期刊论文详细信息
JOURNAL OF ALGEBRA 卷:438
Partial compact quantum groups
Article
De Commer, Kenny1  Timmermann, Thomas2 
[1] Vrije Univ Brussel, Dept Math, B-1050 Brussels, Belgium
[2] Univ Munster, D-48149 Munster, Germany
关键词: Hopf face algebras;    Tannaka reconstruction;    Dynamical quantum groups;   
DOI  :  10.1016/j.jalgebra.2015.04.039
来源: Elsevier
PDF
【 摘 要 】

Compact quantum groups of face type, as introduced by Hayashi, form a class of quantum groupoids with a classical, finite set of objects. Using the notions of weak multiplier bialgebras and weak multiplier Hopf algebras (resp. due to Bohm-Gomez-Torrecillas-Lopez-Centella and Van Daele-Wang), we generalize Hayashi's definition to allow for an infinite set of objects, and call the resulting objects partial compact quantum groups. We prove a Tannaka-Krein-Woronowicz reconstruction result for such partial compact quantum groups using the notion of partial fusion C*-categories. As examples, we consider the dynamical quantum SU(2)-groups from the point of view of partial compact quantum groups. (C) 2015 The Authors. Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2015_04_039.pdf 738KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次