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We show that there exists a constant K such that for any 
PI-algebra W and any nondegenerate G-grading on W where 
G is any group (possibly infinite), there exists an abelian 
subgroup U of G with [G : U ] ≤ exp(W )K . A G-grading W =⊕

g∈G Wg is said to be nondegenerate if Wg1Wg2 · · ·Wgr �= 0
for any r ≥ 1 and any r tuple (g1, g2, . . . , gr) in Gr.
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1. Introduction

In the last two decades there were significant efforts to extend important results 
in the theory of polynomial identities for (ordinary) associative algebras to G-graded 
algebras, where G is a finite group, and more generally to H-comodule algebras where H
is a finite dimensional Hopf algebra. For instance Kemer’s representability theorem and 
the solution of the Specht problem were established for G-graded associative algebras over 
a field of characteristic zero (see [5,23]). Recall that Kemer’s representability theorem 
says that any associative PI-algebra over a field F of characteristic zero is PI-equivalent 
to the Grassmann envelope of a finite dimensional Z2-graded algebra A over some field 
extension L of F (see below the precise statement and Proposition 3.1). Another instance 

* Corresponding author.
E-mail addresses: aljadeff@tx.technion.ac.il (E. Aljadeff), ofirdav@tx.technion.ac.il (O. David).

1 The first author was supported by the Israel Science Foundation (grant No. 1017/12).
http://dx.doi.org/10.1016/j.jalgebra.2014.12.042
0021-8693/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2014.12.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:aljadeff@tx.technion.ac.il
mailto:ofirdav@tx.technion.ac.il
http://dx.doi.org/10.1016/j.jalgebra.2014.12.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2014.12.042&domain=pdf


404 E. Aljadeff, O. David / Journal of Algebra 428 (2015) 403–424
of these efforts is the proof of Amitsur’s conjecture which was originally proved for 
ungraded associative algebras over F by Giambruno and Zaicev [14], and was extended to 
the context of G-graded algebras by Giambruno, La Mattina and the first named author 
of this article (see [4,12]) and considerable more generally for H-comodule algebras by 
Gordienko [17]. Amitsur’s conjecture states that the sequence c1/nn , where cn = cn(W )
is the nth term of the codimension sequence of W , has an integer limit (denoted by 
exp(W )).

In [2] a different point of view was considered (in combining PI-theory and G-gradings, 
still under the condition that G is finite), namely asymptotic PI-theory was applied in 
order to prove invariance of the order of the grading group on an associative algebra 
whenever the grading is minimal regular (as conjectured by Bahturin and Regev [6]). In 
fact, it is shown there that the order of the grading group coincides with exp(W ).

Suppose now G is arbitrary (i.e. not necessarily finite). Our goal in this paper, roughly 
speaking, is to exploit the invariant exp(W ) of the algebra W in order to put an effective 
bound on the minimal index of an abelian subgroup of G whenever the algebra W
admits a G-gradings satisfying a natural condition which we call nondegenerate (see 
Definition 1.1). Our results extend considerable known results for PI group algebras 
(which are obviously nondegenerately G-graded). Let us remark here that a big part of 
our analysis is devoted to the case where the group G is finite (a case where Kemer and 
asymptotic PI theory can be applied) and then we pass to infinite groups.

In this paper we only consider fields of characteristic zero. Let W be an associative 
PI-algebra over a field F . Suppose W ∼=

⊕
g∈G Wg is G-graded where G is arbitrary.

Definition 1.1. We say the G-grading on W is nondegenerate if for any positive integer r
and any tuple (g1, . . . , gr) ∈ G(r), we have Wg1Wg2 · · ·Wgr �= 0.

Theorem 1.2 (Main theorem). There exists an integer K such that for any PI-algebra W

and for any nondegenerate G-grading on W by any group G, there exists an abelian 
subgroup U of G with [G : U ] ≤ exp(W )K .

It is known (and not difficult to prove; see Lemma 4.5) that if a group G has an 
abelian subgroup of index n, then it contains a characteristic abelian subgroup whose 
index is bounded by a function of n. We therefore have the following corollary.

Corollary 1.3. There exists a function f : N → N such that for any PI-algebra W and for 
any nondegenerate G-grading on W by any group G, there exists a characteristic abelian 
subgroup U of G with [G : U ] ≤ f(exp(W )).

In order to put our main result in an “appropriate” context, we recall (i) different type 
of G-gradings on associative algebras, (ii) three conditions on groups which are closely 
related to the content of the main theorem, namely n-permutability, n-rewritability and 
PIn (the group algebra FG satisfies a polynomial identity of degree n, char(F ) = 0).
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A G-grading on W �= 0 is called strong if WgWh = Wgh for every g, h ∈ G. Note that 
this condition is considerable stronger than a nondegenerate grading. For instance, the 
well known Z2-grading on the infinite dimensional Grassmann algebra is nondegenerate 
but not strong. The fact that the Z2-grading on the Grassmann algebra is nondegen-
erate will play an important role in the proof of the main theorem. Strong grading is 
considerably weaker than crossed product grading which requires that every homogeneous 
component has an invertible element (e.g. group algebras). In the other direction we may 
consider conditions on G-gradings which are weaker than nondegenerate G-gradings as 
G-gradings where Wg �= 0 for every g ∈ G (call it connected grading). A somewhat 
stronger condition to the latter but yet weaker than nondegenerate grading is a condi-
tion which we call bounded nondegenerate: by definition a G-grading on an algebra W is 
bounded nondegenerate if any product of homogeneous components Wg1Wg2 · · ·Wgr does 
not vanish unless r > r0 for some (large) fixed integer r0. We thus have crossed product 
grading ⇒ strong grading ⇒ nondegenerate grading ⇒ bounded nondegenerate grading
⇒ connected grading.

In Section 5 we show that if a PI algebra W is “bounded nondegenerately” G-graded 
than the main theorem is false in general.

Definition 1.4. (See [10,11,21].) Let n > 1 be an integer.

(1) We say that a group G is n-permutable (resp. n-rewritable), denoted by Pn

(resp. Qn), if for any n-tuple (g1, . . . , gn) ∈ G(n) there exists a nontrivial permu-
tation σ ∈ Sym(n) (resp. distinct permutations σ, τ ∈ Sym(n)) such that

g1g2 · · · gn = gσ(1)gσ(2) · · · gσ(n) ∈ G

(resp.

gσ(1)gσ(2) · · · gσ(n) = gτ(1)gτ(2) · · · gτ(n) ∈ G).

(2) We say that a group G satisfies PIn if the group algebra FG satisfies a (multilinear) 
identity of degree n (it is well known that since F is a field of characteristic zero, 
the T -ideal of identities is generated by multilinear polynomials).

Clearly, Pn ⇒ Pn+1, Qn ⇒ Qn+1 and Pn ⇒ Qn. We say that group is permutable 
(resp. rewritable, PI), if it is n-permutable (resp. n-rewritable, PIn) for some n. We 
denote (with a slight abuse of notation) by P , Q, PI the families of all permutable, 
rewritable or PI groups. It was proved in [11] that if a group is n-rewritable then it is 
m-permutable where m is bounded by a function of n.

As for the condition PIn, it is easy to show that if FG satisfies a (multilinear) polyno-
mial identity of degree n then the group G is n-permutable and in particular n-rewritable 
(indeed, if f(x1, . . . , xn) = x1 · · ·xn +

∑
e �=σ∈Sym(n) ασxσ(1) · · ·xσ(n), ασ ∈ F , is a mul-

tilinear identity of FG and (g1, . . . , gn) ∈ G(n) is any nth tuple, the evaluation xi = gi, 
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i = 1, . . . , n, yields g1 · · · gn = gσ(1) · · · gσ(n) for some e �= σ ∈ Sym(n)). Thus we have 
that PIn ⇒ Pn ⇒ Qn. As for the reverse direction of arrows the following is known 
(see [11]).

(1) Qn is strictly weaker than Pn (although, as mentioned above, there exists a function f

such that Qn ⇒ Pf(n)).
(2) Pn � PIm for any n and m. In particular it is known that if G satisfies PIm, then 

G has a finite index abelian subgroup whose index is bounded by a function of m
whereas for any n > 2 there exists an infinite family of finite groups {Gi}i which 
satisfy Pn, whose PI degree is di and lim di = ∞ (the PI degree of G is the minimal 
degree of a nontrivial polynomial identity of FG).

Remark 1.5. As for the existence of a finite index abelian subgroup in G and the 
permutability or rewritability conditions there is an interesting distinction between 
finitely/nonfinitely generated groups. If G is finitely generated and satisfies Pn (or Qn) 
then it has an abelian subgroup of finite index (note however, as mentioned above, the 
index is not bounded by a function of n; see example in Section 5). If G is not finitely 
generated, it may not have a finite index abelian subgroup. However it does have a char-
acteristic subgroup H whose index [G : H] is bounded by a function of n and whose 
commutator subgroup H ′ is finite, and its order is bounded by a function of n.

In view of the above considerations it is natural to introduce the following condition 
on a group G.

Definition 1.6. Let G be any group. We say that G satisfies Tn if there exists a PI 
algebra W of PI degree n which admits a nondegenerate G-grading. We say that G
has T if it has Tn for some n.

It is easy to see that the argument which shows PIn ⇒ Pn shows also that Tn ⇒ Pn. 
This simple fact will play an important role while extending the proof of the main theo-
rem from finitely generated residually finite groups to arbitrary finitely generated groups.

Note that since the group algebra FG is nondegenerately G-graded we have PIn ⇒ Tn. 
In the other direction it follows from our main theorem that if G satisfies Tn, then G
has PIm for some m (indeed, G is abelian by finite and hence, by [20], the group algebra 
FG is PI). As for the relation between m and n we have the following result.

Theorem 1.7. Let G be any group and suppose it grades nondegenerately a PI algebra W

of PI degree n. Then the group algebra FG is PI and its PI degree is bounded by n2. 
Similarly, exp(FG) ≤ exp(W )2.

It is somewhat surprising that Tn � PIn (intuitively, the group algebra FG seems 
to be the “smallest or simplest” G-graded algebra whose grading is nondegenerate). The 
following example shows that twisted group algebras may have lower PI degree.
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Example 1.8. Let A4 be the alternating group of order 12. It is known that the largest 
irreducible complex representation is of degree 3 and hence by Amitsur–Levitzki theorem 
the PI degree is 6. On the other hand, the group A4 admits a nontrivial cohomology 
class α ∈ H2(A4, C∗) (corresponding to the binary tetrahedral group of order 24). Since 
twisted group algebras with nontrivial cohomology class cannot admit the trivial repre-
sentation, we have CαA4 ∼= M2(C) ⊕M2(C) ⊕M2(C) and hence the PI degree is 4.

Conjecture 1.9. Let W be an algebra over an algebraically closed field F of characteristic 
zero satisfying a PI of degree n. Suppose W is nondegenerately graded by a group G. 
Then there exists a class α ∈ H2(G, F ∗) such that the twisted group algebra FαG has PI 
degree bounded by the same integer n.

Theorem 1.10. Notation as above. The conjecture holds whenever the group G is finite.

The main tools used in the proof of the main theorem are the representability theorem 
for G-graded algebras where G is a finite group [5] and Giambruno and Zaicev’s result on 
the exponent of W [14]. The representability theorem allows us to replace the G-graded 
algebra W by a finite dimensional G-graded algebra A (or the Grassmann envelope of 
a finite dimensional Z2 × G-graded algebra A) whereas Giambruno and Zaicev’s result 
provides an interpretation of exp(W ) in terms of the dimension of a certain subalgebra 
of A. The proof of Theorem 1.2 in case the group G is finite is presented in Section 3. 
In Section 4 we show how to pass from finite groups to arbitrary groups and by this we 
complete the proof of Theorem 1.2.

In Section 2 we recall some background on group gradings and PI theory needed for 
the proofs of the main results of the paper. In the last section of the paper, Section 5, 
we present (1) a family of n-permutable with no uniform bound on the index of abelian 
subgroups and (2) an example which shows that we cannot replace in the main theorem 
nondegenerate G-gradings with bounded nondegenerate G-grading.

We close the introduction by explaining why one would prefer bounding the index 
of an abelian subgroup by a function of the exp(W ) (as in the main theorem) rather 
than by the PI degree of W . It is known that exp(W ) is bounded by a function of the 
PI degree (e.g. exp(W ) ≤ (PIdeg(W ) − 1)2, see Theorem 4.2.4 [15]) but such function 
does not exist in the reverse direction. Indeed, since exp(W ) is an asymptotic invariant 
it remains invariant if we consider the G-graded T -ideal generated by all polynomials in 
IdG(W ) of degree at least m (any m) whereas the G-graded PI degree and hence the 
ordinary PI degree is at least m.

2. Background and some preliminary reductions

We start by recalling some facts on G-graded algebras W over a field F of characteristic 
zero and their corresponding G-graded identities. We refer the reader to [5] for a detailed 
account on this topic.
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Remark 2.1. In this section we consider only finite groups. Although some of the basic 
results in G-graded PI theory hold for arbitrary groups, one of our main tools, namely 
the “representability theorem” for G-graded PI algebras, is false for infinite groups.

2.1. G-graded identities

Let W be a PI-algebra over F . Suppose W is G-graded where G is a finite group. 
Denote by I = IdG(W ) the ideal of G-graded polynomial identities of W . It consists of 
all elements in the free G-graded algebra F 〈XG〉 over F , that vanish upon any admissible 
evaluation on W . Here, XG =

⋃
g∈G Xg and Xg is a set of countably many variables of 

degree g. An evaluation on W is admissible if the variables from Xg are replaced only by 
elements of Wg. The ideal I is a G-graded T -ideal, i.e. it is invariant under all G-graded 
endomorphisms of F 〈XG〉.

We recall from [5] that the G-graded T -ideal I is generated by multilinear polynomials. 
Consequently, it remains invariant when passing to any field extension L of F , that is 
IdG(W ⊗F L) = IdG(W ) ⊗F L.

The following observations play an important role in the proofs.

Observation 2.2. The condition nondegenerate G-grading on W can be easily translated 
into the language of G-graded polynomial identities. Indeed a G-grading on W is nonde-
generate if and only if for any integer r and any tuple (g1, . . . , gr) ∈ G(r), the G-graded 
multilinear monomial xg1,1 · · ·xgr,r is a G-graded nonidentity of W (in short we say 
that IdG(W ) contains no multilinear G-graded monomials). Consequently, if G-graded 
algebras W1 and W2 are G-graded PI-equivalent (i.e. have the same T -ideal of G-graded 
identities), then the grading on W1 is nondegenerate if and only if the grading on W2 is 
nondegenerate.

Observation 2.3. If W1, W2 are two G-graded algebras with IdG(W1) = IdG(W2), then 
Id(W1) = Id(W2) (the ungraded identities). In particular we have exp(W1) = exp(W2). 
Indeed, this follows easily from the fact that a polynomial p(x1, . . . , xn) is an un-
graded identity of an algebra W with a G-grading if and only if the polynomial 
p(
∑

g∈G xg,1, . . . , 
∑

g∈G xg,n) is a graded identity of W as a G-graded algebra.

As noted above, the nondegeneracy condition satisfied by a G-grading on W depends 
only on the T -ideal of G-graded identities, hence if the grading on a G-graded algebra W
over a field F is nondegenerate, the same holds for the G-graded algebra WL = W ⊗F L. 
Similarly, the numerical invariant exp(W ) of the algebra W remains unchanged if we 
extend scalars.

Remark 2.4. In the main steps of the proof (in case G is a finite group), roughly speaking, 
we “pass” to simpler algebras without increasing too much the exponent or the PI degree. 
More precisely, given an arbitrary G-grading on a PI algebra W we first pass to a finite 
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dimensional G-graded algebra A, then to a G-simple algebra and finally to a group 
algebra, a case which was solved by Gluck using the classification of finite simple groups 
(see [16]).

Let us recall some terminology and some facts from Kemer’s theory extended to the 
context of G-graded algebras as they appear in [5].

Let W be a G-graded algebra over F . Suppose that W is PI (as an ungraded algebra). 
Kemer’s representability theorem for G-graded algebras assures that there exists a field 
extension L/F and a finite dimensional Z2 × G-graded algebra A over L such that the 
Grassmann envelope E(A) (with respect to the Z2-grading) yields a G-graded algebra 
which is G-graded PI-equivalent to WL (see Proposition 3.1). In case the algebra W is 
affine, or more generally in case it satisfies a Capelli identity (it is known that any affine 
PI algebra satisfies a Capelli identity), there exists a field extension L/F such that the 
algebra WL is G-graded PI-equivalent to a finite dimensional G-graded algebra A over L. 
This result will be used to reduce our discussion from infinite dimensional algebras to 
finite dimensional ones in case the group G is finite. As extensions of scalars do not 
change the exponent (nor the PI-degree) we assume that the field L is algebraically 
closed.

2.2. G-simple algebras

The next ingredient we need is a result of Bahturin, Sehgal and Zaicev, which deter-
mines the G-graded structure of finite dimensional G-simple algebra over an algebraically 
closed field of characteristic zero.

Let A be the algebra of r × r-matrices over F and let G be any group (here, G may 
be infinite). Fix an r-tuple α = (g1, . . . , gr) ∈ G(r). Consider the G-grading on A given 
by

Ag = spanF

{
ei,j : g = g−1

i gj
}
.

One checks easily that this indeed determines a G-grading on A. Clearly, since the 
algebra A is simple, it is G-simple as a G-graded algebra.

Next we present a different type of G-gradings on semisimple algebras which turn 
out to be G-simple. Let H be any finite subgroup of G and consider the group algebra 
FH . By Maschke’s theorem FH is semisimple and of course H-simple (any nonzero 
homogeneous element is invertible). More generally we consider twisted group algebras 
FαH as H-graded algebras, where α is a 2-cocycle in Z2(H, F ∗) (H acts trivially on F ). 
Recall that FαH = spanF {Uh : h ∈ H}, Uh1Uh2 = α(h1, h2)Uh1h2 , for all h1, h2 ∈ H. 
We say that the basis {Uh : h ∈ H} corresponds to the 2-cocycle α. Finally, we may view 
the twisted group algebra FαH as a G-graded algebra by setting Ag = 0 for g ∈ G \H
and as such it is G-simple. We refer to the G-grading on FαH as a fine grading (i.e. 
every homogeneous component is of dimension ≤ 1).
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Remark 2.5. In the sequel, whenever we say that {Uh : h ∈ H} is a basis of FαH, we mean 
that the basis corresponds to the cocycle α. One knows that in general a homogeneous 
basis of that kind corresponds to a cocycle α′ cohomologous to α.

In case the field F is algebraically closed of characteristic zero, we have that these 
two gradings (elementary and fine) are the building blocks of any G-grading on a finite 
dimensional algebra so that it is G-simple. This is a theorem of Bahturin, Sehgal and 
Zaicev.

Theorem 2.6. (See [7].) Let A be a finite dimensional G-graded simple algebra. Then 
there exists a finite subgroup H of G, a 2-cocycle α : H × H → F ∗ where the action 
of H on F is trivial, an integer r and an r-tuple (g1, g2, . . . , gr) ∈ G(r) such that A is 
G-graded isomorphic to Λ = FαH ⊗Mr(F ) where Λg = spanF {Uh ⊗ ei,j | g = g−1

i hgj}. 
Here Uh ∈ FαH is a representative of h ∈ H and ei,j ∈ Mr(F ) is the (i, j) elementary 
matrix.

In particular the idempotents 1 ⊗ ei,i as well as the identity element of A are homo-
geneous of degree e ∈ G.

2.3. Asymptotic PI-theory

The last ingredient we need is Regev, Giambruno and Zaicev’s PI-asymptotic theory. 
Let W be an ordinary PI-algebra over an algebraically closed field F of characteristic 
zero and let Id(W ) be its T -ideal of identities. Consider the n!-dimensional vector space

Pn = spanF

{
xσ(1) · · ·xσ(n) : σ ∈ Sym(n)

}

and let cn(W ) = dimF (Pn/Pn ∩ Id(W )) be the nth term of the codimension sequence 
of the algebra W . It was proved by Regev in 1972 [22] that the sequence {cn(W )} is 
exponentially bounded and conjectured by Amitsur that the limit limn→∞ c

1/n
n exists 

(the exponent of W ) and is a nonnegative integer. The conjecture was established by 
Giambruno and Zaicev in the late 1990s by showing that the limit coincides, roughly 
speaking, with the dimension of a certain subspace “attached” to W . In particular, for a 
matrix algebra Md(F ) we have exp(Md(F )) = d2 and by the Amitsur–Levitzki theorem 
it has PI-degree 2d. Any finite dimensional G-simple algebra is a direct product of matrix 
algebra (as an ungraded algebra), hence its T -ideal of identities coincides with the ideal 
of identities (and therefore the exponent and PI-degree) of the largest matrix algebra 
appearing in its decomposition.

Remark 2.7. It follows from the Amitsur–Levitzki theorem that if A is a finite dimensional 
G-simple algebra A we have exp(A) = 1

4 (PIdeg(A))2. For an arbitrary PI-algebra we 
only have the bound exp(A) ≤ (PIdeg(A) − 1)2. Recall (from the last paragraph of 
the introduction) that the PI-degree cannot be bounded from above by any function of 
exp(A).
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3. Proof of main theorem – finite groups

All groups considered in this section are finite.
For a PI-algebra W over a field F of characteristic zero we denote by exp(W ) its 

exponent.

Proposition 3.1. Let W be a PI-algebra over a field F . Suppose W is graded nondegen-
erately by a group G. Then there exists a field extension L of F and a finite dimensional 
L-algebra W0 which is nondegenerately G-graded, such that exp(W0) ≤ exp(W ).

Proof. Let us consider first the case where W is affine. Applying [5] there exists a finite 
dimensional G-graded algebra B over a field extension L of F such that IdG(W ⊗F L) =
IdG(B). Clearly, we may assume that L is algebraically closed by further extending 
the scalars if needed. Next, by Observations 2.2 and 2.3 we know that the G-grading 
on B is nondegenerate and exp(WL) = exp(B), thus proving the proposition for this 
case.

Suppose now that W is arbitrary (i.e., not necessarily affine). By [5] there exists a finite 
dimensional Z2×G-graded algebra C ∼=

⊕
(ε,g)∈Z2×G C(ε,g) over an (algebraically closed) 

field extension L of F such that WL is G-PI-equivalent to E(C) = (E0⊗C0) ⊕ (E1⊗C1)
(the Grassmann envelope of C) where C0 =

⊕
g∈G C(0,g) and C1 =

⊕
g∈G C(1,g). The 

G-grading on E(C) is given by

E(C)g = (E0 ⊗ C(0,g)) ⊕ (E1 ⊗ C(1,g)).

We claim that the G-grading on C is nondegenerate (where Cg = C(0,g) ⊕ C(1,g)). To 
this end fix an nth tuple (g1, . . . , gn) ∈ G(n). By linearity we need to show that at least 
one of the 2n monomials of the form

x(ε1,g1),1x(ε2,g2),2 · · ·x(εn,gn),n

is not in IdZ2×G(C). Let us show that if this is not the case, then the monomial 
xg1,1 · · ·xgn,n is a G-graded identity of E(C), contradicting the fact that the G-grading 
on E(C) and hence on W is nondegenerate. To see this consider the evaluation 
xgi,i = z0,i ⊗ a0,i + z1,i ⊗ a1,i for i = 1, . . . , n where zε,i ∈ Eε and aε,i ∈ C(ε,gi). This 
evaluation yields an expression with 2n summands of the form

zε1,i1zε2,i2 · · · zεn,in ⊗ a(ε1,i1)a(ε2,i2) · · · a(εn,in)

which are all zero and the claim follows.
Finally, by a theorem of Giambruno and Zaicev (see [14, proof of main theorem] or 

[1, Theorem 2.3]) we have that exp(C) ≤ expZ2
(C) = exp(E(C)) = exp(W ), which is 

precisely what we need. �



412 E. Aljadeff, O. David / Journal of Algebra 428 (2015) 403–424
Our next step is to reduce the main theorem from finite dimensional algebras to 
G-simple algebras.

Proposition 3.2. Let W be a finite dimensional PI F -algebra graded nondegenerately by 
a group G. Then there exists a G-simple algebra W0 such that IdG(W ) ⊆ IdG(W0) and 
the grading on W0 is nondegenerate (in fact W0 is a homomorphic image of W ). In 
particular exp(W0) ≤ exp(W ).

Proof. Denote by J = J(W ) the Jacobson radical of W . Since the characteristic of the 
field is zero, it is known that J is G-graded and so W/J is a semi-simple G-graded 
algebra (see [8]).

We claim that the G-grading on W/J is still nondegenerate. Indeed, if W/J satisfies 
a monomial identity f , then any evaluation of this monomial on W yields an element 
in J . Since J is nilpotent (say of nilpotency degree is k) we have that the product of 
k copies of f (with distinct variables) is a monomial identity of W . This contradicts the 
assumption that the G-grading on W is nondegenerate and the claim is proved.

The algebra W/J is G-semisimple and therefore a direct product of G-simple algebra ∏n
1 Ai. If for each i there is a multilinear monomial identity fi of Ai, then the product ∏
fi is a multilinear monomial identity of W/J , contradicting our assumption on the 

G-grading on W/J . Consequently, there is an i such that Ai is nondegenerately G-graded. 
Letting W0 = Ai we have IdG(W ) ⊆ IdG(W/J) ⊆ IdG(W0) as desired. �

In the next lemma we characterize (in terms of Bahturin, Sehgal and Zaicev’s theorem) 
when the grading on a G-simple algebra is nondegenerate. Recall that a G-grading on A
is strong if for any g, h ∈ G we have AgAh = Agh.

Lemma 3.3. Let A �= 0 be a finite dimensional G-simple algebra. Then the following 
conditions are equivalent.

(1) The G-grading on A is nondegenerate.
(2) The G-grading on A is strong. In particular Ag �= 0, for every g ∈ G.
(3) Let FαH⊗Mr(F ) be a presentation of the G-grading on A (as given by Theorem 2.6) 

where H is a finite subgroup of G and (g1, . . . , gr) ∈ G(r) is the r-tuple which de-
termines the elementary grading on Mr(F ). Then every right coset of H in G is 
represented in the r-tuple.

Remark 3.4. Note that in general (i.e. in case the algebra A is not necessarily G-simple) 
the first two conditions are not equivalent. For instance (as mentioned in the introduc-
tion), the Z2-grading on the infinite dimensional Grassmann algebra is nondegenerate 
but not strong. Indeed, E1E1 � E0 (or E0E0 � E0 in case the algebra E is assumed to 
have no identity element).
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Proof of Lemma 3.3. Note that since A is assumed to be finite dimensional G-simple, 
each one of the conditions (1)–(3) implies that G is finite. As for the 3rd condition of the 
lemma we replace (as we may by [3, Lemma 1.3]) the given presentation with another 
so that the r-tuple has the following form

(g(1,1), . . . , g(1,d1), g(2,1), . . . , g(2,d2), . . . , g(s,1), . . . , g(s,ds))

where:

• r = d1 + · · · + ds.
• gi,1 = gi,2 = . . . = gi,di

(denoted by zi), and for i �= k the elements gi,j , gk,l represent 
different right H-cosets in G.

• g1,j = e for j = 1, . . . , d1.

(2) → (1): This is clear.
(1) → (3): Suppose (3) does not hold. We claim there exists a multilinear monomial of 

degree at most r which is a G-graded identity of FαH⊗Mr(F ) = spanF {Uh⊗ei,j : h ∈ H,

1 ≤ i, j ≤ r}.
It is convenient to view the matrices in Mr(F ) as s ×s block matrices corresponding to 

the decomposition d1+ · · ·+ds = r. More precisely, let Dk = d1+ · · ·+dk and decompose 
Mr(F ) =

⊕s
i,j=1 M[i,j] into the direct sum of vector spaces M[i,j] = span{ek,l | Di−1 <

k ≤ Di, Dj−1 < l ≤ Dj}. Note that M[i,j] are submatrices supported on a single block 
of size di × dj . This decomposition is natural in the sense that (FαH ⊗Mr(F ))g is the 
direct sum of the vector spaces Uh ⊗M[i,j] such that z−1

i hzj = g.
For a fixed index i ∈ {1, . . . , s} and an element g ∈ G, consider the equation hzj = zig. 

It has a solution if and only if Hzig has a representative in (z1, . . . , zs). It follows that if 
Uh ⊗B is homogeneous of degree g and Hzig has no representative in (z1, . . . , zs), then 
the ith row of blocks in B must be zero.

Consider the multilinear monomial

xw1,1xw2,2 · · ·xwn,n

where xwi,i is homogeneous of degree wi ∈ G. We will show there exist wi ∈ G, i =
1, . . . , n, so that the monomial above is a G-graded identity.

To this end, note that such a monomial (being multilinear) is a G-graded identity 
if and only if it is zero on graded assignments of the form xwi,i = Uhi

⊗ Ai which 
span the algebra. In particular the value of xw1,1xw2,2 · · ·xwn,n under this assignment is 
Uh1 · · ·Uhn

⊗A1 · · ·An which is zero if and only if A = A1 · · ·An = 0. It follows that if for 
any such homogeneous assignment, the ith row of blocks in the matrix Bi = A1A2 · · ·Ai

is zero, then A must be zero (since each of its blocks rows is zero).
Following the argument above we choose wi ∈ G such that for each i the right coset 

Hziw1 · · ·wi (i.e. the right coset of H represented by zi times the homogeneous degree 
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of Uh1 · · ·Uhi
⊗ Bi) has no representative in (z1, . . . , zs). Now, by assumption, there is 

some z ∈ G such that Hz has no representative in (z1, . . . , zs). Thus, choosing wi =
(ziw1 · · ·wi−1)−1z we obtain the required result.

(3) → (2): Suppose that all right H-cosets are represented in the tuple (g1, . . . , gr). 
To show that the grading is strong, it is enough to show that any basis element Uh⊗ ei,j
can be written as a product in Aw1Aw2 where w1 · w2 = g−1

i hgj . Indeed, since each 
right coset has a representative in the tuple (g1, . . . , gr) ∈ G(r), we can find k such 
that gk ∈ Hgiw1 = Hgjw

−1
2 . Letting h1 = giw1g

−1
k and h2 = gkw2g

−1
j , we get that 

a = Uh1 ⊗ ei,k, b = Uh2 ⊗ ek,j are in Aw1 , Aw2 respectively and a · b = α(h1, h2)Uh⊗ ei,j . 
The lemma is now proved. �

Our next step is to pass from G-simple algebras to the group algebra FG.
Let V =

⊕
Vg be a G-graded F -vector space. Then the algebra of endomorphisms 

EndF (V ) has a natural G-grading where an endomorphism ψ ∈ End(V ) has homoge-
neous degree g if ψ(Vh) ⊆ Vgh for every h ∈ G. In particular, this grading on End(FG)
is isomorphic to the elementary grading by a tuple (g1, . . . , gn) where each element of G
appears exactly once. It is clear that the left regular action of G on FG induces a natural 
G-graded embedding of FG in End(FG) ∼= M|G|(F ).

This statement can be generalized as follows.

Lemma 3.5. Let G be a finite group, H a subgroup and {w1, . . . , wk} a complete set 
of representatives for the right cosets of H in G. Then the group algebra FG can be 
embedded in FH ⊗Mk(F ) where the tuple of the elementary grading is (w1, . . . , wk).

Proof. For any g ∈ G and any H-right coset representative w ∈ {w1, . . . , wk}, there 
are h ∈ H and w′ ∈ {w1, . . . , wk} such that wg = hw′. We denote these elements by 
h := hw,g and w′ := wg. From associativity of G, we get that

hw,g1g2 = hw,g1hwg1 ,g2 , wg1g2 =
(
wg1

)g2
.

Define a map ψ : FG → FH ⊗Mk(F ) by

ψ(Ug) =
k∑

i=1
Vhwi,g

⊗Ei,j(i)

where {Ug}g and {Vh}h are the corresponding bases of FG and FH , Ei,j(i) is the (i, j)
elementary matrix and j(i) is determined by the equation wj(i) = wg

i . It is easy to 
show (left to the reader) that ψ is a homomorphism. Furthermore, by definition of the 
G-grading on FH ⊗Mk(F ) (see Theorem 2.6), we have that the homogeneous degree of 
Vhwi,g

⊗ Ei,j(i) is w−1
i hwi,gw

g
i = w−1

i wig = g, and hence ψ is a G-graded map. Finally, 
since FG is G-simple and ψ �= 0, it follows that ψ is an embedding. �
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Returning to our proof, we have a G-simple algebra FαH ⊗Mk(F ), nondegenerately 
G-graded. Recall that this means that any right coset of H in G appears at least once 
in the tuple corresponding to the elementary grading {w1, . . . , wk}. If α = 1, then by 
the previous lemma the group algebra FG embeds in FH ⊗Mk(F ) and hence Id(FG) ⊇
Id(FH ⊗Mk(F )). This proves the reduction to FG in that case.

In general (i.e. α not necessarily trivial), FG may not be G-graded embedded in 
FαH ⊗Mk(F ). We might hope however, that even if such an embedding is not possible, 
still exp(FG) ≤ exp(FαH ⊗Mk(F )). It turns out that this is also false as Example 1.8
shows.

The next lemma shows how to get rid of the 2-cocycle α.

Lemma 3.6. Let A = FαH ⊗ Mk(F ) be a nondegenerate G-simple graded algebra. Let 
ρ : FαH → Md(F ) be a nonzero (ungraded) representation and denote by B = Md(F ) the 
trivially G-graded algebra (and therefore trivially H-graded). Then FH can be embedded 
in FαH⊗B and FG can be embedded in A ⊗B as H and G-graded algebras respectively.

Proof. Define the map ψ : FH → FαH⊗Md(F ) by ψ(Uh) = Vh⊗ρ(V −1
h )t, where {Uh}h

and {Vh}h are the corresponding bases of FH and FαH. This is easily checked to be 
an H-graded homomorphism, and it is an embedding since FH is H-simple. This proves 
the first claim of the lemma.

The second claim follows from the last lemma using the graded embeddings

FG ↪→ FH ⊗Mk(F ) ↪→ FαH ⊗Md(F ) ⊗Mk(F ) ∼= A⊗B. �
Corollary 3.7. Let A = FαH⊗Mk(F ) be a nondegenerate G-simple graded algebra. Then 
exp(FG) ≤ exp(A)2.

Proof. Recall that the exponent of FαH is d2, where d is the dimension of its largest 
irreducible representation. It follows that FG can be embedded in A ⊗ Md(F ) where 
d2 = exp(FαH) ≤ exp(A) and therefore

exp(FG) ≤ exp
(
A⊗Md(F )

)
= exp(A) exp

(
Md(F )

)
≤ exp(A)2. �

Corollary 3.8. Let W be an associative PI F -algebra nondegenerately G-graded. Then the 
following hold.

exp(FG) ≤ exp(W )2

and

PIdeg(FG) ≤ 2
(
PIdeg(W ) − 1

)2
.
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Proof. The first inequality follows from Propositions 3.1, 3.2 and Corollary 3.7. For the 
proof of the second inequality recall that in general exp(W ) ≤ (PIdeg(W ) − 1)2 (see 
Theorem 4.2.4 in [15]). Now, since FG is semisimple, it follows by Amitsur–Levitzki 
theorem that 1

2PIdeg(FG) =
√

exp(FG) and so, we conclude that

PIdeg(FG) = 2
√

exp(FG) ≤ 2 exp(W ) ≤ 2
(
PIdeg(W ) − 1

)2
. �

The last step in our analysis concerns with group algebras. Here we refer to the 
following result of D. Gluck (see [16]) in which he bounds the minimal index of an 
abelian subgroup U in G in terms of the maximal character degree of G. We emphasize 
that the proof uses the classification of finite simple groups.

Theorem 3.9 (D. Gluck). There exists a constant m with the following property. For any 
finite group G there exists an abelian subgroup U of G such that [G : U ] ≤ b(G)m, where 
b(G) is the largest irreducible character degree of G.

We can now complete the proof of the main theorem for finite groups.
We note that by Giambruno and Zaicev’s result exp(FG) = b(G)2 and hence, any finite 

group has an abelian subgroup U with [G : U ] ≤ b(G)m = exp(FG)m/2. Combining with 
our results above, we see that if a PI-algebra W admits a nondegenerate G-grading where 
G is a finite group, then exp(FG) ≤ exp(W )2, hence then there is an abelian subgroup U

with [G : U ] ≤ exp(W )m. In particular, taking K = m where m is determined by the 
theorem above, will do.

4. Proof of main theorem – infinite groups

In this section we prove the main theorem for arbitrary groups. Let us sketch briefly the 
structure of our proof. In the preceding section we proved the main theorem for arbitrary 
finite groups. Our first step in this section is to prove the main theorem for groups which 
are finitely generated and residually finite. Next, we pass to finitely generated groups 
(not necessarily residually finite) by the following argument. Any group G which grades 
nondegenerately a PI algebra is permutable and hence being finitely generated, it is 
abelian by finite (see [9,10] or Remark 1.5) and hence residually finite. Finally we show 
how to pass from finitely generated groups to arbitrary groups. We emphasize that the 
constant K (which appears in the main theorem) remains unchanged when passing from 
finite groups to arbitrary group.

Proposition 4.1. Suppose the main theorem holds for arbitrary finite groups with the 
constant K, that is, for any finite group G and any PI algebra W which is nondegen-
erately G-graded, there exists an abelian subgroup U ⊆ G with [G : U ] ≤ exp(W )K . 
Then the main theorem holds for finitely generated residually finite groups with the same 
constant K.
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Proof. Since G is finitely generated, by Hall’s theorem [18] there are finitely many sub-
groups of index ≤ exp(A)K . Denoting these groups by U1, . . . , Un, we wish to show that 
one of them is abelian. Suppose the contrary holds. Hence we can find gi, hi ∈ Ui such 
that e �= [gi, hi] for any i = 1, . . . , n and we let N be a normal subgroup of finite index 
which doesn’t contain any of the [gi, hi].

Define an induced G/N -grading on A by setting AgN =
⊕

h∈N Agh. Clearly, the 
induced G/N -grading on A is nondegenerate, thus by the main theorem there is some 
U ≤ G (containing N) such that [G : U ] ≤ exp(A)K and U/N is abelian. By the 
construction, U = Ui for some i, and we get that [gi, hi] ∈ N – a contradiction. �

The next step is to remove the condition of residually finiteness.

Proposition 4.2. Suppose the main theorem holds for finitely generated residually finite 
groups with the constant K. Then the main theorem holds for arbitrary finitely generated 
groups with the same constant K.

Proof. As mentioned above this is obtained using permutability.
Let G be a finitely generated group and suppose it grades nondegenerately a PI alge-

bra A. Let us show that G must be permutable. To this end let f =
∑

cσxσ(1),1 · · ·xσ(n),n
be a nonzero ordinary identity of A and assume that cid = 1. Fix a tuple g1, . . . , gn ∈ G

and consider the graded identity

f̃ = f(xg1,1, . . . , xgn,n) =
∑

h∈G

fh(xg1,1, . . . , xgn,n)

where fh is the h homogenous part of f̃ . Since f̃ is a graded identity, its homogenous 
parts are also graded identities. Letting g = g1 · · · gn, the polynomial fg contains the 
monomial xg1,1 · · ·xgn,n (with coefficient 1). Since the grading is nondegenerate, fg is not 
a monomial and therefore has another monomial with nonzero coefficient corresponding 
to some permutation σ �= id, hence g1 · · · gn = gσ(1) · · · gσ(n). This can be done for any 
tuple of length n, so it follows that G is n-permutable. �

The main theorem now follows from the following proposition.

Proposition 4.3. Let G be any group and d be a positive integer. Suppose that any finitely 
generated subgroup H of G contains an abelian subgroup UH with [H : UH ] ≤ d. Then 
there exists an abelian subgroup U of G with [G : U ] ≤ d.

Remark 4.4. The proposition above generalizes a statement which appears in [19] but 
the proof is basically the same (see Lemma 3.5 and the proof of Theorem II). We believe 
the result of the proposition is well known but we were unable to find an appropriate 
reference in the literature.
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Proof of Proposition 4.3. Let A ≤ F ≤ G. We say that (F, A) is a pair if F is f.g., A is 
abelian and [F : A] ≤ d. We write (F, A) ≤ (F1, A1) if F ≤ F1 and F ∩A1 = A. Note in 
particular that [F : A] ≤ [F1 : A1].

A pair (F, A) is called good if whenever F ≤ F1 ≤ G with F1 finitely generated, there 
is a pair (F1, A1) with (F, A) ≤ (F1, A1). Note that the assumption of the proposition 
says that (e, e) is a good pair.

(1) We claim that if (F, A) is good pair and F ≤ H ≤ G with H finitely generated, we 
can find B ≤ H such that (H, B) is a good pair and (F, A) ≤ (H, B).
Indeed, since (F, A) is a good pair, there are pairs (H, Bi) with (F, A) ≤ (H, Bi), and 
by Hall’s theorem there exist only finitely many such pairs. Suppose by negation that 
none of them are good pairs. Thus we can find H ≤ Fi ≤ G (Fi-f.g.) such that there 
are no abelian subgroups Ai with (H, Bi) ≤ (Fi, Ai). The group K = 〈F1, . . . , Fn〉
is finitely generated, so there is some abelian subgroup AK ≤ K of index ≤ d such 
that (F, A) ≤ (K, AK). Clearly, there is some i such that AK ∩ H = Bi, but then 
(H, Bi) ≤ (Fi, Fi ∩AK) – contradiction.

(2) Let (F, A) be a good pair with s = [F : A] maximal. Note that if (F, A) ≤ (H, B)
are good pairs, then we must have [F : A] = [H : B]. Claim: for any such B we have 
[G : CG(B)] ≤ d. Let us show that if g1, . . . , gs represent the left cosets of A in F then 
they also represent the left cosets of CG(B) in G. Fix an element g ∈ G. Then, by (1) 
above, 〈H, g〉 has an abelian subgroup C such that (H, B) ≤ (〈H, g〉, C) are good 
pairs. It follows that g1, . . . , gs represent also the left cosets of C in 〈H, g〉 and hence 
g ∈ giC for some i. Since B ≤ C are abelian groups we get that giC ⊆ giCG(B) and 
the claim follows.

(3) Assume now that (F, A) is a good pair with [F : A] = s and [G : CG(A)] maximal. 
Define

J =
〈
B

∣∣ (H,B) ≥ (F,A) is a good pair
〉
.

We claim that J is abelian and [G : J ] ≤ d.
Let (Hi, Bi) ≥ (F, A), i = 1, 2, be good pairs, and let bi ∈ Bi. Since A ≤ B1, we have 
that CG(B1) ≤ CG(A), but from the maximality of [G : CG(A)], it follows that there 
is an equality. Similarly, we have that CG(B2) = CG(A) and since B2 is abelian we 
get that b2 ∈ B2 ⊆ CG(B2) = CG(B1), so that b1, b2 commute. This proves J is 
abelian.
Suppose now that [G : J ] > d, and let g0, . . . , gd different coset representatives of J
in G. The group F1 = 〈F, g1, . . . , gd〉 is finitely generated and so we can find A1 ≤ F1

such that (F1, A1) is a good pair larger than (F, A), and in particular [F1 : A1] ≤ d. 
But this means that there are some 0 ≤ i < j ≤ d with g−1

i gj ∈ A1 ⊆ J which is a 
contradiction. Thus, [G : J ] ≤ d and we are done. �
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As mentioned in the introduction, once a group has an abelian subgroup of finite index 
(say d), then it also has a characteristic abelian subgroup of (finite) index bounded by a 
function of d. For completeness of the article we provide a simple proof here (shown to 
us by Uri Bader).

Lemma 4.5. There is a function f : N → N such that if a group G contains an abelian 
subgroup A of index at most n, then G contains a characteristic abelian subgroup of 
index ≤ f(n).

Proof. Let N be the characteristic subgroup of G generated by A (the group generated 
by all images of A under all automorphisms of G). Let Z = Z(N) (the center of N). 
We claim [N : Z] (and hence [G : Z]) is bounded by a function of n. Indeed, there are 
n images of A which already generate N and Z contains their intersection. This proves 
the lemma. �

In the preceding section, we proved that for a finite group G and a nondegenerate 
G-graded algebra A, we have the inequalities exp(FG) ≤ exp(A)2 and PIdeg(FG) ≤
2(PIdeg(A) − 1)2. The rest of this section is dedicated to generalize these results for 
infinite groups.

Lemma 4.6. Let G be a finitely generated group such that FG is PI. Then there exists 
a finite index normal subgroup N of G such that Id(FG) = Id(FG/N). In particular 
Id(FG) = Id(Mk(F )) for some integer k.

Proof. We know that G is abelian by finite. Furthermore, since it is finitely generated it is 
residually finite. If N is any finite index normal subgroup of G, then Id(FG) ⊆ Id(FG/N)
and hence I :=

⋂
[G:N ]<∞ Id(FG/N) ⊇ Id(FG). On the other hand, the algebra FG/N

is semisimple, so that Id(FG/N) = Id(Mk(F )) where k2 = exp(FG/N) ≤ exp(FG)
and in particular the set {exp(FG/N)}N is bounded. It follows that I = Id(Mk(F )) for 
some k and there is some finite index normal subgroup N with I = Id(FG/N). The 
lemma will follow if we can show that Id(FG) = I.

Let f(x1, . . . , xm) ∈ I be any multilinear polynomial. If f is not an identity of FG, 
we can find some g1, . . . , gm ∈ G such that f(Ug1 , . . . , Ugm) �= 0 (Ug represents g in FG). 
Let h1, . . . , hk ∈ G and a1, . . . , ak ∈ F× such that f(Ug1 , . . . , Ugm) =

∑k
1 aiUhi

. Since G
is residually finite, there is some finite index normal subgroup N not containing h−1

i hj

for any i �= j. Reducing the equation above modulo N , the elements Uhi
, i = 1, . . . , k, 

remain linearly independent by the choice of N , so in particular f is not an identity of 
FG/N . We obtain that I ⊆ Id(FG) and the result follows. �
Lemma 4.7. Let G be any group such that FG is PI. Then there exists some finitely gen-
erated subgroup H of G such that Id(FG) = Id(FH ). Consequently, Id(FG) = Id(Mk(F ))
for some integer k.
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Proof. By the preceding lemma, for each finitely generated subgroup H of G we have 
Id(FH ) = Id(Mk(F )) for some integer k which is uniformly bounded over the finitely 
generated subgroups (by exp(FG)1/2). Since any multilinear nonidentity of FG is already 
a nonidentity of FH for some finitely generated subgroup H of G, we have that Id(FG) =⋂

H≤G Id(FH ), H is f.g., and the lemma follows. �
We can now generalize to arbitrary groups the result of the previous section.

Theorem 4.8. Let G be any group and A be a nondegenerate G-graded algebra. Then 
exp(FG) ≤ exp(A)2 and PIdeg(FG) ≤ 2(PIdeg(A) − 1)2.

Proof. Since G grades nondegenerately the algebra A, it is abelian by finite and therefore 
the group algebra FG is PI. It follows from the previous two lemmas that there is some 
finitely generated subgroup H and a finite index normal subgroup N in H such that 
Id(FG) = Id(FH/N), hence it is enough to bound the exponent and PI-degree of FH/N .

If AH is the subalgebra of A supported on the H homogeneous components of A, we 
have Id(AH) ⊇ Id(A), exp(AH) ≤ exp(A) and PIdeg(AH) ≤ PIdeg(A). Moreover, since 
A is nondegenerately G-graded, AH is nondegenerately H-graded and hence AH is also 
H/N -nondegenerately graded where N is any normal subgroup of H (by the induced 
grading).

By Corollary 3.8 we have

exp(FH/N) ≤ exp(AH)2 ≤ exp(A)2

and

PIdeg(FH/N) ≤ 2
(
PIdeg(AH) − 1

)2 ≤ 2
(
PIdeg(A) − 1

)2

and the result follows. �
5. Some examples

Let G be a finitely generated group and suppose it grades nondegenerately a PI 
algebra A. We know that G is n permutable for some n ∈ N. While G must be abelian 
by finite, the minimal index of an abelian subgroup is not bounded by a function of the 
permutability index. Indeed, if there was such a function f(n), then given an arbitrary 
n-permutable group H, its finitely generated subgroup would be n-permutable as well. By 
the assumption, each such subgroup has an abelian subgroup of index ≤ f(n), and hence, 
by Proposition 4.3, the group G would contain an abelian subgroup of index bounded 
by f(n). This is known to be false. In fact G need not have an abelian subgroup of finite 
index (see [10]).

Let us give a concrete example, i.e. a family of (finite) n-permutable groups {Gk}k∈N, 
with dk = min{[Gk : Uk] | Uk abelian subgroup} and lim dk = ∞.
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Example 5.1. Let G = C2n
p for some n and let α ∈ Z2(G, C∗) be a nontrivial two cocycle. 

It is well known that up to a coboundary α takes values which are roots of unity, and 
for G above, the values must be p-roots of unity. Thus, we may consider α as a cocycle 
in Z2(G, Cp) which corresponds to a central extension

1 → Cp → H → G → 1.

Since the group G is abelian and the cocycle α is nontrivial we have that [H, H] =
Z(H) ∼= Cp and hence the group H is p + 1 permutable (see [10, (3.3)]).

Let B = CαG be the corresponding twisted group algebra with basis {Ug}g∈G. If 
A ≤ H is an abelian group of minimal index, we have that [H, H] = Z(H) ≤ A, 
and thus we have Ã = A/[H, H] ≤ G. Clearly, the group A is abelian if and only if 
[Ug1 , Ug2 ] = 1 (the multiplicative commutator) for any g1, g2 ∈ Ã.

For g, h ∈ G, set μ(g, h) = α(g,h)
α(h,g) , namely the scalar satisfying UgUh = μ(g, h)UhUg. 

It is easily seen that μ : G × G → C∗ is a bicharacter, i.e. μ(g1g2, h) = μ(g1, h)μ(g2, h)
and μ(g, h1h2) = μ(g, h1)μ(g, h2). With this notation we have that μ(g1, g2) = 1 for any 
g1, g2 ∈ Ã.

Identifying Cp with the additive group of the field Fp with p elements, we see that 
μ is a bilinear map. In particular, if g ∈ G, then dim{h ∈ G | μ(h, g) = 1} ≥ n − 1. If 
dimFp

(Ã) > 1
2 dimFp

(G), or equivalently [G : Ã] < pn, then there is some e �= u ∈ Ã such 
that μ(u, g) = 1 for all g ∈ G (by dimension counting). Thus, if μ is nondegenerate, i.e. 
for any e �= h ∈ G there is some g ∈ G such that μ(h, g) �= 1, then [H : A] = [G : Ã] ≥ pn.

Note that to say that μ is nondegenerate is equivalent to saying that Ug is in the 
center of the twisted group algebra if and only if g = e, which in turn is equivalent to 
the twisted group algebras CαC2n

p being isomorphic to a matrix algebra Mpn(C).
Fix a prime p and let σ, τ be generators for Cp × Cp. Let B be the twisted group 

algebra B =
⊕

0≤i,j≤p−1 CUσiτj where the multiplication is defined by

Uσiτj = Uσ
iUτ

j , UσUτ = ζUτUσ

and ζ is a primitive p-root of unity. It is well known that B ∼= Mp(C), and hence 
⊗n

1 B is 
on one hand isomorphic to a twisted group algebra with the group C2n

p and on the other 
hand isomorphic to Mpn(C). This completes the construction of the required family of 
groups. We remark here that the function μ defined above plays a central role in the 
theory of twisted group algebras and their polynomial identities (see [2]).

Remark 5.2. Let αn ∈ Z2(C2n
p , 〈ζ〉) be the nondegenerate 2-cocycle as constructed in 

the previous example, and let Hn be the central extensions (of C2n
p by 〈ζ〉) defined by 

such cocycle. The last example shows that the group algebra CHn has an irreducible 
representation of degree pn. On the other hand, Kaplansky’s theorem [20] states that if 
a group has an abelian subgroup of index m, then all of its irreducible representations 
are finite with degree at most m. This provides another proof that the minimal index of 
an abelian subgroup of Hn tends to infinity.
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Next we provide some examples/counter examples to statements that are related to 
the main theorem.

Example 5.3. Let F be an algebraically closed field of characteristic zero. For any finite 
abelian group G, the group algebra FG is isomorphic to a product of |G| copies of F . In 
particular, we get that exp(FG) = 1. Hence, we cannot hope to get an inequality of the 
form |G| ≤ exp(A)K for any constant K.

More generally, given an H-graded algebra A with a nondegenerate grading, the alge-
bra B = FG ⊗A has a natural G ×H-grading which is also nondegenerate. In addition 
we have that exp(B) = exp(A). While the grading group is of course larger, the index of 
the largest abelian group remains the same.

Example 5.4. Suppose we omit the requirement that IdG(A) has no G-graded monomials 
and only assume that IdG(A) has G-graded monomials of high degrees (as a function of 
dim(A) or the cardinality of G). In other words we drop the assumption that A is non-
degenerately G-graded and we only assume that the G-grading on A is nondegenerately 
bounded. We show that the consequence of the main theorem does not hold in general.

Consider the algebras Am of upper triangular matrices m × m where the diagonal 
matrices consist only of scalar matrices. Note that by Giambruno and Zaicev’s theorem 
(see [13]) we have exp(A) = 1. Let G be a group of order n and assume that m = n2 +1. 
Let s′ = (g1, . . . , gn) ∈ Gn be a tuple such that each element of G appears in s′ exactly 
once and let s ∈ G(n2+1) be n copies of s′ with additional g1 at the end. Consider the 
algebra Am with the elementary grading corresponding to the tuple s. We claim that 
Am has no graded multilinear monomial identities of degree ≤ n.

Fix 1 ≤ i ≤ n2 + 1 − n and h ∈ G. We first note that by the definition of the grading 
we have that ei,j is homogeneous of degree s−1

i sj for each 1 ≤ i < j ≤ n2 + 1. By 
the choice of the tuple s, the elements {s−1

i si+1, s
−1
i si+2, . . . , s

−1
i si+n} are all distinct, 

and therefore, for any h ∈ G and i ≤ n2 + 1 − n we can choose j = j(i, h) such that 
i < j ≤ i + n and ei,j ∈ Ah.

Let xh1,1 · · ·xhn,n be any multilinear monomial, h1, . . . , hn ∈ G.
Set i1 = 1. Given ik, define ik+1 to be j(ik, hk) so that eik,ik+1 is homogeneous 

of degree hk and ik < ik+1 ≤ ik + n. It is now easy to see by induction that ik ≤
1 + (k − 1)n ≤ 1 + n2 for all 1 ≤ k ≤ n so that ei1,i2 · · · ein,in+1 is well defined as an 
element of A and it is a nonzero evaluation of xh1,1 · · ·xhn,n.

For a finite group G, denote by γ(G) the smallest index of an abelian subgroup in G. 
Let Gn be any sequence of groups where γ(Gn) goes to infinity with n. By the above 
construction, the algebras Bn = A|Gn|2+1 have Gn-gradings such that:

• dim(Bn) and γ(Gn) tend to infinity with n.
• Bn has no multilinear monomial identities of degrees smaller then |Gn|.
• exp(Bn) = 1.
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Example 5.5. Suppose we have a sequence of algebras An with dn = exp(An) monotoni-
cally increasing (i.e. to infinity). Can we necessarily find groups Gn and nondegenerate 
Gn-gradings such that the index of any abelian subgroups Un of Gn tends to infinity?

The answer is negative as the algebras of upper triangular matrices show. More pre-
cisely, let UTn(F ) be the algebra of n ×n upper triangular matrices, which have exponent 
exp(UTn(F )) = n. By a theorem of Valenti and Zaicev [24], every G-grading on UTn(F )
is isomorphic to an elementary grading. Unless the grading is trivial, the grading cannot 
be nondegenerate since UTn(F )g contains only upper triangular matrices with zero on 
the diagonal for every e �= g ∈ G, so xg,1 · · ·xg,n is an identity. We conclude that the 
only nondegenerate grading is obtained with the trivial group, so in particular there is
no nondegenerate grading such that the index of the largest abelian subgroup tends to 
infinity.
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