, only to those lattices Mα,β which do contain such elements. Henceforth, 
we assume in our notation Mα,β that β, as a norm of a primitive element of Mα,β, has 
maximal valuation. For the characterization of such lattices, we need a parity notion for 
elements of the value group Γ . We call an element of Γ even if it is divisible by 2 in Γ
(namely, if it is the valuation of an element of (K∗)2), and odd otherwise. A distinguished 
class of elements of even valuation is given in the following

Definition 3.7. An element a of even valuation is called an approximate square if a ≡
b2(mod Iv(a)) for some b ∈ R. If v(a) = 0 we call a a residual square. Given an even 
valuation u, we let Ju be the union of the ideal Iu with the set of approximate squares 
of valuation u.

The condition that v(a) is even in Definition 3.7 is in fact redundant, since no element 
of odd valuation can satisfy the required property for being an approximate square. We 
claim that if v(2) > 0 then the sets Ju for even u are additive subgroups of R. Indeed, 
J0 is just the inverse image of F2 (including 0) under the projection from R to F; It is 
a group since x �→ x2 is additive on a field of characteristic 2 and F2 is just the image 
of this map. In the general case we observe that if a ∈ R has even valuation u then a is 
an approximate square if and only if a

σ2 is a residual square for some (hence any) σ ∈ R

with 2v(σ) = u. Hence Ju = σ2J0 for any such σ, showing that it is also a group. As 
Iu ⊆ Ju, we may allow ourselves the slight abuse of notation by referring as approximate 
squares also to images in R/Iu of approximate squares of valuation u, and this remains 
well-defined. We remark that the natural definition of Ju for an odd valuation u is just Iu, 
since there are no approximate squares of valuation u.

In our examination of lattices Mα,β with primitive vectors of norms with maximal 
valuation we shall distinguish among the cases v(α) + v(β) < 2v(2) and v(α) + v(β) =
2v(2).

Proposition 3.8. The case v(α) +v(β) < 2v(2) and v(β) is maximal occurs precisely when 
the element βα of R is not an approximate square. More explicitly, if v(α) +v(β) < 2v(2)
then v(β) is maximal either when v(β

α ) is odd, or when v(β
α ) is even but β

ασ2 + I0 is not 
in (F∗)2 for some (hence any) σ ∈ R with 2v(σ) = v(β

α ), but in no other case.

Proof. A primitive element z ∈ Mα,β takes either the form c(y + tx) with t ∈ R and 
c ∈ R∗ or the form c(x + sy) with s ∈ I0 and c ∈ R∗. For the valuation of the norm 
of z, we can assume c = 1. For the norm of an element of the form x + sy, the fact that 
v(β) ≥ v(α) and s ∈ I0 allows us to apply Lemma 3.6, which yields that the valuation 
of this norm is just v(α). As for z = y + tx, Lemma 3.6 shows that the valuation of z2

is min{v(β), v(t2α)} unless v(β) = v(t2α) and the sum β + t2α has larger valuation. If 
v(β

α ) is odd then the equality v(β) = v(t2α) cannot be achieved, hence any primitive 
z has norm of valuation at most v(β). Otherwise we take t = σr for σ as above and 
r ∈ R∗, and β + t2α has valuation larger than v(β) if and only if 1 + r2 · ασ2 ∈ I0. The 
β
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maximality of v(β) is thus equivalent to 1 + r2 · ασ2

β being in R∗ for every such r, and 
since 2 must be in I0 to allow v(α) +v(β) < 2v(2), the latter condition forbids the image 
of β

ασ2 modulo I0 to belong to (F∗)2. This proves the proposition. �
It is clear that Proposition 3.8 can be stated in terms of properties of the product αβ

rather than the quotient βα .

Corollary 3.9. If the residue field F of R is perfect then the situation described in Propo-
sition 3.8 occurs only if v(β

α ) is odd.

Proof. F is of characteristic 2, and it is perfect if and only if (F∗)2 = F∗. Hence the 
second setting in Proposition 3.8 cannot occur in this case. �

Using Proposition 3.8, we derive a condition on R assuring the existence of a primitive 
element whose norm has maximal valuation in every R-lattice Mα,β. We recall that an 
extension L of K with a valuation w on L such that w|K = v is called immediate if 
w(L) = Γ and the quotient field S/J0, with S the valuation ring of (L, w) and J0 the 
maximal ideal in S, is isomorphic to F.

Proposition 3.10. Assume that K admits no quadratic immediate extensions. Then every 
lattice Mα,β contains a primitive element whose norm has maximal valuation.

Proof. Let Mα,β be a lattice without such an element. First we observe that v(α) +v(β) <
2v(2). For if v(α) + v(β) > 2v(2) then Mα,β is isotropic by Lemma 3.1, and the norm 
of an isotropic vector has maximal valuation ∞. Moreover, if v(α) + v(β) = 2v(2) then 
the fact the β is not maximal allows us to find a primitive element of norm δ with 
v(δ) > v(β). This implies Mα,β

∼= Mγ,δ for some γ with v(γ) ≥ v(α), and we are again 
in the isotropic case.

Now, a primitive element of Mα,β whose norm has valuation larger than v(α) must 
be of the form z = c(y + tx) for some c ∈ R∗ (see the second paragraph of the proof 
of Lemma 3.3), and again we can take c = 1 since we are interested only in v(z2). We 
now construct a sequence of elements zσ = y + tσx, for σ in some maximal well-ordered 
set Σ, whose norms βσ = z2

σ satisfy v(βτ ) > v(βσ) for τ > σ. We do this using transfinite 
induction, starting with t0 = 0, z0 = y, and β0 = β. Assume that we constructed zσ
for σ ∈ Σ. If Σ has a maximal element τ , then we can find some tτ+1 such that zτ+1
has norm βτ+1 with valuation bigger than v(βτ ) (since βτ is not maximal). Then the 
index τ + 1 increases Σ. If Σ does not contain any maximal element, but there exists 
some primitive element of Mα,β having norm with valuation exceeding v(βσ) for every 
σ ∈ Σ, then we saw that this element can be written as zτ = y + tτx, and we increase 
Σ by adding τ as a new maximal element. We stop when it is impossible to add further 
elements to Σ. The fact that we take elements from a fixed lattice implies that this 
transfinite process must terminate. We thus obtain a well-ordered set Σ, having no last 
element, and tσ for each σ ∈ Σ such that v(βτ ) > v(βσ) for every τ > σ in Σ, and such 
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that no primitive element of Mα,β has norm with valuation exceeding v(βσ) for every 
σ ∈ Σ.

We claim that {tσ}σ∈Σ is an algebraic pseudo-convergent sequence in R, with no 
pseudo-limit in R (see Definitions 10, 12, and 15 in Section 2 of [14]). Indeed, let σ and 
τ be elements of Σ with σ < τ , and write zτ = zσ +(tτ − tσ)x. As v(α) + v(βσ) < 2v(2), 
Lemma 3.6 implies that v(βσ) = v((tτ−tσ)2α), for otherwise the condition v(βτ ) > v(βσ)
cannot be satisfied (the fact that (x, zσ) equals 1 + tσα rather than 1 does not affect 
the validity of Lemma 3.6). As in the proof of Proposition 3.8 we obtain that v(βσ

α ) is 
even and equals 2v(tτ − tσ) for each σ ∈ Σ. Hence v(tτ − tσ) = ησ with ησ ∈ Γ strictly 
increasing with σ (as 2ησ = v(βσ

α )), which shows that {tσ}σ∈Σ is pseudo-convergent. 
Moreover, βσ = f(tσ) for f(t) = β + 2t + αt2, and since v(βσ) strictly increases with σ, 
the algebraicity of {tσ}σ∈Σ follows. Had this pseudo-convergent sequence a pseudo-limit 
s ∈ R, a similar argument would show that y + sx has norm δ with v(δ) ≥ v(βσ) for 
every σ ∈ Σ, contrary to our assumption on Σ. Then Lemmas 12 and 19 of Section 2 of 
[14] yield a quadratic immediate extension L of K generated by adding a pseudo-limit to 
this sequence, in contradiction to our assumption on K. This contradiction shows that 
Mα,β must contain a primitive element with maximal valuation. �

In particular, Proposition 3.10 shows that if K is maximally complete (i.e., admits 
no immediate extensions at all) then every lattice Mα,β contains a primitive element of 
norm with maximal valuation. The proof of Proposition 3.10 also shows that any lattice 
Mα,β contains such a primitive element in case the set of positive γ ∈ Γ which are smaller 
than 2v(2) is finite (e.g., when Γ = Z), a fact which is also easily verified directly.

The conditions for v(α) + v(β) = 2v(2) > 0 are somewhat different.

Proposition 3.11. If v(α) + v(β) = 2v(2) then v(β) is maximal if and only if αβ
4 ∈

R∗ \RAS .

Proof. The condition v(α) + v(β) = 2v(2) implies that ε = −αβ
4 ∈ R∗. As in the 

proof of Proposition 3.8, we may restrict attention to norms of elements of the form 
z = y + tx ∈ Mα,β , and the norm of such an element has valuation either v(t2α) or 
v(β) unless v(t) = v( 2

α ) (which is equivalent here to 2v(t) = v(β
α )). We therefore write 

t = − 2
αs (with s ∈ R∗), and then z2 = 4

α (s2−s −ε). As v( 4
α ) = v(β), the valuation of z2

exceeds v(β) if and only if ε + I0 = ρ(s + I0). Since z is primitive and s ∈ R is arbitrary, 
we find that v(β) is maximal if and only if −ε + I0 = ε + I0 /∈ FAS , which is equivalent, 
by Lemma 3.2, to the desired condition −ε /∈ RAS . This proves the proposition. �
Corollary 3.12. If ρ is surjective (in particular if F is algebraically closed) then any lattice 
Mα,β with v(α) + v(β) = 2v(2) is isotropic.

Proof. The proof of Proposition 3.11 shows that v(β) cannot be maximal, since we can 
take s ∈ R such that v(s2−s −ε) > 0. But this shows that Mα,β

∼= Mα,δ with v(δ) > v(β)
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(take the basis x and y+tx
1−2s with t = − 2

αs as in the latter proof). Since v(α) +v(δ) > 2v(2), 
Lemma 3.1 shows that this lattice is isotropic. This proves the corollary. �
3.3. Generalized Arf invariants

Following Lemma 3.1 and Propositions 3.8 and 3.11, we define, under the assump-
tion that v(2) > 0, the following invariant of a unimodular rank 2 lattice containing a 
primitive element with norm of maximal valuation.

Definition 3.13. Let Mα,β be a unimodular rank 2 lattice over R such that β has maximal 
valuation. We define the generalized Arf invariant of Mα,β as follows:

1. If Mα,β is isotropic (i.e., β = 0), define the generalized Arf invariant to be 0. This is 
called a vanishing generalized Arf invariant.

2. If v(α) + v(β) < 2v(2) and is odd, then we define the generalized Arf invariant of 
Mα,β to be the class αβ + Iv(αβ). These generalized Arf invariants are called odd.

3. In the case where 0 < v(α) + v(β) < 2v(2) and is even, the generalized Arf invariant 
of Mα,β is defined to be the (non-zero) class αβ + Jv(αβ) (modulo the group of 
approximate squares of valuation v(αβ)). This type of generalized Arf invariants is 
called even.

4. In case v(α) + v(β) = 2v(2) we take the generalized Arf invariant of Mα,β to be the 
image of αβ in 4R/4RAS . These are called exact generalized Arf invariants.

We remark that the odd and even cases in Definition 3.13 may be unified, since we saw 
that for odd u the natural definition is Ju = Iu. For the exact case, the group 4R/4RAS
in question is the image of F/FAS (depending only on F) arising from multiplication by 
4 on R and projecting onto the appropriate quotient.

The importance of the generalized Arf invariant from Definition 3.13 is revealed in 
the following

Proposition 3.14. The generalized Arf invariant is an invariant of the isomorphism class 
of Mα,β.

Proof. The valuations of α and β are well-defined by the minimality and maximality 
assumptions. Denote v(α) + v(β) by u. Recall that the discriminant of Mα,β is −1 +αβ, 
and we consider its class modulo (R∗)2. If Mγ,δ

∼= Mα,β then 1 − αβ = c2(1 − γδ), and 
since β and δ lie in I0, it follows that c2 ∈ 1 + I0 hence c ∈ 1 + I0. If u > 2v(2) then 
Lemma 3.1 implies u = ∞, β = δ = 0, both discriminants are −1, and both generalized 
Arf invariants are 0. Hence the assertion is immediate in this case. Assume now that 
u ≤ 2v(2), and write c = 1 − h with h ∈ I0. By taking the images on both sides modulo 
Iu and noting that c2γδ ≡ γδ(mod Iu) we obtain

γδ ≡ h2 − 2h + αβ(mod Iu).
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We shall consider the cases v(h) ≥ v(2) and v(h) < v(2) separately. Recall that Iu ⊆ Ju
for even u and I2v(2) ⊆ 4RAS , so that the condition γδ ≡ αβ(mod Iu) yields the asserted 
conclusion for any (non-vanishing) generalized Arf invariant.

Now, as u ≤ 2v(2), if v(h) > v(2) then h2 − 2h ∈ Iu and γδ ≡ αβ(mod Iu). The same 
argument holds if v(h) = v(2) and u < 2v(2). The remaining case in which v(h) ≥ v(2)
is where v(h) = v(2) and u = 2v(2). We write h = 2t with t ∈ R, and the congruence 
shows that the difference between γδ and αβ is 4ρ(t) modulo I2v(2). Proposition 3.11
shows that αβ + 4ρ(t) is not in I2v(2) for any t ∈ R, so that the corresponding class 
is non-zero, and Lemma 3.2 completes the proof of this case. Hence the assertion holds 
wherever v(h) ≥ v(2).

We now consider the case where v(h) < v(2), which implies v(2h) > 2v(h). It follows 
that if 2v(h) < u then the congruence cannot hold. This establishes the inequality 
2v(h) ≥ u, which in particular completes the proof for exact generalized Arf invariants. 
We also have 2h ∈ Iu, and we may omit it from the congruence. Thus, if 2v(h) > u

then we again have γδ ≡ αβ(mod Iu), which in particular completes the proof for the 
case of odd u since 2v(h) ≥ u implies 2v(h) > u in this case. It remains to consider the 
case where u < 2v(2) and is even, and 2v(h) = u. But our congruence shows that the 
difference γδ − αβ is h2 modulo Iu, and as 2v(h) = u this difference belongs to Ju. As 
Proposition 3.8 implies that the class of αβ + Ju is non-zero, this completes the proof of 
the proposition. �

The case u = 2v(2) in Proposition 3.14 generalizes the Arf invariant defined in [1] for 
such lattices, whence the name. For more on this relation, see Subsection 4.3. Note that 
this case (the exact generalized Arf invariants) arises from non-zero classes in 4R/4RAS ; 
this is, in some sense, complemented by the vanishing generalized Arf invariant, repre-
senting the remaining, trivial class in 4R/4RAS . In any case, our generalized Arf invariant 
carries also the additional information about the valuation v. In Section 4 we shall present 
a refinement of the generalized Arf invariant in some cases, and use it to classify lattices 
Mα,β satisfying some additional conditions.

We remark that we have defined the generalized Arf invariant only for rank 2 lattices, 
while the classical Arf invariant is defined for quadratic modules of arbitrary even rank. 
As the generalized Arf invariant depends on some maximality conditions, defining it for 
higher rank lattices requires much more care, together with results of the same type as 
those appearing in Section 5 below.

We remark that many results from this section remain valid when the 2-Henselian 
assumption is relaxed. E.g., Lemma 3.2 holds over R also if we relax the hypothesis 2 �= 0
in 2-Henselianity: The polynomial f from the proof of that lemma satisfies f(x) ∈ I0
and f ′(x) = 2x − 1 lies in R∗, so that the usual Henselian property can be used to 
prove it. In this case, ρ is a homomorphism of additive groups also as a map on R. 
For Proposition 3.4 in the case where 2 = 0 in R, we note that the only isotropic 
vectors in Mα,0 are multiples of y (and there are no reflections involved). Hence the 
set (R/2R)/(R∗)2 appearing in the classification there becomes just the set R/(R∗)2, 
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whose non-zero elements appeared in the classification of rank 1 lattices. The remaining 
assertions do not use the 2-Henselian property, and we just remark that if 2 = 0 in 
R then a lattice Mα,β with β maximal is either isotropic or satisfies the conditions of 
Proposition 3.8. However, since 2-Henselianity is used in Lemma 3.1, and the rest of this 
section uses the inequality v(α) + v(β) ≤ 2v(2) for anisotropic lattices, we prefer to stay 
in the 2-Henselian setting.

4. Invariants of lattices with primitive norms in 2R

In this section we define a refinement of the generalized Arf invariant from Defi-
nition 3.13 in case the valuation is larger than v(2). We then present an additional 
invariant of lattices Mα,β containing primitive elements with norms divisible by 2, and 
show that these two invariants characterize isomorphism classes of such lattices. In the 
end of this section we reproduce the results for lattices over the 2-adic ring Z2, and give 
also the example of lattices over Z2[

√
2].

4.1. A criterion for isomorphism and fine Arf invariants

We first present the main criterion for isomorphism between lattices of the form Mα,β

with v(β) ≥ v(2).

Lemma 4.1. Assume v(α) ≤ v(2) ≤ v(β) ≤ v( 4
α ). A lattice Mγ,δ, where δ is a norm 

of primitive element with maximal valuation, is isomorphic to Mα,β if and only if γ =
c2(α + 2r) for some r ∈ R (with the restriction r ∈ 2

βRAS if v(β) = v(2)) and c ∈ R∗, 

and δ = β+2a− α+2r
1−αβ a2

c2(1+2βr) for some a ∈ R with 2v(a) ≥ v(β
α ). In particular, if γ is as above 

and δ− β
c2 ∈ I2v(2)−v(α) then Mγ,δ

∼= Mα,β. In the limit case v(δ− β
c2 ) = v( 4

α ), we obtain 
Mγ,δ

∼= Mα,β if and only if the element γ
4c2 (c2δ − β) of R∗ lies in RAS . If v(α) < v(2)

this is equivalent to α4 (β − c2δ) ∈ RAS .

Proof. Since we assume v(α) ≤ v(β) and v(γ) ≤ v(δ), we find that γ is the norm of an 
element z ∈ Mα,β of the form z = c(x +sy) with c ∈ R∗ and s ∈ R. Indeed, if v(α) < v(β)
this is clear, and if v(α) = v(2) = v(β) then the assertion follows by using the reflection 
with respect to x (the one mentioned after Lemma 3.3) if necessary. Lemma 3.3 now 
implies that γ has the form c2(α+ 2r) with c ∈ R∗ and r = s + β

2 s
2 ∈ R, and r ∈ 2

βRAS
if v(β) = v(2). The second basis element w of Mγ,δ satisfies (z, w) = 1, which implies

c(1 + sβ)w = y + a

1 − αβ

(
(1 + sβ)x− (α + s)y

)

for some a ∈ R. This is because (y, z) = c(1 +sβ) and (1 +sβ)x −(α+s)y spans the space 

(Rz)⊥. Therefore δ = [c(1+sβ)w]2
c2(1+sβ)2 = β+2a− α+2r

1−αβ a2

c2(1+2βr) as asserted, and the inequality 2v(a) ≥
v(β ) follows from the maximality of δ (and implies v(δ) = v(β)—see Propositions 3.8
α
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and 3.11). Conversely, the map taking the two basis elements of Mγ,δ with such γ and 
δ to z = c(x + sy) and the asserted w defines an isomorphism to Mα,β (the surjectivity 
of this map follows either by evaluating the determinant of this change of basis or just 
from unimodularity). This establishes the first assertion. Now, given γ (hence c2), it 
remains to show that if δ − β

c2 ∈ I2v(2)−v(α), or if v(δ − β
c2 ) = v( 4

α ) and γ
4c2 (c2δ − β)

lies in RAS , then we can find an appropriate value of a. Write α+2r
1−αβ as ηα for some η

(which belongs to R∗ since η = γ
c2α(1−αβ) and v(γ) = v(α)), and we need to find a ∈ R

such that c2(1 + 2βr)δ = β + 2a − ηαa2. Denoting the left hand side by λ, we find 
v(η − γ

c2α ) = v(αβ) > 0 and v(λ − c2δ) ≥ v(2βδ) > v( 4
α ). Next, we write a = λ−β

2 b, and 
look for a solution for

0 = −ηαa2 + 2a + (β − λ) = (β − λ)
[
ηα

(λ− β)
4 b2 − b + 1

]
.

If δ − β
c2 ∈ I2v(2)−v(α) then A = ηα (λ−β)

4 ∈ I0, and Lemma 1.4 with B = −1 and 
C = 1 yields a solution b ∈ R. If v(δ − β

c2 ) = v( 4
α ) then 4

α (λ − β) ∈ R∗, so that we 

write b = 4
ηα(λ−β)h and the equation becomes 0 = 4

ηα(λ−β) [h
2 − h + ηα (λ−β)

4 ]. The 

approximations for λ and η above show that ηα (λ−β)
4 has the same F-image as the 

element γ
4c2 (c2δ − β) of RAS , so that Lemma 3.2 implies the existence of a solution to 

the latter equation. Finally, if v(α) < v(2) then η, hence also γ
c2α , are in 1 + I0, so that 

γ
4c2 (β − c2δ) ∈ RAS if and only if α4 (c2δ − β) ∈ RAS . This proves the lemma. �

Lemma 4.1 is the main tool for investigating whether two lattices of the form Mα,β

and Mγ,δ, with β and δ maximal with valuations at least v(2), are isomorphic. We begin 
by showing that isomorphism classes of lattices with generalized Arf invariant in Iv(2)
can be described using yet another invariant, which is finer than the generalized Arf 
invariant.

Proposition 4.2. (i) The set S = {t2−2t | t ∈ R, 2v(t) > v(2)} is a subgroup of Iv(2) which 
contains I2v(2). (ii) If Mα,β

∼= Mγ,δ with β and δ maximal and the (common) generalized 
Arf invariant is contained in Iv(2), then αβ and γδ coincide modulo S. (iii) There exists 
a well-defined map from elements of the quotient Iv(2)/S containing a representative 
of maximal valuation onto the set of generalized Arf invariants with valuation larger 
than v(2).

Proof. (i) The inclusion S ⊆ Iv(2) is clear. For y ∈ I2v(2) we have y4 ∈ I0 ⊆ RAS , and if 
y
4 = ρ(x) then y is obtained as t2 − 2t for t = 2x. In order to show that S is a subgroup, 
we show that the difference between two elements t2 − 2t and s2 − 2s of S also lies in S, 
since it is of the form (t − s + h)2 − 2(t − s + h) for some h such that 2v(h) > v(2). 
Indeed, comparing terms yields the equation h2 + 2(t − s − 1)h + 2s2 − 2ts = 0 for h, 
where the coefficients A = 1, B = 2(t − s − 1), and C = 2s2 − 2ts satisfy v(A) = 0, 
v(B) = v(2), and v(C) > 2v(2). To see the inequality concerning v(C), observe that 
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v(s2) > v(2) and v(ts) > v(2) because 2v(t) + 2v(s) > 2v(2) by our assumptions on s
and t. Lemma 1.4 thus yields a solution h of valuation v(CB ), which is the same valuation 
as v(ts − s2) > v(2). Hence 2v(t − s + h) > v(2) and the difference is indeed an element 
of S.

(ii) Let now Mα,β and Mγ,δ be isomorphic lattices such that the common valuation 
u of αβ and γδ satisfies u > v(2). Then 1 − γδ = c2(1 − αβ) for some c ∈ R∗, and an 
argument similar to the proof of Proposition 3.14 shows that c must be of the form 1 −h

with 2v(h) ≥ u. But then αβ(h2−2h) ∈ I2v(2) ⊆ S and h2−2h ∈ S, so that γδ−αβ ∈ S

as asserted.
(iii) Let ω be a representative of a class of Iv(2)/S of maximal valuation, i.e., v(ω +

t2 − 2t) ≤ v(ω) for every t with 2v(t) > v(2). If v(ω) > 2v(2) then ω ∈ S hence ω = 0. 
Otherwise, the set of such representatives of the class ω + S is just ω + (S ∩ ωR), and 
it contains no element of Iv(ω). Considerations similar to those presented in the proof 
of Proposition 3.14 yield the following conclusions: If v(ω) < 2v(2) and is odd then 
S ∩ ωR ⊆ Iv(ω). If v(ω) < 2v(2) but is even, then the image of S ∩ ωR modulo Iv(ω)
coincides with that of Jv(ω). Finally, if v(t2 − 2t) ≥ 2v(2) then t ∈ 2R, and if t = 2r
then t2 − 2t = 4ρ(r). The latter observation implies the equality S ∩ 4R = 4RAS (and in 
particular we see that I2v(2) ⊆ S again). The maximality of v(ω) in its class implies that 
ω must satisfy the conditions for αβ in Propositions 3.8 and 3.11 (i.e., either v(ω) < 2v(2)
is odd, or v(ω) < 2v(2) is even and ω is not an approximate square, or v(ω) = 2v(2)
and ω not lying in 4RAS). In particular every such ω defines a generalized Arf invariant. 
Moreover, our arguments show that this generalized Arf invariant is the image of ω in 
the quotient of ω modulo the group (S ∩ωR) + Iv(ω), which is coarser than the quotient 
modulo (S ∩ ωR) and coincides with it if v(ω) = 2v(2). Hence the map taking a class in 
Iv(2)/S containing an element ω of maximal valuation to the generalized Arf invariant 
represented by ω is well-defined, as it just takes the image of ω in one quotient to the 
image of ω in a coarser quotient. This proves the proposition. �

On the basis of these arguments, we make the following

Definition 4.3. A fine Arf invariant is defined to be the set of representatives of maximal 
valuation in a class in Iv(2)/S containing such representatives. The valuation of a fine 
Arf invariant is the valuation of any such representative. A fine Arf invariant is said to 
be

1. vanishing if it comes from the trivial class with the representative 0;
2. odd if its valuation is smaller than 2v(2) and odd;
3. even in case its valuation is smaller than 2v(2) and even; and
4. exact in case its valuation equals precisely 2v(2).

Given a lattice Mα,β with β of maximal valuation as the norm of a primitive element in 
this lattice and with generalized Arf invariant of valuation larger than v(2), we define 
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the fine Arf invariant of Mα,β to be the set of elements of valuation v(αβ) in the class 
αβ modulo S.

Part (ii) of Proposition 4.2 shows that the fine Arf invariant of a lattice Mα,β whose 
generalized Arf invariant has valuation larger than v(2) is an invariant of the isomorphism 
class of Mα,β. The type (vanishing, odd, even, or exact) of a fine Arf invariant from 
Definition 4.3 coincides with the type of the generalized Arf invariant to which is it taken 
by the map from part (iii) of Proposition 4.2. This map also preserves the valuations 
of fine and generalized Arf invariants, and its restriction to vanishing and exact fine Arf 
invariants (i.e., to valuations at least 2v(2)) gives a natural bijection between these fine 
and generalized Arf invariants. It is clear that this map takes the fine Arf invariant of a 
lattice Mα,β (for which the fine Arf invariant is defined) to the generalized Arf invariant 
of this lattice.

4.2. Classes of minimal norms

Lemma 4.1 shows that if v(β) ≥ v(2) and Mα,β
∼= Mγ,δ then γ differs from some 

element in (R∗)2α by an element in 2R (and even in 4
βRAS if v(β) = v(2)). Lemma 3.2

implies that the set 4
βRAS depends only on the image of β modulo Iv(β), so that we can 

write it (at least heuristically at this point) as 4αη RAS using the generalized Arf invariant 
η of Mα,β . Thus, if v(β) = v(2) then γ and α can be described as related through the 
action of the multiplicative group (R∗)2(1 + 4

ηRAS). In order to put the relation for 
v(β) > v(2) on the same basis, we remark that (at least for the non-zero classes with 
v(α) < v(2)) the relation γ ∈ (R∗)2(α+ 2R) can also be phrased using the action of the 
group (R∗)2(1 + 2

ξR) where ξ ∈ R is any element of R with v(ξ) = v(α). We therefore 
introduce the following

Definition 4.4. A coarse class of minimal norms is an element of the set (R/2R)/(R∗)2. 
Given a lattice Mα,β such that v(β) is maximal and satisfies v(β) > v(2), we define the 
class of minimal norms of Mα,β to be the image of α in the set of coarse classes of minimal 
norms. Given a generalized Arf invariant η with v(η) ≤ 2v(2) (i.e., non-vanishing) we 
define a fine class of minimal norms arising from η to be the orbit of an element of R, of 
valuation u satisfying 2u ≤ v(η), under the action of the multiplicative group (R∗)2(1 +
4
τRAS), where τ is some element of R whose class in the appropriate quotient is η. Let 
Mα,β be a lattice with generalized Arf invariant η, and assume that v(β) is maximal and 
equals v(2) (so that v(η) ≥ v(2)). In this case we define the class of minimal norms of 
Mα,β to be the image of α in the set of fine classes of minimal norms arising from η.

Note that the condition on v(β) implies that if the generalized (or fine) Arf invariant 
η of Mα,β is not of vanishing type then the class of minimal norms of Mα,β has valuation 
strictly smaller than v(η) − v(2) if v(β) > v(2), and its valuation equals precisely v(η) −
v(2) in case v(β) = v(2).
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The fact that the objects appearing in Definition 4.4 are well-defined, and the main 
classification result of this paper, are as follows:

Theorem 4.5. The set of fine classes of minimal norms arising from each generalized Arf 
invariant η with v(η) ≤ 2v(2) is well-defined. Given a generalized Arf invariant η with 
v(η) > v(2), the isomorphism classes of lattices Mα,β with generalized Arf invariant η
and with primitive elements with norm in 2R (of maximal valuation) are characterized 
precisely by their fine Arf invariant and their classes of minimal norms.

Proof. The set in question is defined as orbits under the action of the group (R∗)2(1 +
4
τRAS), where τ represents the generalized Arf invariant η. We must thus show that 
taking another representative for η yields the same group. Now, η can be either odd, 
even, or exact, so that we have to consider the effect of adding to τ an element from 
Iv(η), Jv(η), or 4RAS respectively.

Now, adding an element from Iv(η) to τ is the same as dividing it by something from 
1 + I0. The effect on 4

τRAS is multiplication of RAS by 1 + I0, which leaves it invariant 
by Lemma 3.2. In particular, the assertion for odd η follows. For even η it remains to 
consider the effect of adding λ2 to τ , where 2v(λ) = v(η). The group 1 + 4

τ+λ2RAS will in 
general be different from 1 + 4

τRAS , but we claim that it is contained in (R∗)2(1 + 4
τRAS). 

Indeed, Proposition 3.8 shows that λ
2

τ /∈ 1 + I0, so that 1 + λ2

τ ∈ R∗ and every element 
of 1 + 4

τ+λ2RAS may be written as 1 + 4
τ+λ2 ρ[(1 + λ2

τ )r] for some r ∈ R. But we may 
expand

ρ

[(
1 + λ2

τ

)
r

]
=

(
1 + λ2

τ

)
ρ(r) + λ2

τ

(
1 + λ2

τ

)
r2

(a direct calculation using the definition of ρ), so that our element becomes 1 + 4
τ ρ(r) +

4λ2r2

τ2 . As 2v(λ) = v(τ) = v(η) < 2v(2), we find that 2λr
τ ∈ I0 and v(4λr

τ ) > v(4λ2r2

τ2 ), so 
that dividing this element by (1 + 2λr

τ )2 yields an element of 1 + 4
τ ρ(r) + I2v(2)−v(τ). But 

Lemma 3.2 implies that the latter expression takes the form 1 + 4
τ ρ(s) for some s ∈ R, so 

that our original expression equals (1 + 2λr
τ )2(1 + 4

τ ρ(s)) and lies in (R∗)2(1 + 4
τRAS) as 

desired. Interchanging the roles of τ and τ + λ2 now show that the groups arising from 
both numbers coincide, which proves that sets of fine classes of minimal norms arising 
from even η are also well-defined.

When the generalized Arf invariant η is exact, we need to verify that adding an 
element from 4RAS to τ leaves the group (R∗)2(1 + 4

τRAS) invariant. Hence we consider 
an element of the group 1 + 4

τ+4ρ(h)RAS for some h ∈ R. Note that we may always 
replace h by 1 − h, since they have the same ρ-image. The number 4ρ(h)

τ cannot be in 

1 + I0 by Proposition 3.11, so that 1 + 4ρ(h) ∈ R∗ and we write an element of our group 
τ
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as 1 + 4
τ+4ρ(h)ρ[(1 + 4ρ(h)

τ )r]. Using a similar expansion, the latter expression equals 

1 + 4
τ ρ(r) +

16ρ(h)r2

τ2 . Writing the two ρ-images explicitly, we get

1 + 4
τ

(
r2 − r

)
+ 16r2

τ2

(
h2 − h

)
= 1 + 16r2h2

τ2 + 4r2

τ
− 4r

τ

(
1 + 4rh

τ

)
.

We may assume, by replacing h by 1 − h if necessary, that 1 + 4rh
τ ∈ R∗. When we 

divide this expression by (1 + 4rh
τ )2, the sum of the first two terms gives an element of 

1 + I0 (which equals 1 + 4
τ I0 since 4

τ ∈ R∗), and the remaining three terms become just 
4
τ ρ(

r
1+4rh/τ ). Invoking Lemma 3.2 again yields an element s ∈ R such that the whole 

sum is just 1 + 4
τ ρ(s), so that our original element equals (1 + 4rh

τ )2(1 + 4
τ ρ(s)) and lies in 

(R∗)2(1 + 4
τRAS). The symmetry between τ and τ +4ρ(h) now establishes the invariance 

of the group (R∗)2(1 + 4
τRAS) under this operation, so that the sets of fine classes of 

minimal norms are well-defined also for exact η. This proves the first assertion.
Now, Lemma 4.1 shows that isomorphic lattices of the form Mα,β with v(β) ≥ v(2)

and v(αβ) > v(2) have the same class of minimal norms, and that no finer invariant for 
the minimal norm exists. Moreover, part (ii) of Proposition 4.2 shows that the fine Arf 
invariant is also an invariant of isomorphism classes of such lattices. Conversely, assume 
that Mα,β and Mγ,δ have the same fine Arf invariant and the same class of minimal 
norms. In particular, the difference between the valuation of the (common) generalized 
Arf invariant η of these two lattices and v(α) coincides with its difference from v(γ), 
so that we consider either the coarse classes of minimal norms in both lattices or the 
fine classes of minimal norms arising from η. Since the (appropriate) classes of α and γ
coincide, Lemma 4.1 shows that Mγ,δ is isomorphic to Mα,μ for some μ ∈ R. Moreover, 
by part (ii) of Proposition 4.2 the lattice Mα,μ has the same fine Arf invariant as Mγ,δ

and Mα,β, meaning that αβ−αμ ∈ S. If the fine (or generalized) Arf invariant vanishes 
then μ = β = 0 and we are done. Otherwise v(η) ≤ 2v(2), and we write the difference 
αβ − αμ as t2 − 2t. We claim that 2v(t) ≥ v(η). Indeed, otherwise v(t) < v(2) and 
all the elements αμ, αβ, and 2t have valuations larger than v(t2), so that the equality 
αβ − αμ = t2 − 2t cannot hold. Now, since v(η) = v(αβ) ≥ 2v(α) we can write t = αb

for b ∈ R with 2v(b) ≥ v(β
α ) and obtain the equality μ = β + 2b − αb2. We claim that 

this equality implies an equality of the form μ = β + 2a − αa2

1−αβ for some a ∈ R with 

2v(a) ≥ v(β
α ). Indeed, write a = b +h in the desired equality, and using the given relation 

between μ, β, and b we obtain the equation Ah2 + Bh + C = 0 with A = − α
1−αβ (of 

valuation v(α)), B = 2(1 − αb
1−αβ ) (of valuation v(2)—recall that t = αb and αβ are 

both in I0), and C = −α2b2β
1−αβ (of valuation at least v(α) + 2v(β) by the condition on b). 

The inequalities v(αβ) = v(η) > v(2) and v(β) ≥ v(2) allow us to apply Lemma 1.4, 
and show that the valuation v(CB ) of the solution h is larger than v(2). This proves the 
existence of an appropriate a, and Lemma 4.1 completes the proof of the theorem. �
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Since the proof of part (iii) of Proposition 4.2 shows that over an exact or vanishing 
generalized Arf invariant there exists only one fine Arf invariant, the result of Theorem 4.5
in these cases can be phrased as in the following

Corollary 4.6. (i) Assume that v(β) > v(2) and v(α) + v(β) ≥ 2v(2). Then the class of 
α in (R/2R)/(R∗)2 and the generalized Arf invariant η (the image of αβ modulo 4RAS) 
characterize the isomorphism class of Mα,β, where the vanishing of the former invariant 
implies the vanishing of the latter. (ii) If v(α) = v(β) = v(2) then the isomorphism 
classes of such lattices are characterized by the generalized Arf invariant η, and in case 
η �= 0 (i.e., η is exact), also by the class of elements of 2R/(R∗)2(1 + 4

τRAS) (of valua-
tion 2), where τ ∈ 4R is such that η = τ + 4RAS , containing all the norms of primitive 
elements in a lattice in this isomorphism class.

Proof. Part (i) follows directly from Theorem 4.5. Part (ii) is obtained by combining 
Theorem 4.5 and Lemma 3.3. �

The case of a vanishing generalized Arf invariant (namely, isotropic lattices) of The-
orem 4.5 and Corollary 4.6 reproduces the result of Proposition 3.4, though the latter 
holds over any valuation ring while Theorem 4.5 and Corollary 4.6 require the 2-Henselian 
property.

Once again, the lattices with classes of minimal norms of valuation 0 are decomposable. 
Such a lattice Mα,β, with τ ∈ R representing the fine Arf invariant of Mα,β, is isomorphic 
to the lattice Hα,τ spanned by two orthogonal elements u and w of norms α and α(τ−1): 
Indeed, by taking τ = αβ we find that x = u and y = u+w

α form a basis for Hα,τ as an 
isomorphic image of Mα,β . Therefore Theorem 4.5 implies also the following

Corollary 4.7. Let α and γ be elements in R∗ and let τ and λ be elements in Iv(2)
representing generalized Arf invariants. The lattices Hα,τ and Hγ,λ are isomorphic if 
and only if τ − λ ∈ S and α and γ are in the same coarse class of minimal norms in 
(R/2R)/(R∗)2.

As above, the case τ = λ = 0 in Corollary 4.7 yields Corollary 3.5 (under the 
2-Henselianity assumption).

Note that Theorem 4.5 and Corollary 4.7 deal only with lattices whose generalized 
Arf invariants come from Iv(2). Next we show that these results extend to generalized 
Arf invariants with valuation precisely v(2) under some conditions on the 2-Henselian 
valuation ring R.

Proposition 4.8. Assume that R satisfies either (i) v(2) is odd, (ii) F is perfect, or 
(iii) ρ is surjective. Then all the lattices Mα,β with β ∈ 2R having maximal valuation 
are classified by their fine Arf invariant and the appropriate class of minimal norms.
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Proof. Define S+ = {t2 − 2t | t ∈ R, 2v(t) ≥ v(2)}. If we can show that S+ is a 
subgroup of 2R, then Definition 4.3 may be extended to introduce fine Arf invariants 
with valuation precisely v(2), using classes in 2R/S+. Apart from this extension, there 
are two additional places in the proofs of Proposition 4.2 and Theorem 4.5 where we have 
used strict inequalities for our arguments. One is where for a generalized Arf invariant 
coming from αβ ∈ Iv(2) and an element h with 2v(h) > v(2), the expression αβ(h2 −2h)
lies in I2v(2) ⊆ S (part (ii) of Proposition 4.2). The second place appears at the end of 
the proof of Theorem 4.5, where we concluded that if α and β are as above and b satisfies 
2v(b) ≥ v(β

α ), then the sum of the valuations of A = − α
1−αβ and of C = −α2b2β

1−αβ is larger 
than 2v(2), so that a solution to the equation for a exists by Lemma 1.4. Note that the 
latter sum v(AC) is just v(α3b2β).

Now, in case (i) the conditions 2v(t) ≥ v(2) and 2v(h) ≥ v(2) become strict inequal-
ities since they compare the odd valuation v(2) with an even valuation. Hence S+ = S

is a group, and classes from 2R/S define fine Arf invariants which are invariants of iso-
morphism classes of lattices (and map to generalized Arf invariants as before). As for 
v(α3b2β), it is at least v(α2β2) since 2v(b) ≥ v(β

α ), hence AC ∈ 4R. But if v(αβ) > v(2)
then we already have AC ∈ I2v(2), while in the case of equality v(β

α ) is odd, the equality 
with v(b) is strict, and again AC ∈ I2v(2). This proves for case (i). Hence we consider 
cases (ii) and (iii) under the additional assumption that v(2) is even.

Case (ii) with even v(2) is simple: As there are no generalized Arf invariants of even 
valuation v(2) by Corollary 3.9, there is no need for any extension of the definitions, and 
all inequalities involving v(αβ) remain strict. In case (iii) we consider again the equation 
h2+2(t −s −1)h +2s2−2ts = 0 for h in the proof of part (i) of Proposition 4.2, where now 
s and t give rise to elements from S+. By writing h = 2(1 − t +s)g this equation becomes 
g2 − g+ s2−st

2(1−t+s)2 = 0 (recall that s2 and st are in 2R as above), and this Artin–Schreier 
equation has a solution by our assumption on ρ and Lemma 3.2. Moreover, as S ∩ 4R =
4RAS is the full ideal 4R in this case, the conditions v(αβ) ≥ v(2) and 2v(h) ≥ v(2) are 
sufficient for αβ(h2 − 2h) to be in 4R ⊆ S. Hence S+ is a group, fine Arf invariants of 
valuation v(2) are well-defined, and they are preserved under isomorphism of lattices. 
Finally, the equation for a can be transformed by similar means to an Artin–Schreier 
equation looking for a pre-image of α3b2β

4(1−αβ−αb) , which again exists under our assumption. 
This completes the proof of the proposition. �

We remark that extending Corollary 4.7 to the cases (i) or (iii) in Proposition 4.8
requires using the fine classes of minimal norms arising from the common generalized 
Arf invariant arising from τ and λ in case v(λ) = v(τ) = v(2), rather than the coarse 
classes of minimal norms appearing in that corollary. The fact that there are no even 
generalized Arf invariants in case (ii) of Proposition 4.8 agrees, for the case of R is a 
(complete) discrete valuation ring, with the parity condition on the weight and norm 
ideals in Section 93 of [13].

On the other hand, if none of the conditions of Proposition 4.8 is satisfied, then S+

is no longer a group, but generalized Arf invariants of valuation v(2) exist. Therefore, 
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an appropriate definition of fine Arf invariants of valuation v(2), which will be preserved 
under isomorphisms, requires much more care and will probably be more involved. At-
tempts to extend to generalized Arf invariants of valuation smaller than v(2) encounter 
more severe difficulties (as no group structure is expected there), and will be left for 
future research. However, we point out one fact that arises from the proof of Lemma 4.1
in this more general case: If δ − β lies in I2v(2)−v(α) then Mα,β

∼= Mα,δ. Indeed, putting 

s = 0 and c = 1 there (i.e., z = x) shows that the vector w has norm β+2a − αa2

1−αβ (note 
that the maximality of β shows that 1 − αβ cannot be in I0, by Proposition 3.8). As 
comparing this value to δ yields a quadratic equation in which the sum of the valuations 
of A = − α

1−αβ and C = β − δ is larger than twice the valuation of B = 2, Lemma 1.4
yields a solution a to this equation, which proves the assertion. Moreover, the assumption 
that v(β) ≥ v(α) was not used in this argument, so that we also deduce Mα,β

∼= Mγ,β if 
γ − α ∈ I2v(2)−v(β). This fact will be useful in completing the classification for lattices 
over Z2[

√
2] in Subsection 4.3 below.

4.3. Relations to quadratic forms and examples

A notion closely related to (symmetric) bilinear forms, which has not appeared in this 
paper yet, is the notion of quadratic forms. Recall that a quadratic form on an R-module 
M is a map q : M → R which satisfies q(rx) = r2x2 for all r ∈ R and x ∈ M , and such 
that the map taking x and y in M to q(x + y) − q(x) − q(y) is a bilinear form on M
(this is the bilinear form coming from q). We denote this bilinear form ϕ(q), so that we 
have a map ϕ = ϕM from the set of quadratic forms on M to the set of bilinear forms 
on M . In case 2 ∈ R∗, every bilinear form comes from a unique quadratic form, namely 
q(x) = x2

2 . Hence ϕ is a canonical bijection. If 2 /∈ R∗ but is not a zero-divisor in R
(e.g., 2 �= 0 and R is an integral domain), then ϕ is injective, but may not be surjective. 
This is so, since we can localize by 2 (making ϕ bijective again), but some bilinear forms 
which are R-valued will require the quadratic form to take values in the localization. 
Those lattices in which the bilinear form comes from a quadratic form via ϕ are the 
lattices called even in the terminology of [17] and others. But other lattices exist: E.g., 
Mα,β is even precisely when α and β are both in 2R, i.e., the generalized (or equivalently 
fine) Arf invariant is exact or vanishing and the class of minimal norms comes from 2R. 
In case 2 = 0, however, this map ϕ is in general neither injective nor surjective (this is 
the map considered in [1] for R a field of characteristic 2). Hence a quadratic form on 
a module over an integral domain yields more information than the one obtained using 
the bilinear form arising as its ϕ-image alone only if the integral domain in question has 
a fraction field of characteristic 2.

The last assertion of Corollary 4.6 shows the relation of exact and vanishing general-
ized Arf invariants to the classical Arf invariants: Any field F of characteristic 2 is the 
quotient field of a 2-Henselian valuation ring R whose fraction field K has characteristic 0 
(for an example of such a ring in which the valuation is complete and discrete, take R to 
be the ring W (F) of Witt vectors over F—see, e.g., Section II.6 of [16] for more details 
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on this construction). Any non-degenerate (or fully regular in the terminology of [1]) 
quadratic form of dimension 2 over F is isomorphic to a form q : (r, s) �→ λr2 + rs + μs2

for some λ and μ in F (see Theorem 2 of [1]—note that by normalizing one of the basis 
elements we can make the product 1, i.e., we can take bi = 1 for all i). Let α and β
be elements of 2R such that α

2 + I0 = λ and β
2 + I0 = μ. Then the quadratic form q

can be seen as the reduction modulo I0 of the map z �→ z2

2 for z = rx + by ∈ Mα,β . 
If Mα,β

∼= Mγ,δ for some γ and δ in 2R then q is isomorphic over F to the quadratic 
form Q : (r, s) �→ ϕr2 + rs + ψs2 for ϕ = γ

2 + I0 and ψ = δ
2 + I0 (by reducing the iso-

morphism modulo I0). On the other hand, Corollary 4.6 implies that the isomorphism 
class of Mα,β is independent of the choice of α ∈ 2λ + Iv(2) and β ∈ 2μ + Iv(2). This 
implies that if q and Q above are isomorphic over F then Mα,β

∼= Mγ,δ: Indeed, lifting the 
isomorphism over F to any map over R yields an isomorphism between Mα,β and Mκ,ν

for κ ∈ 2ϕ + Iv(2) and ν ∈ 2ψ + Iv(2), and the previous assertion implies Mκ,ν
∼= Mγ,δ. 

Thus, isomorphism classes of fully regular quadratic forms of rank 2 over F correspond 
to isomorphism classes of lattices Mα,β over R, where α and β are in 2R (i.e., of even 
lattices Mα,β). Now, exact or vanishing generalized Arf invariants are “4 times” the Arf 
invariant Δ defined in [1] (this means 4Δ ∈ 4R/4RAS for Δ ∈ F/FAS), and the set of 
numbers z2

2 + I0 obtained from primitive z ∈ Mα,β is precisely the set of squares of 
non-zero elements of the odd part of the Clifford algebra of q over F. Since Lemma 3.3
implies that this set is either F or an orbit in F/(F∗)2(1 + 4

τ FAS) (after division by 2 
and dividing modulo I0), and the remainder of the structure of the Clifford algebra is 
determined by the condition that the two basis elements x and y are chosen such that 
(x, y) = 1, Corollary 4.6 implies Theorem 3 of [1] (in fact, this normalization shows 
that applying ρ to the element xy of the Clifford algebra yields the Arf invariant Δ, the 
condition about Δ in that theorem is redundant).

The results of Section 3 as well as this section thus generalize the classical assertions 
from [1] to many lattices in which the bilinear form does not necessarily come from a 
quadratic form. It seems likely that a similar argument can treat binary quadratic forms 
over some valuation rings in which 2 = 0 and which are not fields—note that the results 
of this section are contained in Proposition 3.4 in case 2 = 0 since we assume here β ∈ 2R
throughout. We leave this question for future research.

We now use our results in order to classify the unimodular rank 2 lattices over two 
rings. Recall that every such lattice is isomorphic to some lattice Mα,β with v(β) ≥ v(α), 
and this lattice is decomposable if and only if α is invertible, a case in which the lattice 
is isomorphic to some lattice Hα,τ (see the paragraph preceding Corollary 4.7). We start 
with R = Z2, the ring of 2-adic integers. As ρ(F2) = 0, we have RAS = I0 = 2R. All the 
lattices of the form Mα,β admit primitive vectors with norms of maximal valuations, by 
Proposition 3.10 or the finiteness of valuations smaller than v(2). There are three possible 
generalized Arf invariants: 0 (vanishing), 4 +8R (exact), and 2 +4R (odd). Moreover, the 
set (R/2R)/(R∗)2 of coarse classes of minimal norms consists of two elements, represented 
by 0 and 1, the latter having valuation 0. The condition 2v(t) > v(2) in the definition of 
S implies 2|t hence S = 8R. Moreover, both conditions (i) and (ii) of Proposition 4.8 are 
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satisfied, so that we can classify all the Z2-lattices Mα,β using our method. The isotropic 
lattices are M0,0 (the hyperbolic plane) and M1,0 (which is isomorphic to H1,0, hence 
generated by 2 orthogonal vectors having opposite norms). Over the exact generalized 
Arf invariant lies the fine Arf invariant 4 + 8R. A lattice having this fine Arf invariant 
with v(β) > v(2) must have 1 in its coarse class of minimal norms. Such a lattice must 
therefore be isomorphic to M1,4, which can be generated by orthogonal elements of norms 
1 and 3 as its isomorph H1,4. The multiplicative group corresponding to this generalized 
Arf invariant is just 1 + 4

4RAS = 1 + 2R = Z∗
2. There is thus only one fine class of 

minimal norms of valuation 1 arising from this generalized Arf invariant, yielding the 
lattice M2,2. The remaining fine Arf invariants are 2 + 8R and −2 + 8R, lying over the 
odd generalized Arf invariant 2 + 4R. Both have valuation v(2) = 1, so that we have to 
consider the fine classes of minimal norms of valuation 0 corresponding to 2 + 4R. The 
group by which we divide is 1 + 4

2RAS = 1 + 4R, so that there are two such classes, 
represented by 1 and −1. The invariants 1 and 2 +8R yield a lattice isomorphic to M1,2, 
which is generated by two orthogonal elements of norm 1 like H1,2. With the invariants 
−1 and 2 +8R comes the lattice M−1,−2, an orthogonal basis of which can be taken with 
both norms −1 (consider H−1,−2). Taking now the class with 1 and fine Arf invariant 
−2 +8R yields the lattice M1,−2, a basis of its isomorph H1,−2 has norms 1 and −3. The 
last lattice, with invariants −1 and −2 +8R, must be isomorphic to M−1,2, which, being 
isomorphic to H−1,2, has an orthogonal basis with elements of norms −1 and 3. One can 
easily verify that these results reproduce the results of [8] for rank 2 unimodular 2-adic 
lattices, since −3 ≡ 5(mod 8), −1 ≡ 7(mod 8), and the lattice M−1,−2 can be written 
as M3,−2 (since −1 ≡ 3(mod 4)) and the isomorphic lattice H3,−2 has an orthonormal 
basis consisting of two norm 3 vectors.

We now turn to present the explicit picture our results yield for the ring R = Z2[
√

2]. 
The fine Arf invariants we obtain have valuation larger than v(2) (Corollary 3.9 or 
condition (ii) of Proposition 4.8), and once again RAS = I0, which here equals 

√
2R. 

Proposition 3.10 (or the fact that only finitely many positive elements of Γ are smaller 
than v(2) = 2) shows again that in every lattice Mα,β we can take β to have maximal 
valuation. The elements in 1 + 4

√
2R are squares, and (R∗)2/(1 + 4

√
2R) consists of one 

additional non-trivial class, which is represented by (1 +
√

2)2 = 3 + 2
√

2. A generalized 
Arf invariant of a lattice can be 0 (vanishing), 4 + 4

√
2R (exact), 2

√
2 + 4R (odd), or √

2+2R (odd). Fine Arf invariants are defined only above the first three generalized Arf 
invariants. The group S is based on elements satisfying 2v(t) > v(2), which means 2|t
hence S = 4

√
2R. As the action of (R∗)2 ⊆ 1 + 2R on R/2R is trivial, there are 4 coarse 

classes of minimal norms, represented by 0, 
√

2, 1, and 1 +
√

2, with valuations ∞, 1, 
0, and 0 respectively. Hence there are 4 isomorphism classes of isotropic R-lattices, in 
which the generalized and fine Arf invariants are vanishing, namely M0,0, M√

2,0, M1,0, 
and M1+

√
2,0. Considering the exact generalized and fine Arf invariant 4 + 4

√
2R, as all 

the non-zero coarse classes of minimal norms have valuation smaller than v(2) = 2, we 
obtain 3 isomorphism classes of non-even lattices having this fine Arf invariant, which are 
represented by M√

2,2
√

2, M1,4, and M1+
√

2,4 (recall that 4√ = 4
√

2 − 4 is congruent 
1+ 2
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to 4 modulo 4
√

2R). When considering fine classes of minimal norms arising from this 
generalized Arf invariant, the acting group is just 1 +

√
2R = R∗, so that there is only 

one element of valuation 2 in this set, giving rise to the lattice M2,2. The generalized Arf 
invariant 2

√
2+4R appears as the image of two fine Arf invariants, one being 2

√
2+4

√
2R, 

and the other one is 2
√

2 + 4 + 4
√

2R. The isomorphism classes of lattices Mα,β with 
v(β) ≥ 3 having these fine Arf invariants are represented by the coarse classes of minimal 
norms 1 and 1 +

√
2. The corresponding lattices are (up to isomorphism) M1,2

√
2 and 

M1+
√

2,2
√

2+4 with the fine Arf invariant 2
√

2 + 4
√

2R, while M1,2
√

2+4 and M1+
√

2,2
√

2
have the fine Arf invariant 2

√
2 + 4 + 4

√
2R. The fine classes of minimal norms arising 

from the generalized Arf invariant 2
√

2+4R are obtained modulo the action of the group 
1 + 2R (which already contains (R∗)2). As the classes of valuation 1 are represented by √

2 and 2 +
√

2, we obtain the two additional lattices M√
2,2 and M2+

√
2,2+2

√
2 with the 

fine Arf invariant 2
√

2+4
√

2R, together with the lattices M√
2,2+2

√
2 and M2+

√
2,2 having 

the fine Arf invariant 2
√

2 + 4 + 4
√

2R. Theorem 4.5 shows that these 16 isomorphism 
classes of R-lattices are distinct, and every unimodular R-lattice of rank 2 admitting a 
primitive vector of norm in 2R belongs to one of these isomorphism classes.

We end this section by completing the classification of those unimodular rank 2 lat-
tices over R = Z2[

√
2] to which Theorem 4.5 does not apply. These lattices all have 

generalized Arf invariant 
√

2 + 2R, and they are all decomposable. By the remark at 
the end of Subsection 4.2 they take the form Mα,β where α can be taken from any set 
of representatives for R∗/(1 + 4R) (there are 8 such classes) and for β one may use 
any set of representatives for the classes in 

√
2R/4

√
2R having valuation 1 (again 8 such 

classes). We identify, for the moment, these sets of representatives with the corresponding 
classes, so that the two operations we introduce below on these classes may be considered 
to be normalized to always take representatives to representatives. There are 64 pairs in 
R∗/(1 + 4R) ×

√
2R∗/(1 + 4R), and there are three operations on these pairs such that 

two pairs are connected through these operations if and only if they yield isomorphic 
lattices. The first operation takes α and β to r2α and β

r2 for r ∈ R∗. This operation 
has exponent 2 here since (R∗)2/(1 + 4R) has order 2. In addition, we may replace α by 
α+2s +βs2 for s ∈ R, and β by β

(1+βs)2 . The valuations of α and β and the fact that we 
consider elements modulo multiplication from 1 + 4R show that this operation depends 
only on the class of s in F = F2, yielding another operation of order 2. In addition, we 
can take β to β + 2t + αt2 and α to α

(1+αt)2 for t ∈ R with v(t) > 0. By letting γ2

represent the non-trivial class in (R∗)2/(1 + 4R) and choosing s = −α and t = −β to 
represent the non-trivial choices of the two latter operations, we find that our operations, 
which we denote ζ, σ, and τ , send the pair (α, β) to (αγ2, βγ2), (α(αβ − 1), βγ2), and 
(αγ2, β(αβ−1)) respectively. Working modulo 1 +4R one sees that ζ is central, all three 
have order 2, and the commutator of σ and τ is ζ. Hence these three operations generate 
a dihedral group of order 8, which operates on our set of 64 pairs without fixed points. 
It follows that there are 8 orbits, and representatives for these orbits can be taken to 
be M1,

√
2, M1,

√
2+4, M1,−

√
2, M1,−

√
2+4, M−1,

√
2, M−1,

√
2+4, M−1,−

√
2, and M−1,−

√
2+4

(i.e., an R-lattice with generalized Arf invariant 
√

2 + 2R is isomorphic to precisely one 
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of these 8 lattices). One can find ad-hoc invariants: The closest analogue of the fine Arf 
invariant would be elements in 

√
2+2

√
2R modulo 4

√
2R, but not for every lattice Mα,β

the product αβ lies in this set (sometimes one has to switch to an isomorphic lattice), 
and the choice of the elements 

√
2+2

√
2R rather than 

√
2+2 +2

√
2R does not have an 

immediate extension to the general case. As for classes of minimal norms (which depend 
on αβ), 1 and 1 + αβ (and their images after multiplying by squares) lie in one class 
while −1 and −1 + αβ (times squares) lie in another class, and this situation does not 
seem to have a clear description of the sort of Definition 4.4. This illustrates how the 
existence of norms in 2R simplifies our method substantially.

5. Towards canonical forms in residue characteristic 2

In this section we derive some relations between lattices of 2-Henselian valuation rings 
in which v(2) > 0. The idea is to give canonical representatives for isomorphism classes 
of such lattices. This goal remains far out of reach, but we give some results toward it.

The Jordan decomposition of a lattice M , given in Proposition 1.2, is, in this case, 
not unique. However, the different Jordan decompositions yielding isomorphic lattices 
do have some properties in common:

Proposition 5.1. Let M =
⊕t

k=1 Mk and M =
⊕t

k=1 Nk be two Jordan decompositions
of the same lattice M , with v(Mk) = v(Nk) for every k (allowing empty components if 
necessary). Then the uni-valued lattices Nk and Mk have the same rank (in particular, 
no empty components are needed in two such presentations), and one of them has a 
diagonal basis if and only if the other one has such a basis.

Proof. We use the same method as in Section 93 of [13]. Take some 0 ≤ v ∈ Γ , and 
consider the subset Mv of all elements x ∈ M such that v(x, y) ≥ v for every y ∈ M . 
We claim that this is a sub-lattice of M . Note that since R is not necessarily Noetherian 
(because the valuation is not discrete), the assertion does not follow from the fact that 
Mv is a submodule of M : Indeed, the condition v(x, y) ≥ v can be interpreted as (x, y)
being in the principal ideal J of elements with valuation at least v, and if we apply 
this condition for a non-principal ideal J then the resulting subset is not a finitely 
generated submodule of M . Now, if M decomposes as L ⊕ N then Mv decomposes as 
Lv ⊕ Nv, so that in particular Mv decomposes either as 

⊕t
k=1 Mk,v or as 

⊕t
k=1 Nk,v. 

Let a ∈ R with v(a) = v. If N is uni-valued, say N = L(σ) with L unimodular and 
v(σ) = v(N), then Nv = N if v(N) ≥ v and Nv = a

σN if v(N) ≤ v: The first assertion 
is obvious, and the second assertion holds because any primitive element x ∈ N satisfies 
{(x, y) | y ∈ N} = σR since N is uni-valued. It follows that Mk,v (or Nk,v) are lattices 
for every k, and Mv is a sub-lattice of M .

The lattice Mv has valuation at least v. Moreover, its decompositions as 
⊕t

k=1 Mk,v

or 
⊕t

k=1 Nk,v are decompositions to uni-valued lattices (but not necessarily in increasing 
valuation orders). To see this, we examine Nv for the uni-valued lattice N = L(σ) again. 
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If v(N) ≥ v then Nv = N = L(σ) is uni-valued with valuation v(N) = v(σ), while 
if v(N) ≤ v then Nv = a

σN is isomorphic to L(a
2

σ ) and has valuation 2v − v(N). In 
particular, v(Nv) > v unless v(N) = v. Consider now Mv( 1

a ). The inequality v(Mv) ≥
v = v(a) shows that it is still a lattice, and we take the tensor product of this lattice 
with F. The images of all the components Mk,v or Nk,v with v(Mk) = v(Nk) �= v become 
degenerate in this F-valued bilinear form, and a maximal non-degenerate subspace of 
this F-vector space arises from Mk or Nk in case v(Mk) = v(Nk) = v. In particular the 
ranks of Mk and Nk coincide for each k, and Corollary 1.3 shows that each of them has 
an orthogonal basis if and only if some element of Mv( 1

a ) has a norm not in I0. This 
proves the proposition. �

A more detailed examination of the proof of Proposition 5.1 allows one to derive a 
stronger assertion. Define, for each 2 ≤ k < t, the element uk of Γ to be min{v(Mk) −
v(Mk−1), v(Mk+1) − v(Mk)} > 0, and for the extremal values k = 1 and k = t let 
u1 = v(M2) − v(M1) and ut = v(Mt) − v(Mt−1). Replacing F = R/I0 by R/bkR with 
bk ∈ I0 having valuation uk shows that the images of Mk( 1

a ) and Nk( 1
a ) modulo bkR are 

isomorphic. This implies

Corollary 5.2. (i) The two sets {x2 + abkR | x ∈ Mk} and {y2 + abkR | y ∈ Nk} are the 
same subset of R/abkR. (ii) If uk > 2v(2) then Mk

∼= Nk.

Proof. Part (i) follows directly from the isomorphism Mk( 1
a ) ∼= Nk( 1

a ) modulo bkR
(alternatively, this set is just the images of all norms from Mv modulo abkR, and it 
is contained in aR/abkR). Part (ii) is a consequence of this isomorphism and Theo-
rem 1.5. �

In fact, if 2 ∈ R∗ then the condition uk > 2v(2) is satisfied for any k. Thus, Corol-
lary 5.2 yields another proof of Theorem 2.4.

We shall define an order on the set of Jordan decompositions of lattices, together 
with explicit forms of the components, in which one such Jordan decomposition (with 
additional data) is larger than another one if it is more canonical in the sense explained 
below. The idea is to define certain unimodular components to be more canonical than 
others, and certain forms of such a component as more canonical than other forms of the 
same component. After fixing σv for every v, the more canonical uni-valued components 
of valuation v are the more canonical unimodular ones with the bilinear form multiplied 
by σv. For a general lattice M , we say that the Jordan decomposition 

⊕t
k=1 Mk of M

is more canonical than 
⊕t

k=1 Nk if there exists some 1 ≤ l ≤ t such that Mk = Nk for 
all k < l and Ml is more canonical than Nl. A canonical form of a lattice M would be 
a Jordan decomposition of M , with the components given in a specific form, which is 
more canonical than any other Jordan decomposition of M or any other expression for 
the components.

Before we give the details, we present the case R = Z2 considered in [8]. In this case the 
unimodular components have symbols resembling those arising from lattices over Zp for 
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odd p. The symbols take the form 1εnt or 1εnII , where n is again the rank and ε is a Legendre 
symbol related to the discriminant of the lattice. The additional index t denotes an odd
(or properly primitive in the terminology of [8] and others) component, admitting an 
orthonormal basis in which t ∈ Z/8Z is the image of the sum of the norms of the elements 
of such a basis. On the other hand, an index II means that the component is even
(or improperly primitive), i.e., admitting no orthonormal basis (see Corollary 1.3). The 
parameter λ of [8] equals ε · (−1)

(n−t−4)(n−t−6)
8 in this notation. Uni-valued lattices have 

symbols (2k)εnt or (2k)εnII (standing for the unimodular lattice 1εnt or 1εnII with the bilinear 
form multiplied by 2k), and a Jordan decomposition of a general 2-adic lattice is a product 
of such expressions (like for p-adic lattices for odd p), yielding again a symbol for the 
lattice (with the chosen Jordan decomposition). However, in this case different symbols 
can give rise to isomorphic lattices (or equivalently, two different Jordan decompositions 
of the same lattice may yield different symbols for the same lattice). Now, [8] considers 
a rank 1 lattice over R = Z2 representing (R∗)2 = 1 + 8Z2 to be more canonical than 
the other unimodular rank 1 lattices, and M0,0 (whose generalized Arf invariant is 0 
hence is vanishing) to be more canonical than M2,2 (with exact generalized Arf invariant 
4 + 8Z2). Moreover, here Γ = Z, and for 0 ≤ v ∈ Γ we take σv = 2v. [8] shows how to 
define the order of being more canonical on all possible Jordan decompositions, and the 
canonical form of a lattice M appearing in Theorem 1 of [8] is the Jordan decomposition 
of M which is the most canonical one in this order. We remark that the order depends 
on the (arbitrary) choice, which of 3 +8Z2 and 7 +8Z2 is more canonical, a choice which 
is harder to generalize in the arguments below (a choice of similar type appears also in 
the classification of unimodular rank 2 lattices over R = Z2[

√
2] having generalized Arf 

invariant 
√

2 + 2R at the end of Subsection 4.3).
We now define when one form of a unimodular lattice is more canonical than another 

form, for lattices over a 2-Henselian valuation ring R in which v(2) > 0. First, a canonical 
form is based either on an orthogonal basis (if it exists) or of a direct sum of lattices of the 
form Mα,β with α and β in I0 (the proof of Corollary 1.3 shows that such a form always 
exists for a unimodular lattice). In order to define the further relations in the order, we 
say that an element f ∈ R∗ is closer to 1 than g ∈ R∗ if v(f − 1) > v(g − 1). Now, one 
form of a lattice is more canonical than another form of the same lattice (or from a form 
of a different lattice) if it has discriminant closer to 1. If the lattice admits an orthogonal
basis, then one orthogonal basis is more canonical than another if it contains more 
elements of norms in 1 + I0. If two bases have the same number of elements with norms 
in 1 +I0, we order the base such that the elements whose norms are closer to 1 come first. 
Then the basis xj , 1 ≤ j ≤ n is more canonical than yj , 1 ≤ j ≤ n if there exists some 
1 ≤ k ≤ n such that x2

k is closer to 1 than y2
k and v(x2

j − 1) = v(y2
j − 1) for all j < k. In 

particular, an orthogonal basis containing a maximal set of elements of norm precisely 1 
will be more canonical than a basis not having this property. For a lattice of the form ⊕

j Mαj ,βj
, we choose the order such that the valuations of generalized Arf invariants 

are decreasing. Then one form is more canonical than another using a condition similar 
to the orthogonal base case, with “x2 being closer to 1” replaced by “the generalized Arf 
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invariant having higher valuation”. For two unimodular lattices given in a certain form, 
we call one of them more canonical than the other according to the same rules.

Let L be a unimodular lattice over R (a 2-Henselian valuation ring with v(2) > 0) 
having an orthogonal basis. Using the argument of Section 1, we find that the reduction 
of L modulo I0 decomposes as the orthogonal direct sum of elements of norms 1 + I0, 
and an F-lattice in which no norm equals 1 + I0. Lifting this basis to a basis of L and 
altering by elements of I0, we obtain an orthogonal basis xj, 1 ≤ j ≤ n for M in which 
x2
j ∈ 1 + I0 for j ≤ l, and no combination of xj with l + 1 < j ≤ n has a norm in 1 + I0. 

If F is perfect then any non-zero norm is a square times an element of 1 + I0, so that 
the reduction can always be taken orthogonal and l = n. If M is a lattice with Jordan 
decomposition M =

⊕t
k=1 Mk such that M1 = L, then mixing with the components Mk

of higher valuation cannot yield norms from 
⊕n

j=l+1 Rxj⊕
⊕

k>1 Mk which are in 1 +I0, 
hence cannot render our form of L = M1 more canonical.

We now turn to unimodular rank one components generated by an element with a 
norm in 1 + I0. Recall that a more canonical form for such a lattice will be based on 
a generator x whose norm is such that v(x2 − 1) is large. Now, if we can have a most 
canonical form for such a lattice (i.e., x2 = 1 + r with the maximal possible v(r), which 
is thus positive) then either r = 0, v(r) < 2v(2) and is odd, v(r) < 2v(2) is even and r is 
not in σ2R2 + Iv(r) for σ ∈ R with 2v(σ) = v(r), or v(r) = 2v(2) and r is not in 4RAS . 
Indeed, if v(r) > 2v(2) then x2 is a square by Lemma 1.4. Otherwise, we compare 1 + r

to c2(1 + r), c has to be 1 +h for h ∈ I0 with 2v(h) ≥ v(r), and considerations like those 
presented in Section 3 prove the assertion.

The first step towards a canonical form is provided by the following

Proposition 5.3. Let M be a unimodular lattice generated by two orthogonal elements x
and y, whose norms are 1 +r and 1 +s respectively. Assume that v(s) ≥ v(r) > 0, v(s) is 
maximal, and r is such that v(r) is maximal among the norms of primitive generators of 
(Ry)⊥. If v(r) is smaller than both v(s) and v(2) then the generalized Arf invariant which 
r represents is an invariant of the lattice. If v(r) +v(s) > 2v(2) then M is isomorphic to 
a lattice spanned by two orthogonal elements of norms 1 and (1 + r)(1 + s) respectively, 
hence s = 0 by maximality. If s �= 0 but v(s) is maximal (and v(s) > 0) then r and s
satisfy the conditions of Proposition 3.8 or 3.11 with α = r and β = s.

Proof. For any t ∈ R, the elements x + (1 + r)ty and y − (1 + s)tx are orthogonal and 
have norms (1 + r)[1 + t2(1 + r)(1 + s)] and (1 + s)[1 + t2(1 + r)(1 + s)] respectively. We 
take only t which is not in 1 + I0, so that these vectors are primitive and generate M . 
We can thus divide these elements by 1 + t, and obtain generators of M having norms 
1 + u and 1 + w with

u = t2(1 + s)(r2 + 2r) + r − 2t + st2

2 , w = t2(1 + r)(s2 + 2s) + s− 2t + rt2

2 .
(1 + t) (1 + t)
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Every presentation of M with an orthogonal basis is obtained in this way, up to multi-
plying 1 + u and 1 + w by elements from (R∗)2: This follows directly from primitivity 
and orthogonality. We are looking for isomorphic presentations of M with v(w) ≥ v(s). 
Hence if v(r) < v(s) we take t either with 2v(t) ≥ v( sr ) > 0 or v(t) ≥ v(2

r ) > 0. It follows 
that u represents the same generalized Arf invariant as r, and by the usual maximality 
argument this generalized Arf invariant is an invariant of the isomorphism class of this 
lattice. If v(r) + v(s) > 2v(2) (hence v(s) > v(2)) then the equation w = 0 is quadratic 
in t, with A of valuation at least v(r) and with B = −2 and C = s. Lemma 1.4 gives 
a solution t of valuation v( s2 ) > 0 to this equation, so that w = 0 can indeed be ob-
tained. The evaluation of 1 + u as (1 + r)(1 + s) is carried out either using the equation 
for t or using discriminant considerations. Now assume that s �= 0 and v(s) is maxi-
mal (so that no element of M has norm precisely 1). The maximality of s implies that 
v(s − 2t + rt2) ≤ v(s) for every t ∈ R \ (1 + I0), since the denominator in the expres-
sion for w is in R∗ and the other term in the numerator has valuation larger than v(s). 
Arguments similar to those of Section 3 now complete the proof of the proposition. �

A slight modification of the proof of Proposition 5.3 shows that if a lattice L admits an 
orthonormal basis with norms in 1 + I0 such that one norm is 1 + r with v(r) < v(2) and 
all the other norms are closer to 1 than 1 + r then r defines a generalized Arf invariant 
which is an invariant of L.

The effect of combining a lattice Mα,β (with α and β in I0) with a unimodular rank 1 
lattice spanned by a vector z with z2 = u ∈ R∗ is already considered in the proof of 
Corollary 1.3. The norms of the three basis elements given there in this case are u +αt2, 
t2u + u2β, and −(u + αt2)(t2 + uβ)(1 − αβ) respectively. Modulo I0, these norms are 
u + I0, t2u + I0, and −t2u + I0, which are all equivalent to u + I0 modulo (R∗)2 since F
has characteristic 2.

We now examine the effect of adding a lattice of positive valuation to a unimodular 
lattice.

Proposition 5.4. Let M be a unimodular lattice whose discriminant in a given basis is in 
1 + I0, and let L be a lattice with v(L) > 0. Write the discriminant of M in this basis 
as 1 + r, and assume that there exist primitive elements x ∈ M and y ∈ L, with norms 
a and b respectively, such that t2ab ∈ r + Iv(r) for some t ∈ R. Then, the lattice M ⊕ L

is isomorphic to N ⊕ K with N having the same reduction modulo I0 as M and has 
discriminant 1 + s with v(s) > v(r), and K is a lattice with the same valuation as L and 
whose discriminant is the discriminant of L multiplied by 1 + t2ab.

Proof. Let xi, 1 ≤ i ≤ n be a basis for M giving the discriminant 1 + r and in which 
x2
n = a, and let yj , 1 ≤ j ≤ m be a basis for L with y2

m = b. Consider the elements 
zi = xi + t(xi, xn)ym and wj = yj − t(yj , ym)xn of M ⊕ L. One verifies that zi ⊥ wj

for all i and j, and (zi, zj) ≡ (xi, xj)(mod I0) since y2
m = b ∈ I0 as v(L) > 0. We take 

N to be the lattice spanned by zi, 1 ≤ i ≤ n and K to be the lattice generated by wj , 
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1 ≤ j ≤ m. If D is the matrix defined by dij = (xi, xj) (with determinant 1 + r by 
assumption) then the matrix giving the discriminant of N is D + t2bdnd

t
n, where dn

is the last column of D. By the Matrix Determinant Lemma, the determinant of this 
matrix is (1 +t2b ·dtnD−1dn) detD, and since D−1dn is the nth standard basis vector and 
dnn = x2

n = a, this expression reduces to (1 + t2ab)(1 + r). Writing the latter expression 
as 1 +s with s = r+ t2ab +rt2ab and observing that r and t2ab are in I0, t2ab ∈ r+Iv(r), 
and F has characteristic 2, we find that v(s) > v(r). For elements of the lattice K the 
expression (wj , wk) differs from (yj , yk) by at(yj , ym)(yk, ym) of valuation at least 2v(L). 
Evaluating the discriminant of K can be carried out in the same way as the discriminant 
of N (since L is non-degenerate, the corresponding matrix has non-zero determinant 
hence can be inverted over K). This completes the proof of the proposition. �

Proposition 5.4 can be used in various manners in order to convert a component 
in a Jordan decomposition of a lattice into a more canonical one, while affecting only 
the Jordan components with higher valuations. As two possible examples, consider the 
following: A lattice element with norm 1 + r (contained in a unimodular component) 
with v(r) maximal can be taken to an element of norm 1 + s with v(s) > v(r), and a 
lattice Mα,β can be altered in this way to a lattice Mγ,δ with generalized Arf invariant 
of higher valuation. In some cases, the class of minimal norms can also change to a class 
with larger valuation. All the transformations presented in [8] over R = Z2 are special 
cases of Propositions 5.3 and 5.4.
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