期刊论文详细信息
JOURNAL OF ALGEBRA 卷:490
Semi-direct products of Lie algebras and covariants
Article
Panyushev, Dmitri I.1  Yakimova, Oksana S.2 
[1] RAS, Inst Informat Transmiss Problems, Bolshoi Karetnyiper 19, Moscow 127051, Russia
[2] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
关键词: Index of Lie algebra;    Coadjoint representation;    Symmetric invariants;   
DOI  :  10.1016/j.jalgebra.2017.06.036
来源: Elsevier
PDF
【 摘 要 】

Let Q be a connected algebraic group with Lie algebra q. Symmetric invariants of q, i.e., the Q-invariants in the symmetric algebra S(q) of q, is a first approximation to the understanding of the coadjoint action (Q : q*) and coadjoint Q-orbits. In this article, we study a class of non-reductive Lie algebras, where the description of the symmetric invariants is possible and the coadjoint representation has a number of nice invariant-theoretic properties. If G is a semisimple group with Lie algebra g and V is G-module, then we define q to be the semi-direct product of g and V. Then we are interested in the case, where the generic isotropy group for the G-action on V is reductive and commutative. It turns out that in this case symmetric invariants of q can be constructed via certain G-equivariant maps from g to V (covariants). (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2017_06_036.pdf 673KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次