期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:428 |
On group gradings on PI-algebras | |
Article | |
Aljadeff, Eli1  David, Ofir1  | |
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel | |
关键词: Graded algebra; Polynomial identity; Codimension growth; | |
DOI : 10.1016/j.jalgebra.2014.12.042 | |
来源: Elsevier | |
【 摘 要 】
We show that there exists a constant K such that for any PI-algebra W and any nondegenerate G-grading on W where G is any group (possibly infinite), there exists an abelian subgroup U of G with [G : U] <= exp(W)(K). A G-grading W = circle plus(g is an element of G) (Wg) is said to be nondegenerate if W-g1 W-g2 ... W-gr not equal 0 for any r >= 1 and any r tuple (g(1), g(2),..., g(r)) in G(r). (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2014_12_042.pdf | 461KB | download |