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Introduction

The coadjoint representation of an algebraic group Q is a thrilling and fascinating 
object. It encodes information about many other representations of Q and q = LieQ. 
Yet, it is a very difficult object to study. Symmetric invariants of q can be considered as 
a first approximation to the understanding of the coadjoint action (Q : q∗) and coadjoint 
orbits. The goal of this article is to describe and study a class of non-reductive Lie 
algebras, where the description of the symmetric invariants is possible and the coadjoint 
representation has a number of nice invariant-theoretic properties. The ground field k is 
algebraically closed and of characteristic 0.

Let G → GL(V ) be a (finite-dimensional rational) representation of a connected 
algebraic group G with LieG = g. We form a new Lie algebra q as the semi-direct 
product q = g � V ∗, where V ∗ is an abelian ideal. Then Q = G ×V ∗ can be regarded as 
a connected algebraic group with LieQ = q, where 1 � V ∗ is a commutative unipotent 
normal subgroup. Here q∗ = g∗ ⊕ V and the algebra of symmetric invariants S(q)Q =
k[q∗]Q contains k[V ]G as a subalgebra. But finding the other invariants is a difficult 
and non-trivial problem. Nevertheless, one can use certain G-equivariant morphisms 
F : V → g for constructing Q-invariants in k[q∗]. Our observation is that if a generic 
stabiliser for (G : V ) is toral, then this is usually sufficient for obtaining a generating set 
for k[q∗]Q.

For G-modules V and N , let Mor(V, N) denote the graded k[V ]-module of polyno-
mial morphisms F : V → N . There is the natural map φ : Mor(V, g)→Mor(V, V )
such that (φ(F ))(v) := F (v)·v for v ∈ V . If F ∈ Ker(φ), then one obtains a 
(1 � V ∗)-invariant polynomial F̂ ∈ k[q∗] by letting F̂ (ξ, v) = 〈F (v), ξ〉 (Lemma 3.1). 
Furthermore, if F is also G-equivariant, then F̂ ∈ k[q∗]Q. Likewise, if MorG(V, N) de-
notes the k[V ]G-module of G-equivariant morphisms (covariants), then there is the map 

MorG(V, g) φG−→ MorG(V, V ), which is the restriction of φ. Suppose that G is reductive 
and H ⊂ G is a generic isotropy group for (G : V ), with h = LieH. It is known that 
rk k[V ] Ker(φ) = dim h [9], and we prove that rk k[V ]G Ker(φG) = dim hH whenever the ac-
tion (G : V ) is stable (Theorem 2.1). Hence rk k[V ] Ker(φ) = rk k[V ]G Ker(φG) if and only 
if the adjoint representation of H is trivial; in particular, h must be toral. The main hope 
behind our considerations is that if Ker(φ) is generated by G-equivariant morphisms, 
then k[V ]G and the polynomials F̂ with F ∈ Ker(φG) together generate the whole ring 
k[q∗]Q. Actually, we prove this under certain additional constraints, see below. For our 
general theorems, we also need the codimension-2 condition (=C·2·C) on the set Vreg of 
G-regular elements in V . This means that V \ Vreg := {v ∈ V | dimG·v is not maximal}
does not contain divisors.

Our results concern the case in which G is semisimple and C·2·C holds for (G : V ). Sup-
pose that there are linearly independent homogeneous morphisms F1, . . . , Fl ∈ Ker(φ)
such that l = dim h and 

∑
i degFi = dimV −q(V/ /G), where q(V/ /G) is the minus degree 

of the Poincaré series of k[V ]G. Then we prove that Ker(φ) is a free k[V ]-module with 
basis F1, . . . , Fl and k[q∗]1�V ∗ � k[V ][F̂1, . . . , F̂l] is a polynomial ring (Theorem 3.3). Un-
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der certain additional assumptions (namely, h = hH and H is not contained in a proper 
normal subgroup of G), we then prove that such F1, . . . , Fl are necessarily G-equivariant 
and hence Ker(φG) is a free k[V ]G-module and k[q∗]Q � k[V ]G[F̂1, . . . , F̂l]. Furthermore, 
if k[V ]G is a polynomial ring, then the Kostant (regularity) criterion holds for q (Theo-
rem 3.6). In case dim h = 1, our results are stronger and more precise, see Theorem 3.11.

Using Elashvili’s classification [2,3], one can write down the arbitrary representations 
of simple groups and irreducible representations of arbitrary semisimple groups with 
toral generic stabilisers. We then demonstrate that for most of these representations, 
the assumptions of our general theorems are satisfied. In each example, an emphasise 
is made on an explicit construction of morphisms F1, . . . , Fl and verification that they 
belong to Ker(φ). In some cases, the construction is rather intricate and involved, cf. 
Examples 5.1 and 6.2.

The structure of the paper is as follows. In Section 1, we gather some standard 
well-known facts on semi-direct products, regular elements, and generic stabilisers. In 
Section 2, we consider the k[V ]-module of polynomial morphisms Mor(V, g) and the as-
sociated exact sequence 0 → Ker(φ) → Mor(V, g) φ→ Mor(V, V ). We also compute the 
rank of the k[V ]G-module Ker(φG). Section 3 is the heart of the article. Here we present 
our main results on semi-direct products related to the case in which the C·2·C holds for 
(G : V ), a generic stabiliser h for (G : V ) is toral, and there are linearly independent mor-
phisms F1, . . . , Fl ∈ Ker(φ) such that l = dim h and 

∑l
i=1 degFi = dimV − q(V/ /G). In 

Section 4, we explain how to verify that the C·2·C holds for a G-module V . Examples of 
representations with toral generic stabilisers are presented in Sections 5 and 6. For each 
example, we explicitly construct the morphisms F1, . . . , Fl such that the assumptions of 
our theorems from Section 3 are satisfied. Our results are summarised in Appendix A, 
where we provide tables of the representations with toral generic stabilisers.

This is a part of a general project initiated by the second author [25]: to classify 
all semi-direct products q = g � V ∗ with semisimple g such that the ring k[q∗]Q is 
polynomial.

Notation. If an algebraic group G acts on an irreducible affine variety X, then k[X]G is 
the algebra of G-invariant regular functions on X and k(X)G is the field of G-invariant 
rational functions. If k[X]G is finitely generated, then X/ /G := Speck[X]G, and the 
quotient morphism πX,G : X → X/ /G is induced by the inclusion k[X]G ↪→ k[X]. If 
X = V is a G-module, then NG(V ) := π−1

V,G(πV,G(0)) is the null-cone in V . Whenever 
the ring k[X]G is graded polynomial, the elements of any set of algebraically independent 
homogeneous generators will be referred to as basic invariants. For a G-module V and 
v ∈ V , gv = {s ∈ g | s·v = 0} is the stabiliser of v in g and Gv = {g ∈ G | g·v = v} is 
the isotropy group of v in G.

An explanation of the multiplicative (highest weight) notation for representations of 
semisimple groups is given in 4.5.
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1. Preliminaries

Let G be a connected affine algebraic group with Lie algebra g. The symmetric algebra 
S(g) is identified with the algebra of polynomial functions on g∗ and we also write k[g∗]
for it. The algebra S(g) has the natural Poisson structure { , } such that {x, y} = [x, y] for 
x, y ∈ g. A subalgebra A ⊂ S(g) is said to be Poisson-commutative, if it is a subalgebra 
in the usual (associative–commutative) sense and also {f, g} = 0 for all f, g ∈ A. The 
algebra of invariants S(g)G = k[g∗]G is the centraliser of g w.r.t { , }, therefore it is the 
Poisson-centre of S(g).

Definition 1. The index of g, denoted ind g, is minξ∈g∗ dim gξ, where gξ is the stabiliser 
of ξ with respect to the coadjoint representation of g.

Set b(g) = (dim g + ind g)/2. If g is reductive, then ind g = rk g and b(g) equals the 
dimension of a Borel subalgebra. If A ⊂ S(g) is Poisson-commutative, then

tr.degA � b(g). (1.1)

It is also known that this upper bound is attained for some A.
Let V be a (finite-dimensional rational) G-module. The set of G-regular elements of 

V is defined to be

Vreg = {v ∈ V | dimG·v � dimG·v′ for all v′ ∈ V } .

As is well-known, Vreg is a dense open subset of V [22]. In particular, g∗reg is the set of 
G-regular elements w.r.t. the coadjoint representation of G.

Definition 2. We say that the codimension-n condition (=C·n·C) holds for the action 
(G : V ), if codim V (V \ Vreg) � n.

Suppose that tr.deg S(g)G = ind g(=: l). Then maxξ∈g∗ dimGξ = dim g − l. For any 
f ∈ S(g), let (df)ξ ∈ g denote the differential of f at ξ. We say that g satisfies the Kostant 
(regularity) criterion if the following properties hold for S(g)G and ξ ∈ g∗:

• S(g)G = k[f1, . . . , fl] is a graded polynomial ring (with basic invariants f1, . . . , fl);
• ξ ∈ g∗reg if and only if (df1)ξ, . . . , (dfl)ξ are linearly independent.

A very useful fact is that if C·2·C holds for (G : g∗), tr.deg S(g)G = ind g = l, and 
there are algebraically independent f1, . . . , fl ∈ S(g)G such that 

∑l
i=1 deg fi = b(g), 

then f1, . . . , fl freely generate S(g)G and the Kostant criterion holds for g, see [12, The-
orem 1.2].

Example. If g is reductive and nonabelian, then codim (g \greg) = 3. Hence the (co)adjoint 
representation of a reductive Lie algebra satisfies the C·3·C.
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For a G-module V , the vector space g ⊕V ∗ has a natural structure of Lie algebra, the 
semi-direct product of g and V ∗. Explicitly, if x, x′ ∈ g and ζ, ζ ′ ∈ V ∗, then

[(x, ζ), (x′, ζ ′)] = ([x, x′], x·ζ ′ − x′·ζ) .

This Lie algebra is denoted by q = g � V ∗, and V ∗ � {(0, ζ) | ζ ∈ V ∗} is an abelian 
ideal of q. The corresponding connected algebraic group Q is the semi-direct product of 
G and the commutative unipotent group exp(V ∗) � V ∗. The group Q can be identified 
with G × V ∗, the product being given by

(s, ζ)(s′, ζ ′) = (ss′, (s′)−1·ζ + ζ ′), where s, s′ ∈ G.

In particular, (s, ζ)−1 = (s−1, −s·ζ). Then exp(V ∗) can be identified with 1 � V ∗ :=
{(1, ζ) | ζ ∈ V ∗} ⊂ G � V ∗. If G is reductive, then the subgroup 1 � V ∗ is the unipotent 
radical of Q, also denoted by Ru(Q).

Let μ : V × V ∗ → g∗ be the moment map, i.e., μ(v, ζ)(g) := 〈ζ, g·v〉, where g ∈ g and 
〈 , 〉 is the pairing of V and V ∗. The restriction of the coadjoint representation of Q to 
1 � V ∗ is explicitly described as follows. If ζ ∈ V ∗ and η = (ξ, v) ∈ q∗ = g∗ × V , then

(1 � ζ)·η = (ξ + μ(v, ζ), v). (1.2)

Since μ(v, ζ) = 0 if and only if ζ ∈ (g·v)⊥, the maximal dimension of the (1 �V ∗)-orbits 
in q∗ equals maxv∈V dim(g·v) = dim g − minv∈V dim gv.

Lemma 1.1. For q = g � V ∗. There is a dense open subset Ω̃ ∈ Vreg such that for any 
x ∈ Ω̃

(i) b(q) = dimV + b(gx);
(ii) tr.deg (k[q∗]1�V ∗) = dimV + dim gx.

Proof. (i) By [15], there is a dense open subset Ω̃ ∈ Vreg such that ind q = dimV −
maxv∈V dim g·v + ind gx = dimV − dim g + dim gx + ind gx for any x ∈ Ω̃. This yields 
the desired formula for b(q).

(ii) By Rosenlicht’s theorem [22, 2.3],

tr.deg (k[q∗]1�V ∗
) = dim q− max

η∈q∗
dim
(
(1 � V ∗)·η

)
= dim q− dim g + dim gx. �

It follows from this lemma that tr.deg (k[q∗]1�V ∗) � b(q) and the equality holds if 
and only if ind gx = dim gx, i.e., gx is abelian for generic elements of V . By [24], if 
there is a dense open subset Ω̃ of V such that gx is abelian for all x ∈ Ω̃, then P :=
k[q∗]1�V ∗ is Poisson-commutative. Having in mind the general upper bound (1.1), we 
conclude that in such a case P is a Poisson-commutative subalgebra of k[q∗] of maximal 
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dimension. Moreover, since P is the centraliser of V ∗ in (S(q), { , }), it is also a maximal 
Poisson-commutative subalgebra, cf. [13, Theorem 3.3].

We say that the action (G:V ) has a generic stabiliser, if there exists a dense open 
subset Ω ⊂ V such that all stabilisers gv, v ∈ Ω, are G-conjugate. Then any subalgebra 
gv, v ∈ Ω, is called a generic stabiliser (= g.s.). Likewise, one defines a generic isotropy 
group (= g.i.g.), which is a subgroup of G. By [16, § 4], the linear action (G : V ) has 
a generic stabiliser if and only if it has a generic isotropy group. It is also known that 
g.i.g. always exists if G is reductive. A systematic treatment of generic stabilisers in the 
context of reductive group actions can be found in [22, § 7].

2. On the rank of certain modules of covariants

For finite-dimensional k-vector spaces V and N , let Mor(V, N) denote the set of 
polynomial morphisms F : V → N . Clearly, Mor(V, N) � k[V ] ⊗ N and it is a free 
graded k[V ]-module of rank dimN . Here degF = d, if F (tv) = tdF (v) for any t ∈ k

×

and v ∈ V .
If both V and N are G-modules, then G acts on Mor(V, g) by (g∗F )(v) = g(F (g−1v)). 

Therefore, g ∗ F = F for all g ∈ G if and only if F is G-equivariant. Write MorG(V, N)
for the set of G-equivariant polynomial morphisms V → N . It is also called the module 
of covariants of type N . We have MorG(V, N) � (k[V ] ⊗N)G. In the rest of the section, 
we assume that G is reductive. Then MorG(V, N) is a finitely generated k[V ]G-module, 
see e.g. [22, 3.12].

Given a G-module V , consider the exact sequence of k[V ]-modules

0 → Ker(φ) → Mor(V, g) φ→ Mor(V, V ) ,

where φ(F )(v) := F (v)·v for F ∈ Mor(V, g) and v ∈ V . Therefore,

Ker(φ) = {F ∈ Mor(V, g) | F (v) ∈ gv ∀v ∈ V } .

Here rkφ = maxv∈V dim g·v [9, Prop. 1.7] and hence rk Ker(φ) = minv∈V dim gv. Recall 
that if R is a domain and M is a finitely generated R-module, then the rank of M is 
rkM = rkR(M) = dimQuot(R) M ⊗ Quot(R).

We also consider the “equivariant sequence” that comprises k[V ]G-modules:

0 → Ker(φG) → MorG(V, g) φG−→ MorG(V, V ) .

Here φG is the restriction of φ to MorG(V, g). We are interested in conditions under which 
the k[V ]-module Ker(φ) is generated by G-equivariant morphisms. In other words, when 
is it true that the k[V ]-modules Ker(φ) and k[V ] ⊗k[V ]G Ker(φG) are isomorphic?

If H is a generic isotropy group for (G : V ) and h = LieH, then we write h = g.s.(g : V )
and H = g.i.g.(G : V ) for this. Then minv∈V dim gv = dim h and hence
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rk Ker(φ) = dim h. (2.1)

Recall that the G-action on V is said to be stable, if the union of closed G-orbits is dense 
in V , see [22, § 7]. Then H is a reductive (not necessarily connected) group. By a general 
result of Vust [23, Chap. III], if the action (G : V ) is stable, then

the rank of the k[V ]G-module MorG(V,N) equals dimNH . (2.2)

For the reader’s convenience, we outline a proof:
• If F is G-equivariant, then F (v) ∈ NGv for any v ∈ V . Applying this to the open 

set of G-generic elements in V , we obtain that rk MorG(V, N) � dimNH .
• On the other hand, the “evaluation” map εv : MorG(V, N) → NGv , F �→ F (v), is 

onto whenever G·v = G·v, see [10, Theorem 1]. Hence if generic G-orbits in V are closed 
(and isomorphic to G/H), then the upper bound dimNH is attained.

Our goal is to compute the rank of the k[V ]G-module Ker(φG).

Theorem 2.1. If the action (G:V ) is stable and H = g.i.g.(G:V ), then rk Ker(φG) =
dim hH .

Proof. The reductive group W = NG(H)/H acts on V H . By the Luna–Richardson 
theorem [8], the restriction homomorphism k[V ] → k[V H ] induces an isomorphism of 
rings of invariants k[V ]G � k[V H ]W . This common ring will be denoted by J. Consider 
the commutative diagram of J-modules

0 → Ker(φG) → MorG(V, g) φG−→ MorG(V, V )
↓ ↓

0 → Ker(ψW ) → MorW (V H , gH) ψW−→ MorW (V H , V H),

where the vertical arrows denote the restriction of G-equivariant morphisms to V H ⊂ V . 
Note that the although W -module gH is not the Lie algebra of W , the J-module ho-
momorphism ψW is being defined similarly to φG. By construction, the action (W :V H)
is again stable and has trivial generic isotropy groups. Therefore, using Eq. (2.2), we 
conclude that

rk MorW (V H , gH) = dim gH = rk MorG(V, g)

rk MorW (V H , V H) = dimV H = rk MorG(V, V ).

Since H is a generic isotropy group, G·V H = V . It follows that both vertical arrows 
are injective homomorphisms of J-modules of equal ranks. Therefore, they give rise to 
isomorphisms over the field of fractions of J and hence rk Ker(ψW ) = rk Ker(φG). Here

Ker(ψW ) = {F : V H → gH | F is W -equivariant and F (v) ∈ (gH)v ∀v ∈ V H} =
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= {F | F is W -equivariant and F (v) ∈ hH ∀v ∈ V H} � MorW (V H , hH).

The second equality follows from the fact that gv = h for a generic v ∈ V H and 
hence F (v) ∈ h for any v ∈ V H . Since g.i.g.(W :V H) = {1}, Eq. (2.2) implies that 
rk Ker(ψW ) = dim hH . �

Comparing Eq. (2.1) and Theorem 2.1 provides the following necessary condition:

Corollary 2.2. If the action (G : V ) is stable and the k[V ]-module Ker(φ) is generated by 
G-equivariant morphisms, then h = hH (i.e., the adjoint representation of H is trivial). 
In particular, h is a toral subalgebra of g.

There are several cases in which this condition on h is also sufficient.
• If (G : V ) is the isotropy representation of a symmetric variety, then the condition 

that h is toral does imply that Ker(φ) is a free k[V ]-module generated by G-equivariant 
morphisms, see [12, Theorem 5.8].

• If H is finite, then Ker(φ) is a trivial k[V ]-module.
Next, we provide one more good case. For F ∈ Mor(V, N), let V(F ) denote the set of 

zeros of F . If dimN = 1, then F is a polynomial function on V and V(F ) is a divisor.

Proposition 2.3. Suppose that G is semisimple and g.i.g.(G : V ) is a one-dimensional 
torus. Then Ker(φ) is a free k[V ]-module of rank 1 generated by a G-equivariant mor-
phism.

Proof. Since G is semisimple and g.i.g. is reductive, the action (G : V ) is stable [22, 
Theorem 7.15]. Hence rk Ker(φG) = 1 in view of Theorem 2.1. Then we can pick a 
nonzero homogeneous primitive element F ∈ Ker(φG), i.e., F cannot be written as fF̌ , 
where F̌ ∈ Ker(φG) and f ∈ k[V ]G with deg f > 0. Then F is also primitive as element of 
Mor(V, g). Indeed, assume that F = fF̌ , where F̌ ∈ Mor(V, g), f ∈ k[V ] and deg f > 0. 
Because F is a G-equivariant morphism, V(F ) is G-stable. Since V(f) ⊂ V(F ) and 
V(f) is a divisor, V(f) is necessarily a G-stable divisor in V . Because G is semisimple, 
f ∈ k[V ]G. It follows that F̌ ∈ MorG(V, g). The relation F = fF̌ shows that F̌ (v) ∈ gv

for any v ∈ V \V(f). Hence F̌ (v) ∈ gv for any v ∈ V , and this contradicts the primitivity 
of F in Ker(φG).

Let F̃ ∈ Ker(φ) be an arbitrary homogeneous element. Since rk Ker(φ) = 1, there are 
coprime homogenous f, f̃ ∈ k[V ] such that fF = f̃ F̃ . If deg f̃ > 0, then V(f̃) ⊂ V(F )
and, as in the previous paragraph, this leads to a contradiction. Thus, f̃ is invertible, 
and we are done. �

Using the theory to be developed in Section 3, we provide a number of non-trivial 
examples of representations with toral generic stabilisers such that Ker(φ) is generated 
by G-equivariant morphisms, see Sections 5 and 6.
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3. Semi-direct products with good invariant-theoretic properties

In this section, we describe a class of representations (G : V ) such that Ker(φ) is 
generated by G-equivariant morphisms, q = g � V ∗ satisfies the Kostant criterion, and 
(Q : q∗) has nice invariant-theoretic properties.

For F ∈ Mor(V, g) and η = (ξ, v) ∈ q∗ = g∗ × V , we define F̂ ∈ k[q∗] by F̂ (η) :=
〈F (v), ξ〉, where 〈 , 〉 denote the pairing of dual spaces.

Lemma 3.1. We have F̂ ∈ k[q∗]1�V ∗ if and only if F (v)·v = 0 for all v ∈ V , i.e., 
F ∈ Ker(φ).

Proof. By (1.2), the invariance with respect to 1 � V ∗ means that

〈F (v), ξ〉 = 〈F (v), ξ + μ(v, ζ)〉, (ξ, v) ∈ q∗,

for any ζ ∈ V ∗. Hence 0 = 〈F (v), μ(v, ζ)〉 = 〈F (v)·v, ζ〉, and we are done. �
Thus, any F ∈ Ker(φ) gives rise to F̂ ∈ k[q∗]1�V ∗ . Moreover, it is clear that if F is 

G-equivariant, then F̂ ∈ k[q∗]Q. It follows from Eq. (1.2) that if ζ ∈ V ∗ is regarded as a 
linear function on q∗ = g∗ × V , then ζ is 1 � V ∗-invariant. Hence

• both S(V ∗) = k[V ] and {F̂ | F ∈ Ker(φ)} lie in k[q∗]1�V ∗ ;
• both k[V ]G and {F̂ | F ∈ Ker(φG)} lie in k[q∗]Q.

We provide below certain conditions that guarantee us that k[q∗]1�V ∗ and k[q∗]Q are 
generated by the respective subsets.

Recall some properties to the symmetric invariants of semi-direct products:

(i) The decomposition q∗ = g∗ ⊕ V yields a bi-grading of k[q∗]Q [12, Theorem 2.3(i)]. 
The same argument proves that the algebra k[q∗]1�V ∗ is also bi-graded.

(ii) The algebra k[V ]G is contained in k[q∗]Q. Moreover, a minimal generating system 
for k[V ]G is a part of a minimal generating system of k[q∗]S [12, Sect. 2 (A)]. In 
particular, if k[q∗]Q is a polynomial ring, then so is k[V ]G.

Remark 3.2. Note that F̂ associated with F ∈ Ker(φ) has degree 1 w.r.t. g. Conversely, 
it can be shown that if f ∈ k[q∗]1�V ∗ has degree 1 w.r.t. g, then f = F̂ for some 

F ∈ Ker(φ), see [24, Lemma 2.1]. In other words, there is a natural bijection Ker(φ) 1:1←→
(g ⊗ k[V ])1�V ∗ . It is also true that Ker(φG) 1:1←→ (g ⊗ k[V ])G�V ∗ .

If G ⊂ GL(V ) is reductive, then k[V ]G is finitely generated and q(V/ /G) stands for 
the minus degree of the Poincaré series of the graded algebra k[V ]G. More precisely, 
k[V ]G =

⊕
j∈N

k[V ]Gj and its Poincaré series is
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F(k[V ]G; t) =
∑
j∈N

dim k[V ]Gj tj .

Here F(k[V ]G; t) = P (t)/P̃ (t) is a rational function and, by definition, q(V/ /G) =
deg P̃ − degP . In particular, if k[V ]G is a polynomial ring, then q(V/ /G) equals the 
sum of degrees of the basic invariants. By [5, Korollar 5], if G is semisimple, then 
q(V/ /G) � q(V ) = dimV . The arbitrary representations of simple algebraic groups 
and the irreducible representations of semisimple groups such that q(V/ /G) < dimV are 
classified in [6].

Recall some properties of the linear actions of semisimple groups. If G ⊂ GL(V ) is 
semisimple, then

• k(V )G is the quotient field of k[V ]G, hence maxv∈V dimG·v = dimV −dimV/ /G [22];
• (G : V ) is stable if and only if g.i.g.(G : V ) is reductive [22, Theorem 7.15].

Theorem 3.3. Let G ⊂ GL(V ) be semisimple and l = minv∈V dim gv = dim g.i.g.(G : V )
be positive. Suppose also that codim (V \ Vreg) � 2 and there are linearly independent 
(over k[V ]) homogeneous morphisms F1, . . . , Fl ∈ Ker(φ) such that

∑l
i=1 degFi + q(V//G) = dimV. (3.1)

Then

(i) F1(v), . . . , Fl(v) ∈ g are linearly independent for all v ∈ Vreg and 
∧l

i=1 Fi : V → ∧mg

is G-equivariant;
(ii) Ker(φ) is a free k[V ]-module of rank l, with basis F1, . . . , Fl;
(iii) k[q∗]Ru(Q) = k[V ][F̂1, . . . , F̂l], that is, q∗/ /Ru(Q) � V × A

l;
(iv) The k-linear span of F1, . . . , Fl (resp. F̂1, . . . , F̂l) is a G-stable subspace of Mor(V, g)

(resp. k[q∗]).

Proof. (i) Since a generic isotropy group is l-dimensional, maxv∈V dimG·v = dim g − l

=: m. By [5, Satz 1 & Korollar 4], there is a G-equivariant map c : V → ∧mg∗ � ∧lg such 
that deg c = dimV −q(V/ /G) and if v ∈ Vreg, then 0 �= c(v) ∈ ∧l(gv) ⊂ ∧lg. On the other 
hand, the map c̃ =

∧l
i=1 Fi : V → ∧lg has the same degree and also c̃(v) ∈ ∧l(gv) ⊂ ∧lg

for almost all v ∈ Vreg. In other words, c(v) and c̃(v) are proportional for almost all 
v ∈ V . Consequently, there are coprime homogeneous f, f̃ ∈ k[V ] such that fc = f̃ c̃. 
Since deg c = deg c̃, we have deg f = deg f̃ as well. If deg f̃ > 0, then there is v ∈ Vreg
such that f̃(v) = 0 and f(v) �= 0. Then c(v) = 0, a contradiction! Hence f, f̃ ∈ k

×, ∧l
i=1 Fi : V → ∧mg is G-equivariant, and F1(v), . . . , Fl(v) ∈ g are linearly independent 

for all v ∈ Vreg.
(ii) As codim (V \ Vreg) � 2, the last property also implies that (F1, . . . , Fl) is a 

basis for the k[V ]-module Ker(φ). Indeed, recall that rk Ker(φ) = minv∈V dim gv = l. If 
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F ∈ Ker(φ), then there are f, fi ∈ k[V ] such that fF =
∑l

i=1 fiFi. Again, if deg f > 0, 
then there is v ∈ Vreg such that f(v) = 0 and fi(v) �= 0 for all (some) i. This contradicts 
the linear independence of {Fi(v)} for all v ∈ Vreg. Hence f ∈ k

×, and we are done.
(iii) Recall that now Ru(Q) = 1 � V ∗, μ : V × V ∗ → g∗ is the moment mapping, and 

the Ru(Q)-orbits in q∗ are

Ru(Q)·(ξ, v) = (ξ + μ(v, V ∗), v) = (ξ + (gv)⊥, v).

Hence dimRu(Q)·(ξ, v) = dim(gv)⊥ and maxη∈q∗ dimRu(Q)·η = dim g − l. Therefore 
tr.deg k[q∗]Ru(Q) = dimV +l. Let (ζ1, . . . , ζn), n = dimV , be a basis of V ∗ (We regard the 
ζi’s as linear functions on q∗.) Then ζ1, . . . , ζn, F̂1, . . . , F̂l are algebraically independent 
and belong to k[q∗]Ru(Q). Consider the map π : q∗ = g∗ ⊕ V → V × A

l given by

(
η = (ξ, v) ∈ q∗

)
�→
(
(v, F̂1(η), . . . , F̂l(η) ∈ V × A

l
)
. (3.2)

By the Igusa Lemma [22, Theorem 4.12], in order to prove that π is the quotient mor-
phism by Ru(Q), it suffices to verify the following two conditions:

(♦1) The closure of (V × A
l) \ Im (π) does not contain divisors;

(♦2) There is a dense open subset Ψ ⊂ V × A
l such that π−1(b) contains a dense 

Ru(Q)-orbit for all b ∈ Ψ.
For (♦1): If v ∈ Vreg, then {Fi(v)} are linearly independent in view of (i). Therefore, 
the system of linear equations 〈Fi(v), ξ〉 = ai, 1 � i � l, has a solution ξ for any 
(a1, . . . , al) ∈ A

l. Therefore, Im (π) ⊃ Vreg × A
l.

For (♦2): Suppose that v ∈ Vreg, ā = (a1, . . . , al) ∈ A
l, and ξ0 is a solution to the system 

〈Fi(v), ξ〉 = ai. Then π−1(v, ̄a) = (ξ0 + (gv)⊥, v), which is a sole Ru(Q)-orbit.
Thus, k[q∗]Ru(Q) = k[ζ1, . . . , ζn, F̂1, . . . , F̂l] and the morphism πq∗,Ru(Q) is given 

by (3.2).
(iv) Since q∗/ /Ru(Q) � V × A

l, G = Q/Ru(Q) acts on q∗/ /Ru(Q), and V is a 
G-module, the explicit form of the free generators of k[q∗]Ru(Q) shows that the k-linear 
span 〈F̂1, . . . , F̂l〉 is a G-stable subspace of k[q∗]. Using the definition of F̂i, one readily 
verifies that g·F̂i = ĝ∗Fi. This means that

〈F̂1, . . . , F̂l〉 is a G-stable subspace ⇔ 〈F1, . . . , Fl〉 is a G-stable subspace. �
Note that part (ii) of this theorem is a direct consequence of (i), and our proof of (ii), 

i.e., essentially the proof of the implication (i)⇒(ii), appears already in the proof of 
Theorem 1.9 in [9].

The condition (3.1) is rather strong, and all known to us instances of such a phe-
nomenon occur only if g.s.(g : V ) is abelian, see examples in Sections 5 and 6. As a 
by-product of our proof of part (i) in Theorem 3.3, we also obtain the following asser-
tion:
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Lemma 3.4. Suppose that G ⊂ GL(V ) is semisimple, codim (V \ Vreg) � 2, dim g.i.g.(G :
V ) = l, and F1, . . . , Fl ∈ Ker(φ) are homogeneous and linearly independent. Then ∑l

i=1 degFi � deg c = dimV − q(V/ /G).

Remark 3.5. The interest of Theorem 3.3 is in the case, where l = dim g.s.(g : V ) > 0, 
i.e., there are certain morphisms {Fi}. If l = 0, then the codimension-2 condition for 
(G : V ) implies that q(V/ /G) = q(V ) [5, Korollar 4]. i.e., formally, Eq. (3.1) holds. Then 
parts (i), (ii), (iv) become vacuous, but part (iii) still makes sense and remains true. For, 
in this case k[q∗]Ru(Q) � k[V ], see [11, Theorem 6.4].

Theorem 3.6. Let G, V, F1, . . . , Fl be as in Theorem 3.3. Suppose also that the identity 
component of H = g.i.g.(G : V ) is a torus, H is not contained in a proper normal 
subgroup of G, and hH = h. Then

(i) If the C·n·C holds for (G : V ) with n � 2, then it also holds for (Q : q∗);
(ii) The morphisms F1, . . . , Fl are G-equivariant, the corresponding polynomials F̂1, . . . ,

F̂l are G-invariant, and hence k[q∗]Q = k[V ]G[F̂1, . . . , F̂l], i.e., q∗/ /Q � V/ /G × A
l;

(iii) k[q∗]Ru(Q) is a maximal Poisson-commutative subalgebra of k[q∗];
(iv) If k[V ]G is a polynomial algebra, then the Kostant criterion holds for q.

Proof. (i) Since a generic stabiliser is abelian, the standard deformation argument shows 
that gv is abelian for any v ∈ Vreg. It then follows from [11, Prop. 5.5] that (ξ, v) is 
Q-regular for any ξ ∈ g∗. Hence q∗reg ⊃ g∗ × Vreg.

(ii) By Theorem 3.3(iv), the space 〈F1, . . . , Fl〉 is G-stable and therefore

g ∗ Fi =
l∑

j=1
aij(g)Fj ∀g ∈ G.

Recall that g(Fi(g−1v)) = (g∗Fi)(v). If g ∈ Gv, then Fi(g−1v) = Fi(v) ∈ gv. Moreover, if 
Gv ∼ H (i.e., Gv is conjugate to H), then g(Fi(g−1v)) = Fi(v) in view of the assumption 
hH = h. Therefore Fi(v) =

∑l
j=1 aij(g)Fj for all v such that Gv ∼ H and g ∈ Gv. By 

Theorem 3.3(i), {Fi(v)} are linearly independent. Hence aij(g) = δij for any g ∈ Gv and 
Gv ∼ H. Hence the kernel of the representation ρ : G → GL(〈F1, . . . , Fl〉) contains the 
normal subgroup generated by all generic isotropy subgroups. Under our assumption, 
this implies Ker(ρ) = G. Therefore, each Fi is G-equivariant and thereby each F̂i is 
G-invariant and also Q-invariant. Hence G acts trivially on Al and

q∗//Q = (q∗//Ru(Q))//G � (V × A
l)//G � V//G× A

l.

(iii) This is a particular case of more general results of [24]. However, using the 
G-equivariance of {Fi} one can verify directly that the basic invariants in k[q∗]Ru(Q)

pairwise commute w.r.t. the Poisson bracket { , } (cf. the proof of Theorem 3.3 in [13]).
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(iv) If k[V ]G is a polynomial algebra, then so is k[q∗]Q (in view of (ii)), and the sum 
of degrees of the basic invariants in k[q∗]Q equals q(V/ /G) +

∑l
i=1 deg F̂i = q(V/ /G) +

(
∑l

i=1 degFi) + l = dimV + l = b(q). Together with the C·2·C for (Q : q∗), this implies 
that the Kostant criterion holds for q, see [12, Theorem 1.2]. �
Corollary 3.7. Under the assumptions of Theorems 3.3 and 3.6, the k[V ]-module Ker(φ)
is free and is generated by G-equivariant morphisms. Therefore, the k[V ]G-module 
Ker(φG) is also free, with the “same basis” F1, . . . , Fl. That is, Ker(φ) � Ker(φG) ⊗k[V ]G

k[V ].

Example 3.8. Let g be a semisimple Lie algebra of rank l. Then g � g∗ as G-module, 
ind g = l, and k[g]G = k[f1, . . . , fl] is a graded polynomial algebra. Set di = deg fi. Then 
q(g/ /G) =

∑l
i=1 di = b(g) is the dimension of a Borel subalgebra. Here g.i.g.(G : g) = Tl

is a maximal torus. It is known that MorG(g, g) is a free k[g]G-module generated by the 
differentials dfi =: Fi, i = 1, . . . , l. (This is a special case of a general result of Vust [23, 
Ch. III, § 2], see also [11, Theorem 4.5].) Here degFi = di − 1 and hence Eq. (3.1) holds. 
Thus, Theorems 3.3 and 3.6 apply to g and q = g � g. A specific feature of this case is 
that here φG ≡ 0 and Ker(φG) = MorG(g, g).

Remark 3.9. The semisimplicity of G is assumed in Theorems 3.3 and 3.6, because Knop’s 
results in [5] heavily rely on this assumption. Using those results and Eq. (3.1), we 
then prove that 

∧l
i=1 Fi(v) �= 0 for all v ∈ Vreg and so on. . . But, if one can directly 

verify that Z = {v ∈ V |
∧l

i=1 Fi(v) = 0} does not contain divisors, then the proof 
of Theorem 3.3(iii), (iv) goes through with V \ Z in place of Vreg and without the 
semisimplicity condition. (See Example 5.3 below.)

Furthermore, if we know somehow that {Fi} are G-equivariant (i.e., Fi ∈ Ker(φG)), 
then Fi(v) ∈ (gv)Gv for all v ∈ V . For v ∈ (V \ Z) ∩ Vreg, this implies that dim gv =
dim(gv)Gv . Hence a generic stabiliser is abelian and the C·2·C for (G : V ) implies that 
for (Q : q∗), cf. Theorem 3.6(i). In this situation, we also have q∗/ /Q � V/ /G × A

l, and 
{F1, . . . , Fl} is a basis for both Ker(φ) and Ker(φG).

Remark 3.10. The assumptions of Theorem 3.6 that the adjoint representation of H =
g.i.g.(G : V ) is trivial and that H is not contained in a proper normal subgroup of G
are essential. We will see in Example 5.1 that if this is not the case, then the morphisms 
F1, . . . , Fl satisfying (3.1) can be not G-equivariant and 〈F1, . . . , Fl〉 affords a nontrivial 
representation of (a simple factor of) G.

On the other hand, if l = dim g.i.g.(G : V ) = 1, then the assumptions of both theorems 
can be simplified, and one also obtains stronger results.

Theorem 3.11. Suppose that G ⊂ GL(V ) is semisimple, codim (V \Vreg) � 2, and g.s.(g :
V ) = t1. As usual, q = g � V ∗. Then
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(i) The C·2·C holds for (Q : q∗);
(ii) k[q∗]Ru(Q) is freely generated by a basis of V ∗ and one more polynomial F̂ such that 

deg F̂ = dimV − q(V/ /G) + 1. In particular, q∗/ /Ru(Q) � V × A
1;

(iii) q∗/ /Q � V/ /G × A
1;

(iv) If k[V ]G is a polynomial ring, then q satisfies the Kostant criterion;
(v) Furthermore, if πV,G : V → V/ /G is equidimensional and

(∗) each irreducible component of NG(V ) := π−1
V,G(πV,G(0)) contains a G-regular 

point,
then πq∗,Q : q∗ → q∗/ /Q is also equidimensional and the enveloping algebra U(q) is 
a free module over its centre Z(q).

Proof. Since l = 1, we have b(q) = dim V + 1. Here we need only one morphism F :
V → ∧dim g−1g∗ � g of degree dimV − q(V/ /G) such that 0 �= F (v) ∈ gv for all v ∈ Vreg. 
The existence of such a G-equivariant morphism follows from Knop’s theory [5]. As the 
morphism F is G-equivariant and F ∈ Ker(φ), the corresponding polynomial F̂ lies in 
k[q∗]Q. Then the proofs of Theorems 3.3 and 3.6 apply and yield parts (i)–(iv).

(v) The equidimensionality of πV,G is equivalent to that dimNG(V ) = dimV −
dimV/ /G, see [22, Eq. (8.1)]. And for the equidimensionality of πq∗,Q, it suffices to 
prove that

dimNQ(q∗) = dim q−dim q∗//Q = dimV +dim g−dimV//G−1 = dimNG(V )+dim g−1,

where NQ(q∗) = π−1
q∗,Q(πq∗,Q(0)). It follows from (iii) that

NQ(q∗) = {(ξ, v) | v ∈ NG(V ) & F̂ (ξ, v) = 〈F (v), ξ〉 = 0}.

In other words, NQ(q∗) =
(
g∗ × NG(V )

)
∩ {F̂ = 0}. Under assumption (∗), we 

have dimNQ(q∗) = dimNG(V ) + dim g − 1, as required. Then S(q) = k[q∗] is a free 
S(q)Q-module; and, by a standard deformation argument, this implies that U(q) is a free 
module over Z(q) � S(q)Q. �

Note that if NG(V ) contains finitely many G-orbits, then πV,G is equidimensional [22, 
§ 5.2] and hence condition (∗) is satisfied.

Remark. If l � 1 and NG(V ) contains finitely many G-orbits, then there is a general 
criterion for the equidimensionality of πq∗,Q in terms of the stratification of NG(V )
determined by the covariants F1, . . . , Fl. Namely,

NQ(q∗) = {(ξ, v) | v ∈ NG(V ) & 〈Fi(v), ξ〉 = 0 i = 1, . . . , l}

and using the projection NQ(q∗) → NG(V ), (ξ, v) �→ v, one proves that

πq∗,Q is equidimensional ⇐⇒ dim gv + dim〈F1(v), . . . , Fl(v)〉 � 2l



D.I. Panyushev, O.S. Yakimova / Journal of Algebra 490 (2017) 283–315 297
for any v ∈ NG(V ). However, this condition is not easily verified in specific examples, if 
l > 1. If (G : V ) is the isotropy representation of a symmetric variety such that g.i.g. is 
a torus, then a version of this condition is verified in [12, Sect. 5].

4. The codimension-2 condition for representations

In this section, we provide some sufficient conditions for the C·2·C to hold for (G : V ). 
A G-stable divisor D ⊂ V is said to be bad, if maxv∈D dimG·v < maxv∈V dimG·v. That 
is, if

min
v∈D

dimGv > min
v∈V

dimGv.

Hence the C·2·C holds for (G : V ) if and only if V contains no bad divisors.

Proposition 4.1. Suppose that G is reductive, the action (G : V ) is stable, and NG(V )
contains finitely many G-orbits. Then the C·2·C holds for (G : V ).

Proof. Since NG(V ) has finitely many orbits, πV,G : V → V/ /G is equidimensional and 
each fibre of πV,G also has finitely many orbits [22, § 5.2, Cor. 3]. Assume that D is a 
(G-stable) bad divisor in V . Then πV,G(D) is a proper (closed) subvariety of V/ /G, see 
e.g. [21, Theorem 1], and since πV,G is equidimensional, πV,G(D) is actually a divisor 
in V/ /G. Hence dimD ∩ π−1

V,G(ξ) = dim π−1
V,G(ξ) for any ξ ∈ πV,G(D) and therefore 

D ∩ π−1
V,G(ξ) contains G-regular elements. Hence D cannot be bad. �

Example 4.2 (Vinberg’s θ-groups [20]). Let ϑ be an automorphism of g of finite order k. If 
ς = k

√
1 is primitive, then g =

⊕
i∈Z/kZ gi, where gi is the eigenspace of ϑ corresponding 

to ςi. The above decomposition is also called a periodic grading of g. Here g0 is reductive 
and each gi is a g0-module. If G0 is the connected subgroup of G with LieG0 = g0, then 
the linear group G0 → GL(g1) is called a ϑ-group. A fundamental invariant-theoretic 
property of ϑ-groups is that NG0(g1) contains finitely many G0-orbits and k[g1]G0 is a 
polynomial ring. If k = 2, then (G0 : g1) is always stable. There are also many interesting 
examples of stable ϑ-groups, if k � 3, see e.g. [20, § 9].

Example 4.3 (reduced θ-groups). Let g =
⊕

i∈Z
g(i) be a Z-grading. Then g(i) = {x ∈ g |

[h, x] = ix} for a unique semisimple element h ∈ g(0). Let g(0)′ be the orthocomplement 
to kh in g(0) w.r.t. the Killing form on g and G(0)′ ⊂ G(0) the corresponding connected 
subgroups of G. Here the reductive group G(0) has finitely many orbits in each g(i)
with i �= 0 [20], while there is a dichotomy for G(0)′-orbits. Either the G(0)′-orbits 
in g(1) coincide with the G(0)-orbits, or dim g(1)/ /G(0)′ = 1 and the G(0)′-orbits in 
NG(0)′g(1) coincide with the G(0)-orbits [4, Theorem 2.9]. In the latter case, the action 
(G(0)′ : g(1)) is also stable. The linear groups of the form G(0)′ → GL(g(1)) are called 
reduced ϑ-groups.
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In the following assertion G is not necessarily reductive.

Theorem 4.4. Let G : V1 ⊕ V2 = V be a reducible representation. Suppose that generic 
isotropy groups Si = g.i.g.(G : Vi), i = 1, 2, exist and the C·2·C holds for both (S1 : V2)
and (S2 : V1). Then the C·2·C holds also for (G : V ).

Proof. Assume that D ⊂ V is a bad divisor. Consider the projections pi : D → Vi, 
i = 1, 2.

• If p1 is dominant and p2 is not, then D = V1 × D2, where D2 ⊂ V2 is a G-stable 
divisor. Take a generic point xo

1 ∈ V1 such that Gxo
1 = S1. The fact that D is bad means 

that

min
x2∈D2

dim(Gxo
1)x2 = min

x̄∈D
dimGx̄ > min

v̄∈V
dimGv̄ = min

x2∈V2
dim(Gxo

1)x2 .

That is, D2 appears to be a bad divisor for (S1 : V2). Thus, this case is impossible.
• If p2 is dominant and p1 is not, then D = D1×V2 and the argument is “symmetric”.
• If both p1, p2 are dominant, then we again can take a point x̄ = (x1, x2) ∈ D such 

that Gx1 = S1. Here p−1
1 (x1) = {x1} ×D2 and the similar argument shows that D2 is a 

bad divisor for (S1 : V2). �
Notation 4.5. In specific examples and the tables in Appendix A, we identify the rep-
resentations V of semisimple groups with their highest weights, using the multiplicative
notation and the Vinberg–Onishchik numbering of the fundamental weights. For in-
stance, if ϕ1, . . . , ϕn are the fundamental weights of a simple algebraic group G, then 
V = ϕ2

1 +ϕn−1 stands for the direct sum of two simple G-modules with highest weights 
2ϕ1 and ϕn−1. If G = G1 × G2 × . . . is semisimple, then the fundamental weights of 
the first (resp. second) factor are denoted by {ϕi} (resp. {ϕ′

i}) and so on. . . The dual 
G-module for ψ is denoted by ψ∗. We omit the index for the unique fundamental weight 
of SL2.

Example 4.6. We provide several cases, where the last theorem allows us to check the 
codimension-2 condition.

1o. G = SLn, V1 = ϕ2
1, and V2 = ϕ2. Here S1 = SOn and (S1 : V2) is equivalent to the 

adjoint representation of SOn modulo a trivial summand. If n is even, then S2 = Spn and 
(S2 : V1) is equivalent to the adjoint representation of Spn modulo a trivial summand. 
This already shows that C·2·C holds if n is even. For n odd, S2 is not reductive and the 
only a priori possible bad divisor is D1×V2, where D1 consists of the symmetric matrices 
with det = 0. Here a direct calculation of stabilisers shows that this divisor is not bad. 
Thus, the C·2·C holds for all n.

2o. G = SLn, V1 = ϕ2
1, and V2 = ϕ∗

2 = ϕn−2. This is similar to 1o.
3o. G = SLn ×SLn and V1 = V2 = ϕ1ϕ

′
1. Here S1 = S2 = ΔSLn

� SLn and (S1 : V2)
is equivalent to the adjoint representation of SLn modulo a trivial summand.
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4o. G = Sp6 and V1 = V2 = ϕ2. Here S1 = S2 = (SL2)3 and (S1 : V2) is equivalent 
to (SL2 × SL2 × SL2 : ϕϕ′ + ϕϕ′′ + ϕ′ϕ′′) modulo a 2-dimensional trivial summand. 
Applying Theorem 4.4 to the last representation, one readily obtains the C·2·C.

Below is a variation of Theorem 4.4 that concerns the case in which V1 � V2.

Theorem 4.7. For any representation G → GL(V ), one naturally defines the representa-
tion of Ĝ = G × SL2 in V̂ = V ⊗ k

2. Let G∗ be a generic isotropy group for (G : V ). If
C·2·C holds for (G∗ : V ) and g.s.(g : V ) = g.s.(ĝ : V̂ ), then C·2·C also holds for (Ĝ : V̂ ).

Proof. Since V̂ |G = V ⊕ V , Theorem 4.4 shows that the C·2·C holds for (G : V ⊕ V ). 
Let D̂ ⊂ V̂ be a Ĝ-stable divisor. As above, consider the G-equivariant projections 
pi : D̂ → V (i), where V (i) is the i-th copy of V and i = 1, 2. Since D̂ is SL2-stable, 
both projections must be dominant. Take (x1, x2) ∈ D̂ such that Gx1 = G∗. Since x1 is 
G-generic and C·2·C holds for (G∗ : V ), there is x2 ∈ p2(p−1

1 (x1)) such that

dim(Gx1)x2 = min
v2∈V (2)

dim(Gx1)v2 = min
v̄∈V⊕V

dimGv̄ = min
v̂∈V̂

dimGv̂.

This means that D̂ cannot be bad. �
Example 4.8. Theorem 4.7 applies, if we add the factor SL2 to G in Example 4.6, 3o & 4o.

Theorem 4.9. Suppose that the C·2·C holds for (G1×G2 : V1⊗V2 = V ) and g.s.(g1×g2 :
V1 ⊗ V2) = g.s.(g1 : V ⊕d

1 ), where d = dimV2. Then C·2·C also holds for (G1 : V ⊕d
1 ).

Proof. Assume that D ∈ V is a bad divisor for (G1:V ⊕d
1 ). Then dimG1·u <

maxv∈V dimG1·v for all u ∈ D. The coincidence of generic stabilisers implies that D
is also G1 ×G2-stable and then

dimG·u < max
v∈V

dimG1·v + dimG2 = max
v∈V

dimG·v for all u ∈ D.

Hence D is bad for (G : V ), too. A contradiction! �
Example 4.10. The representation (SL6 ×SL3 : ϕ2ϕ

′
1) is the ϑ-group associated with an 

automorphism of order 3 of E7, see item 5 in the table in [20, § 9]. A generic isotropy 
group H here is reductive (namely, LieH = t1). Therefore, this action is stable and hence
C·2·C holds here (use Proposition 4.1). All assumptions of Theorem 3.11 are satisfied 
here, and therefore q = (sl6×sl3) � (ϕ2ϕ

′
1)∗ satisfies the Kostant criterion and U(q) is a 

free module over Z(q).
Forgetting about SL3, we obtain the representation (SL6 : 3ϕ2). Since both have the 

same generic stabilisers (namely t1), the C·2·C also holds for the latter in view of Theo-
rem 4.9. Here the algebra k[3ϕ2]SL6 is still polynomial [1,17], but the equidimensionality 
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of the quotient morphism fails [18]. Hence q′ = sl6 � 3ϕ∗
2 satisfies the Kostant criterion, 

but U(q′) is not a free Z(q′)-module.

5. Constructing covariants for semi-direct products, I

If an action (G : V ) is associated with a periodic or Z-grading of a simple Lie algebra, 
then usually most of the assumptions of Theorems 3.3 and 3.6 are automatically satis-
fied for it. The most appealing and non-trivial task is to produce linearly independent 
morphisms {Fi} in Ker(φ) such that (3.1) holds.

Example 5.1. G = SL(V1)×SL(V2)×SL(V3) and V = V1⊗V2⊗V3, where dimV1 =
dimV2 = n and dimV3 = 2. In other words, G = SLn×SLn×SL2 and V = ϕ1ϕ

′
1ϕ

′′ �
k
n ⊗ k

n ⊗ k
2.

Upon the restriction to G̃ := SL(V1) × SL(V2), the space V splits in two copies 
of V1 ⊗ V2. We regard the G̃-module V1 ⊗ V2 as the space n by n matrices, equipped 
with the action (g1, g2)·A = g1Ag−1

2 , where gi ∈ SL(Vi). The corresponding action of 
(s1, s2) ∈ g̃ is given by (s1, s2)·A = s1A − As2. We think of elements of V as pairs 

(A, B) of n by n matrices, where the action of 
(
α β
γ δ

)
∈ SL2 = SL(V3) is given by 

(A, B) �→ (αA + βB, γA + δB). By Examples 4.6(3o) and 4.8, the C·2·C holds for both 
(G : V ) and (G̃ : V ). The algebra k[V ]G̃ is polynomial and its basic invariants are the 
coefficients of the characteristic polynomial

det(A + λB) =
n∑

i=0
fi(A,B)λi, where f0(A,B) = detA and fn(A,B) = detB,

see e.g. [14, Theorem 4]. Since deg fi(A, B) = n for all i, q(V/ /G̃) = n(n + 1). Looking 
at the weights of the polynomials {fi(A, B)}ni=0 w.r.t. a maximal torus in SL2, one 
realises that V/ /G̃ is isomorphic to (ϕ′′)n (the space of binary forms of degree n) as an 
SL2-module. (We also write Rn for this SL2-module.) It is known that q(Rn/ /SL2) =
dim Rn = n + 1 for n � 3. In our case, the coordinates in Rn = V/ /G̃ are of degree n
w.r.t. the initial grading of k[V ]. Therefore,

q(V//G) = n·q(Rn//SL2) = n(n + 1) = q(V//G̃) if n � 3.

It is easily verified that H̃ := g.i.g.(G̃ : V ) � Tn−1 for any n � 2, where the torus 
Tn−1 is diagonally embedded in G̃ � SLn × SLn. Furthermore, the identity component 
of H = g.i.g.(G : V ) is the same torus for n � 3. In other words, h = g.s.(g:V ) =
g.s.(g̃:V ) = h̃ for n � 3. (See Example 5.2 for (G : V ) with n = 2.) However, H can be 
disconnected. Using the isomorphism V/ /G̃ � Rn, one verifies that H/H0 is isomorphic 
to g.i.g.(SL2 : Rn), and the latter is isomorphic to

• Z3, if n = 3; • Z2 � Z4, if n = 4; • {1}, if n � 5 is odd; • Z2, if n � 6 is even.
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We will compare below the coadjoint representations of the Lie algebras q = g � V ∗

and q̃ = g̃� V ∗ for n � 3. Accordingly, we consider the corresponding connected groups 
Q and Q̃, two morphisms of k[V ]-modules

φ : Mor(V, g) → Mor(V, V ) and φ̃ : Mor(V, g̃) → Mor(V, V )

and the corresponding morphisms φG and φ̃G̃ of modules of covariants (see Section 2). 
Clearly, Mor(V, ̃g) ⊂ Mor(V, g) and φ̃ = φ|Mor(V,g̃). Note also that Ru(Q) = Ru(Q̃).

For A ∈ gln, let A∗ denote the adjugate of A, i.e., the transpose of its cofactor matrix. 
(Hence AA∗ = A∗A = (detA)I.) Note that A �→ A∗ is a polynomial mapping of degree 
n − 1. Let A �→ Ā = A − tr (A)

n I denote the projection from gln to sln.
Consider the morphism F ∈ Mor(V, ̃g), where F (A, B) = (BA∗, A∗B) ∈ g̃ ⊂ g. Here 

BA∗ (resp. A∗B) is regarded as an element of sl(V1) (resp. sl(V2)). One readily verifies 
that F (A, B)·(A, B) = 0, cf. the proof of Theorem 5.1.1(i). Hence F ∈ Ker(φ̃) ⊂ Ker(φ). 
Since the map A �→ A∗ has degree n − 1, we obtain degF = n. We will see below 
that the morphism F is G̃-equivariant. However, it is not SL2-equivariant, hence not 
G-equivariant. Still, F is a lowest weight vector in a simple SL2-module Rn−2. Indeed, 
for any γ we have

F (A, γA + B) = ((γA + B)A∗, A∗(γA + B)) = γAA∗ + BA∗, γA∗A + A∗B) = F (A,B),

i.e., the subgroup {
(

1 0
γ 1

)
| γ ∈ k} ⊂ SL2 stabilises F . By a direct calculation, we also 

have g ∗ F = t2−nF for g =
(
t 0
0 t−1

)
.

Having at hand one suitable covariant, we perform a “polarisation”. Consider

Fλ(A,B) := F (A + λB,B) = (B(A + λB)∗, (A + λB)∗B) =
n−1∑
i=0

Fi(A,B)λi.

Note that F0 = F and Fn−1(A, B) = (BB∗, B∗B) = 0. That is, we obtain only the 
morphisms F0, F1, . . . , Fn−2 in Mor(V, ̃g). It follows from the previous observation that 
the k-linear span 〈F0, F1, . . . , Fn−2〉 is an SL2-module isomorphic to Rn−2.

Theorem 5.1.1. We have

(i) Fλ is a G̃-equivariant morphism for any λ ∈ k. Therefore, all {Fi} are G̃-equivariant;
(ii) Fi ∈ Ker(φ̃) for all i.

Proof. (i) By definition,

Fλ(g1Ag−1
2 , g1Bg−1

2 ) =
(
g1Bg−1

2 ·(g1(A + λB)g−1
2 )∗, (g1(A + λB)g−1

2 )∗·g1Bg−1
2
)
.
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If A + λB is invertible, then the first component is being transformed as follows:

g1Bg−1
2 (g1(A + λB)g−1

2 )∗ = det(A + λB)g1Bg−1
2 ·(g1(A + λB)g−1

2 )−1

= det(A + λB)g1B(A + λB)−1g−1
1 = g1B(A + λB)∗g−1

1 .

Likewise, for the second component, we obtain g2
(
(A + λB)∗B

)
g−1
2 . Thus,

Fλ((g1, g2)·(A,B)) = Fλ(g1Ag−1
2 , g1Bg−1

2 ) = (g1, g2)·Fλ(A,B)

whenever A +λB is invertible. Since Fλ is a polynomial mapping that is G̃-equivariant on 
the open subset of triples (A, B, λ) such that A +λB is invertible, it is always equivariant.

(ii) It suffices to verify that Fλ(A, B)·(A, B) = 0 for any λ. The first component in 
the LHS equals

B(A+λB)∗A−A(A+λB)∗B

= B(A+λB)∗A− trB(A+λB)∗

n
A−A(A+λB)∗B + tr (A+λB)∗B

n
A. (5.1)

Now, if both A and A+λB are invertible, then

B(A + λB)∗A = det(A+λB)·B(A+λB)−1A = det(A+λB)·B(A(I+A−1B))−1A

= det(A+λB)·B(I+A−1B)−1 = det(A+λB)·(B−λBA−1B+λ2BA−1BA−1B− · · · ).

A similar transform yields the very same formula for A(A+λB)∗B. Since the difference in 
(5.1) vanishes on the open subset of triples (A, B, λ), where A and A+λB are invertible, 
it is identically zero. And likewise for the second component in Fλ(A, B)·(A, B). �
Remark. Permuting A and B in the definition of F = F0, one defines the companion 
morphism F̂ ∈ Mor(V, ̃g) by F̂ (A, B) = (AB∗, B∗A). Then we can prove that F̂ =
−Fn−2.

Note that 
∑n−2

i=0 degFi = n(n − 1) = dimV − q(V/ /G̃) = dimV − q(V/ /G). Hence 
G̃, V, ̃q, and the covariants F0, . . . , Fn−2 satisfy all the assumptions of Theorems 3.3 and 
3.6. Hence

• q̃∗/ /Ru(Q̃) � V × A
n−1 and q̃∗/ /Q̃ � V/ /G̃× A

n−1 � A
2n;

• Ker(φ̃) (resp. Ker(φ̃G̃)) is a free k[V ] (resp. k[V ]G̃)-module with basis F0, . . . , Fn−2;
• the Kostant criterion holds for q̃ = (sln × sln) � (kn ⊗ k

n ⊗ k
2)∗.

However, G, V , and q = (sln×sln×sl2) �(kn⊗k
n⊗k

2)∗ do not satisfy all the assumptions 
of Theorem 3.6. For, either h �= hH (n = 3, 4) or H is contained in a proper normal 
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M = ∈ V = ϕϕ′ϕ′′
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a000 a100

a001 a101

a010 a110

a011 a111

Fig. 1. A cubic 2-matrix.

subgroup of G (n � 5). But Theorem 3.3 still applies, and we have q∗/ /Ru(Q) � V ×
A

n−1. Then q∗/ /Q̃ � V/ /G̃ × A
n−1, and the last variety is isomorphic to Rn ⊕ Rn−2 as 

Q/Q̃-module, i.e., SL2-module. Therefore, q∗/ /Q � (Rn ⊕ Rn−2)/ /SL2, which is not an 
affine space for n � 3. In other words, k[q∗]Q is not a polynomial ring for n � 3. For 
instance, it is a hypersurface for n = 3, 4, see e.g. [19, 3.4.3].

Remark 5.1.2. Since g.s.(g : V ) = g.s.(g̃ : V ) = tn−1, we have rk Ker(φ) = rk Ker(φ̃) =
n − 1 by Eq. (2.1). Moreover, because H̃ = g.i.g.(G̃ : V ) is abelian and connected, we 
also get rk Ker(φ̃) = rk Ker(φ̃G̃).

But the situation for φ and φG is different. If n = 3, 4, then the component group 
H/H̃ acts nontrivially on h and, actually, hH = {0}. Therefore, rk Ker(φG) = 0. On 
the other hand, if n � 5, then hH = h, hence rk Ker(φ) = rk Ker(φG). However, even 
if Ker(φ) and Ker(φG) have the same rank, the free generators of the former are not 
G-equivariant (they are only G̃-equivariant). In fact, we do not know the generators of 
the k[V ]G-module Ker(φG) if n � 5.

Example 5.2. The case of n = 2 in Example 5.1 does not fit into the general picture with 
n � 3, so we consider it separately. Now G = (SL2)3 and V = ϕϕ′ϕ′′. This is a reduced 
ϑ-group (see Example 4.3) related to a Z-grading of D4. Therefore C·2·C holds here. We 
have V/ /G = A

1, q(V/ /G) = 4, and g.i.g.(G : V ) � T2. More precisely, if the elements of 
a maximal torus

T =
{(

t1 0
0 t−1

1

)
,

(
t2 0
0 t−1

2

)
,

(
t3 0
0 t−1

3

)
| ti ∈ k

×
}

⊂ G

are represented as triples (t1, t2, t3), then g.i.g.(G : V ) = {(t1, t2, t3) | t1t2t3 = 1}.
The elements of V can be regarded as cubic 2-matrices with entries aijk, see Fig. 1, 

where the i-th factor of G acts along the i-th coordinate, i = 1, 2, 3.
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We provide below three morphisms from V to sl2 that are thought of as morphisms 

to the consecutive factors of g, where the column 
[
m
n
p

]
represents the matrix 

( n m
p −n

)
:

F̃1(M) =
[

a111a100 − a101a110
a111a000 + a011a100 − a001a110 − a101a010

a011a000 − a001a010

]

F̃2(M) =
[

a111a010 − a011a110
a111a000 − a011a100 − a001a110 + a101a010

a101a000 − a001a100

]

F̃3(M) =
[

a111a001 − a101a011
a111a000 − a011a100 + a001a110 − a101a010

a110a000 − a100a010

]

Letting Fλ,μ,ν(M)=(λF̃1(M), μF̃2(M), νF̃3(M)) with λ, μ, ν ∈ k, we obtain a 3-dimen-
sional subspace of Mor(V, g), and one verifies directly that Fλ,μ,ν ∈ Ker(φ) if and only if 
λ + μ + ν = 0. Then F1 = Fλ,−λ,0 and F2 = F0,μ,−μ satisfy (3.1) and Theorems 3.3 and 
3.6 apply.

Hence Ker(φ) (resp. Ker(φG)) is a free k[ϕϕ′ϕ′′]-module (resp. k[ϕϕ′ϕ′′](SL2)3-module) 
and q = (sl2)3 � ϕϕ′ϕ′′ satisfies the Kostant criterion. Furthermore, using the explicit 
classification of G-orbits in V , one can prove that C·3·C holds for (G : V ) and hence for 
(Q : q∗), and also that U(q) is a free Z(q)-module.

Example 5.3. G =
∏k

i=1 GL(Ui) and V =
⊕k

i=1 Ui ⊗ U
∗
i+1, where Uk+1 = U1.

Assume that dimUi = n for all i. Then (G : V ) is a ϑ-group related to an automor-
phism of order k of g̃ = gl(V) = glnk, where V = U1 ⊕ · · · ⊕ Uk. Namely, if ς = k

√
1

and

t = diag(ςk−1, . . . , ςk−1︸ ︷︷ ︸
n

, . . . , ς, . . . , ς︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

),

then ϑ = Ad (t), G = G̃0, and V = g̃1. In the matrix form, we have

g =

⎛⎜⎜⎝
gl(U1) 0 · · · 0

0 gl(U2)
...

. . .
0 gl(Uk)

⎞⎟⎟⎠ , and M =

⎛⎜⎜⎜⎝
0 M1 · · · 0

· · · 0
. . .
. . . Mk−1

Mk · · · 0

⎞⎟⎟⎟⎠
is a typical element of V = g̃1. We also write M � (M1, . . . , Mk). Here dim g = kn2 =
dimV , g.s.(g : V ) = tn, and V/ /G � A

n. The centre of G̃ = GL(V) belongs to G and 
acts trivially on everything. Therefore, without any harm, we can replace g̃ = glnk with 
slnk. But, it is notationally simpler to deal with glnk.

If gi ∈ GL(Ui), g = (g1, . . . , gk) ∈ G, and M � (M1, . . . , Mk), then the G-action on 
V is given by
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g·M � (g1M1g
−1
2 , g2M2g

−1
3 , . . . , gkMkg

−1
1 ).

Accordingly, for s = (s1, . . . , sk) ∈ g, we have

s·M � (s1M1 −M1s2, s2M2 −M2s3, . . . , skMk −Mks1). (5.2)

Vinberg’s theory (Example 4.2) implies that here k[V ]G is a polynomial ring and NG(V )
contains finitely many G-orbits. But in this case, one can explicitly describe the basic 
invariants and thereby compute q(V/ /G). The representation (G : V ) is a quiver repre-
sentation related to the extended Dynkin quiver Ãnk−1, and the algebra k[V ]G is well 
known. But we prefer an “elementary” invariant-theoretic point of view in our exposi-
tion.

Theorem 5.3.1. The algebra k[V ]G is freely generated by the coefficients of the character-
istic polynomial of the matrix M1 · · ·Mk (or any cyclic permutation of this product). In 
particular, the degrees of the basic invariants are k, 2k, . . . , nk and dimV − q(V/ /G) =
k
(
n
2
)
.

Proof. Using the First Fundamental Theorem of Invariant Theory or the Igusa lemma [22, 
Theorem 4.12], one readily verifies that the quotient of V by G′ =

∏k
i=2 GL(Ui) is given 

by the mapping M �→ M1 · · ·Mk ∈ Matn(k). Since g1·(M1 · · ·Mk) = g1M1 · · ·Mkg
−1
1 , 

the induced action of GL(U1) = G/G′ on V/ /G′ � Matn(k) is equivalent to the adjoint 
representation. �

Define the morphism Fi ∈ Mor(V, g) by Fi(M) = Mki (the usual matrix power in 
glnk).

Theorem 5.3.2. We have

(i) each Fi is G-equivariant, lies in Ker(φ), and 
∑n−1

i=0 degFi = k
(
n
2
)
;

(ii) For Z = {M ∈ V |
∧n−1

i=0 Fi(M) = 0}, we have codim V Z � 2.

Proof. (i) It is clear from the definition that all Fi are G-equivariant. Next, Mk is a 
block-diagonal matrix, where the first block is M[1,k] := M1 · · ·Mk and the subsequent 
blocks are cyclic permutations of this product. The equality F1(M)·M = 0 readily follows 
from this observation and (5.2). And likewise for Fi (i � 2). The case of i = 0 is obvious.

(ii) We have the commutative diagram

V
πG′

πG

V//G′

πG/G′

V//G � A
n

M M[1,k]

(
σ1(M[1,k]), . . . , σn(M[1,k])

)
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If M[1,k] is a G/G′-regular (=non-derogatory) matrix, then {Fi(M)}n−1
i=0 are linearly 

independent. Let Y denote the variety of all derogatory matrices in Matn(k). Then 
Z ⊂ π−1

G′ (Y ), and it suffices to prove that codimπ−1
G′ (Y ) � 2. Consider the matrices 

M(1) � (In, . . . , In, A) and M(2) � (In, . . . , In, E, In), where A = diag(a1, . . . , an) with 

ai �= aj and E =

⎛⎜⎜⎝
0 1 · · · 0

· · · 0
. . .
. . . 1

0 · · · 0

⎞⎟⎟⎠ is a regular nilpotent element of gln. The plane 

P = {αM(1) + βM(2) | α, β ∈ k} has the property that, for any nonzero M ∈ P, the 
corresponding matrix M[1,k] is non-derogatory. Hence P ∩ π−1

G′ (Y ) = {0}, and we are 
done. �
Remark. If we work with G̃ = SL(V) in place of GL(V), then a generic stabiliser becomes 
tn−1. Here the constant morphism F0 should be omitted and the matrices Mki, i � 1, 
should be replaced with their projections to sl(V).

Thus, by Remark 3.9 and Theorem 5.3.2, the proof of Theorems 3.3 and 3.6 can be 
adjusted to the present case. Therefore, Ker(φ) (resp. Ker(φG)) is a free k[V ]-module 
(resp. k[V ]G-module) with basis F0, F1, . . . , Fn−1 and q = (

∏k
i=1 gl(Ui)) �

(⊕k
i=1 U

∗
i ⊗

Ui+1
)

satisfies the Kostant criterion.
It is worth noting that the special case of the involutive automorphism ϑ (i.e., if k = 2) 

has already been settled in [12, Sect. 5].

6. Constructing covariants for semi-direct products, II

Example 6.1. G = SLn = SL(U), V = ϕ2
1 + ϕ∗

2 = S2(U) ⊕ ∧2(U∗).
We regard V as the space of pairs of matrices: V = {(A, B) | At = A & Bt = −B}, 

where the action of g ∈ G is given by

g·(A,B) = (gAgt, (gt)−1Bg−1) (6.1)

and the corresponding action of s ∈ g = sln is

s·(A,B) = (sA + Ast,−stB −Bs). (6.2)

In what follows, one has to distinguish the cases of even or odd n. The algebra k[V ]G is 
(bi)graded polynomial and the (bi)degrees of the basic invariants are [1,17]:{

(2, 2), (4, 4), . . . , (n− 2, n− 2), (n, 0), (0, n/2), if n = 2k,
(2, 2), (4, 4), . . . , (n− 1, n− 1), (n, 0) if n = 2k + 1.

Here the invariant 

of degree (n, 0) is detA, and the invariant of degree (0, n/2) is PfB. While the invariants 
of degree (2i, 2i) are just tr (AB)2i, 2i < n.
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A generic isotropy group is H � T[n/2] [2, Table 2]. For instance, one can take

H =
{

diag(t1, . . . , tk, t−1
1 , . . . , t−1

k ) | ti ∈ k
×}, if n = 2k

diag(t1, . . . , tk, 1, t−1
1 , . . . , t−1

k ) | ti ∈ k
×}, if n = 2k + 1.

We have to construct [n/2] morphisms {Fi} in Ker(φ). To begin with, take F1(A, B) =
AB. Since (AB)t = −BA, we have tr (AB) = 0, and it follows from (6.1) that g·AB =
g(AB)g−1. Hence F1 ∈ MorG(V, g). We continue by letting Fi(A, B) = (AB)2i−1, i =
1, 2, . . . , [n/2]. To ensure that the resulting matrix is traceless, we must consider only 
the odd powers of AB. Using (6.2), one verifies that Fi(A, B)·(A, B) = 0, hence Fi ∈
Ker(φ). The corresponding Q-invariants in k[q∗] are F̂i(ξ, A, B) = tr (ξ(AB)2i−1). Let 
Ik(d̄) denote the diagonal k by k matrix with diagonal entries d̄ = (d1, . . . , dk). Taking 

A =
(

0k Ik(d̄)
Ik(d̄) 0k

)
and B =

(
0k Ik(c̄)

−Ik(c̄) 0k

)
shows that the matrices (AB)2i−1, 

1 � i � k, are linearly independent whenever the elements {cjdj} are different. Hence 
F1, . . . , Fk are linearly independent for n = 2k. This construction can easily be adjusted 
to n = 2k + 1.

Having the degrees of all basic invariants and covariants, one verifies that 
∑[n/2]

i=1 degFi+
q(V/ /G) = dimV if n is odd; while for n even one obtains 

∑[n/2]
i=1 degFi = dimV −

q(V/ /G) + [n/2]. Since the C·2·C holds here (Example 4.6(20)), we have
if n is odd, then the assumptions of Theorems 3.3 and 3.6 are satisfied. There-

fore, Ker(φ) (resp. Ker(φG)) is a free k[V ]-module (resp. k[V ]G-module) with basis 
F1, F2, . . . , F[n/2] and q := sln � (ϕ2

1 + ϕ∗
2)∗ satisfies the Kostant criterion.

If n is even, then the same conclusion is still true, but one have to modify the con-
structed covariants {Fi} in order to obtain a new family such that Equality (3.1) to be 
satisfied. This will appear in a forthcoming paper.

Example 6.2. If we slightly change V of Example 6.2, i.e., take G = SLn and Ṽ =
ϕ2

1 +ϕ2 = S2(U) ⊕∧2(U), then the action (G : Ṽ ) has similar properties. Namely, k[Ṽ ]G
is polynomial [1,17] and g.i.g.(G : Ṽ ) = T[n/2] [2, Table 2]. However, the construction of 
covariants in Ker(φ) becomes totally different and more involved. We regard Ṽ as the 
space of pairs of matrices: Ṽ = {(A, B) | At = A & Bt = −B}, where the action of 
g ∈ G is given by

g·(A,B) = (gAgt, gBgt) (6.3)

and the corresponding action of s ∈ g = sln is

s·(A,B) = (sA + Ast, sB + Bst). (6.4)

Consider the “characteristic polynomial”

F(λ) = det(A + λB) =
n∑

fi(A,B)λi.

i=0
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Since (A + λB)t = A − λB, we have F(λ) = F(−λ), i.e., F(λ) = P (λ2) and fi(A, B) ≡ 0
unless i is even. If n is odd, then k[Ṽ ]G is freely generated by the f2i’s. For n even, the 
only correction is that fn(A, B) = detB should be replaced with PfB [1,17]. Therefore, 

dim Ṽ − q(Ṽ / /G) =
{

2k2 − k, if n = 2k
2k2 + k, if n = 2k + 1

.

We provide below a construction of the required covariants in Ker(φ). As in Ex-
ample 5.1, let A∗ be the adjugate of A. Consider the morphism F : Ṽ → gln, 
F (A, B) = BA∗.

Lemma 6.2.1. We have

(a) tr (BA∗) = 0, i.e., F (A, B) ∈ g = sln;
(b) F is G-equivariant;
(c) F ∈ Ker(φ).

Proof. (a) Since At = A, we have (A∗)t = A∗. Hence (BA∗)t = −A∗B.
(b) By definition, F (g·(A, B)) = gBgt (gAgt)∗. If detA �= 0, then the RHS equals

det(gAgt)·gBgt·(gAgt)−1 = detA·gBA−1g−1 = gBA∗g−1.

Hence F is a G-equivariant mapping from Ṽ to g = sln on the dense open subset of Ṽ , 
where A is invertible. Since F is a polynomial morphism, this holds on the whole of Ṽ .

(c) We have F (A, B)·(A, B) = (BA∗A + A(BA∗)t, BA∗B + B(BA∗)t) =
(BA∗A−AA∗B,BA∗B −BA∗B) = 0. �

Having constructed one suitable covariant, we perform a “polarisation”. Consider

Hλ(A,B) := F (A + λB,B) = B(A + λB)∗ =
n−1∑
i=0

Fi(A,B)λi.

Clearly F0(A, B) = F (A, B) and if n is odd, then detB = 0 and the coefficient of λn−1

equals BB∗ = (detB)I = 0.

Theorem 6.2.2. We have

(a) trF2i(A, B) = 0 for all i;
(b) Hλ is a G-equivariant mapping from Ṽ to gln. In particular, F2i ∈ MorG(Ṽ , g) for 

all i;
(c) F2i ∈ Ker(φ) for all i.

Proof. (a) If both A and A + λB are invertible, then
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B(A + λB)∗ = det(A + λB)·B(A + λB)−1

= det(A + λB)·B
(
A(I + λA−1B)

)−1 = det(A + λB)·B(I + λA−1B)−1A−1 =

det(A + λB)·
(
BA−1 + λ(BA−1)2 + λ2(BA−1)3 + . . .

)
Since A is symmetric, so is A−1 and therefore (BA−1)2i+1 is a product of a symmetric 
and a skew-symmetric matrices. Hence tr (BA−1)2i+1 = 0. As det(A +λB) = P (λ2), the 
total coefficient of λ2i is a traceless matrix. Since this is true for a dense open subset of 
triples (A, B, λ) such that A and A +λB are invertible, and Hλ is a polynomial mapping, 
this holds for all triples.

(b) The proof is the same as in Lemma 6.2.1(b).
(c) We prove that Heven

λ :=
∑

i F2iλ
2i ∈ Ker(φ) for all λ. Equivalently, only odd 

powers of λ survive in Hλ(A, B)·(A, B). By definition,

Hλ(A,B)·(A,B) = (B(A+λB)∗A+A(B(A+λB)∗)t, B(A+λB)∗B+B(B(A+λB)∗)t).

Let us transform the first component in the RHS. Again, assuming first that A and 
A + λB are invertible, one obtains:

(F1) = B(A+λB)∗A = det(A+λB)B(A + λB)−1A

= det(A+λB)B
(
A(I+λA−1B)

)−1
A = det(A+λB)B(I+λA−1B)−1

= det(A+λB)(B−λ(BA−1B)+λ2(BA−1BA−1B) − . . . )

and

(F2) = A(B(A+λB)∗)t = − det(A+λB)(A(A−λB)−1B)

= − det(A+λB)A
(
(I−λBA−1)A

)−1
B = − det(A+λB)(I−λBA−1)−1B

= − det(A+λB)(B+λ(BA−1B)+λ2(BA−1BA−1B) + . . . )

Because det(A+λB) = P (λ2), the sum (F1)+(F2) contains only odd powers of λ. Again, 
using the polynomiality of Hλ, we conclude that this property holds for all A, B, λ.

The argument for the second component is similar. �
Thus, we have constructed [n/2] covariants F2i (0 � 2i � n − 2) in Ker(φ). These 

covariants are linearly independent, because their bi-degrees are different. Since degF2i =
n for all i, we have 

∑[n/2]−1
i=0 degF2i − dimV + q(V/ /G) = 0 if n is odd (and = [n/2] if n

is even). Since the C·2·C holds here (Example 4.6(1o)), we conclude that
if n is odd, then the assumptions of Theorems 3.3 and 3.6 are satisfied. There-

fore, Ker(φ) (resp. Ker(φG)) is a free k[V ]-module (resp. k[V ]G-module) with basis 
F0, F2, . . . , F2[n/2]−2 and q := sln � (ϕ2

1 + ϕ2)∗ satisfies the Kostant criterion.
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If n is even, then the same conclusion is still true, but one have to modify the con-
structed covariants {Fi} in order to obtain a new family such that Equality (3.1) to be 
satisfied. This will appear in a forthcoming paper.

Example 6.3. G = Sp(U) × SO(V), V = U ⊗ V.
This representation is a ϑ-group associated with an outer automorphism of order 4 of 

sl(U ⊕V). Therefore k[V ]G is polynomial and NG(V ) contains finitely many G-orbits, cf. 
Example 4.2. Furthermore, a generic stabiliser is reductive if and only if either dimU �
dimV or dimV −dimU ∈ 2N. In these cases, the action is stable and hence C·2·C holds.

Set 2m = dimU and n = dimV. Let I (resp. J) be a symmetric (resp. skew-symmetric) 
matrix of order n (resp. 2m) such that I2 = I (resp. J2 = −I). We regard SO(V) (resp. 
Sp(U)) as the group that preserves the bilinear form with matrix I (resp. J). Then

sp(U) = sp2m = {X ∈ Mat2m | XtJ + JX = 0} = {X | (JX)t = JX};
so(V) = son = {Y ∈ Matn | Y tI + IY = 0} = {Y | (IY )t = −IY }.

(6.5)

We identify U ⊗V with the space of 2m by n matrices, where the action of sp(U) ×so(V)
is given by (s1, s2)·M = s1M −Ms2. Here a generic isotropy group is a torus if and only 
if 0 � dimV −dimU � 2 (more precisely, if n � 2m, then g.i.g.(G : V ) � SOn−2m×Tm). 
The corresponding possibilities are considered below. (Whenever it is convenient, we may 
assume that I = I; and then so(V) consists of the usual skew-symmetric matrices.)

(i) Assume that dimU = dimV = 2m. Here g.i.g.(G : V ) = Tm and this torus is 
embedded diagonally in Sp(U) × SO(V). The degrees of the basic invariants of k[V ]G
are 4, 8, . . . , 4m − 4, 2m [7]. Hence dimV − q(V/ /G) = 4m2 − 2m − 2m(m − 1) = 2m2.

Define the covariant F1 : U ⊗V → Matn×Matn by F1(M) = (MIM tJ, IM tJM). Using 
Eq. (6.5), one verifies that F1(M) ∈ g = sp(U) × so(V). Moreover, F1 is G-equivariant, 
and F1(M)·M = 0, i.e., F1 ∈ Ker(φ). If a matrix R is either symplectic or orthogonal, 
then so is R2i−1 for any i. Therefore, the covariants

Fi(M) = F1(M)2i−1 =
(
(MIM tJ)2i−1, (IM tJM)2i−1).

are well-defined. Moreover, F1, . . . , Fm are linearly independent. (Assuming for simplicity 
that I = I, one easily verifies that F1(D), . . . , Fm(D) are linearly independent for a 
generic diagonal matrix D.) Here degFi = 2(2i − 1). Hence 

∑m
i=1 degFi = 2m2, so that 

(3.1) holds. Thus, Theorems 3.3 and 3.6 apply here.
(ii) Assume that dimV = 2m + 1 = dimU + 1. Here again g.i.g.(G : V ) = Tm and 

this torus is embedded diagonally in Sp(U) ×SO(V). The degrees of the basic invariants 
of k[V ]G are 4, 8, . . . , 4m [7]. Hence dimV − q(V/ /G) = 2m(2m +1) − 2m(m +1) = 2m2, 
as in (i). The formulae for Fi, i = 1, . . . , m, also remain the same. Note only that now I
and J have different order and therefore the matrices MIM tJ and IM tJM are of order 
2m and 2m + 1, respectively.

(iii) Assume that dimV = 2m + 2 = dimU + 2. Here g.i.g.(G : V ) = Tm+1, but 
only an m-dimensional subtorus is embedded diagonally in G, whereas a complemen-
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tary 1-dimensional torus belongs to SO(V). (This is not surprising, since rkSp(U) =
m.) The degrees of the basic invariants of k[V ]G are 4, 8, . . . , 4m, as in (ii). Hence 
dimV − q(V/ /G) = 2m(2m + 2) −m(2m + 2) = 2m2 + 2m.

As in (i), we construct the linearly independent covariants F1, . . . , Fm with∑m
i=1 degFi = 2m2, but this is not sufficient now. These m covariants take a generic 

G-regular element M ∈ V to the diagonally embedded m-dimensional torus in the sta-
biliser gM � tm+1. We need one more covariant (of degree 2m) that takes M to a 
1-dimensional subtorus sitting only in so(V). In other words, starting with a 2m by 
2m + 2 matrix M , we wish to construct, in a natural way, a skew-symmetric matrix of 
order 2m + 2. Here is the solution: Let Mij be the square matrix of order 2m obtained 
by deleting the i-th and j-th columns from M , 1 � i < j � 2m + 2. We then set

aij =

⎧⎪⎪⎨⎪⎪⎩
(−1)i+j detMij , if i < j

0, if i = j

−aji, if i > j.

. Clearly, AM = (aij) is a skew-symmetric matrix 

of order 2m + 2, and we define Fm+1(M) = (0, AM ) ∈ sp(U) × so(V). It is easily seen 
that Fm+1 is equivariant, degFm+1 = 2m, and Fm+1(M)·M = (0, −MAM ) = 0. Thus,

if 0 � dimV −dimU � 2, then the assumptions of Theorems 3.3 and 3.6 are satisfied. 
Therefore, Ker(φ) (resp. Ker(φG)) is a free k[V ]-module (resp. k[V ]G-module) with basis 
{Fi} and q = (sp(U) × so(V)) � (U ⊗ V)∗ satisfies the Kostant criterion.

Example 6.4. G = SO(V) = SOn+2 and V = nV, the sum of n copies of the defining 
representation of SOn+2.

Here g.i.g.(G : V ) = SO2 � T1, V/ /G � A
(n+1)n/2, and q(V/ /G) = (n + 1)n. The 

explicit construction of the unique covariant of degree dimV − q(V/ /G) = n in Ker(φ) is 
similar to the construction of Fm+1 in Example 6.3(iii). We regard an element of V as 
n +2 by n matrix M and consider its minors of order n, detMij , where 1 � i < j � n +2. 
Then F (M) = (aij), where aij = (−1)i+j detMij for i < j, etc.

Appendix A. Tables of representations with toral generic stabilisers

Using classification results of Elashvili [2,3], one can write down the arbitrary rep-
resentations of simple algebraic groups or the irreducible representations of semisimple 
groups whose generic stabiliser is toral. The subsequent four tables include all such repre-
sentations. But their content is not disjoint. Recall that q = g �V ∗ and we are interested 
in the symmetric invariants of q.

In Table 1, we gather all representations with 1-dimensional generic stabiliser. The 
column (FA) (resp. (Eq)) refers to the presence of the property that k[V ]G is a polynomial 
ring (resp. πV,G : V → V/ /G is equidimensional). This information is inferred from tables 
in [1,7,17,18]. Results of Section 4 imply that C·2·C holds for all these representations. 
By Theorem 3.11, k[q∗]Ru(Q) is a polynomial ring for all items of this table. Furthermore, 
if (FA) holds, then k[q∗]Q is a polynomial ring. Finally, if (Eq) holds, then U(q) is a free 
module over Z(q).
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Table 1
Representations (G : V ) with g.s.(g : V ) = t1.

� G V dimV dimV//G q(V//G) (FA) (Eq)

1a SOn+2×SOn ϕ1ϕ
′
1 n(n+2) n n(n+1) yes yes

1b SOn+2 nϕ1 n(n+2)
(n+1

2
)

n(n+1) yes yes, if n � 3

2 SL6 2ϕ2+ϕ∗
2 45 11 36 yes no

3a SL6×SL3 ϕ2ϕ
′
1 45 3 36 yes yes

3b SL6×SL2 ϕ2ϕ
′ 2 45 8 36 no no

3c SL6 3ϕ2 45 11 36 yes no

4a Sp6×SL2 ϕ2ϕ
′ 28 5 22 no no

4b Sp6 2ϕ2 28 8 22 yes yes

5 SL4×SL2 ϕ2ϕ
′ 3 24 7 20 no no

Remarks.
1) In � 1(a,b), we have V/ /SOn+2 � S2ϕ′

1 as SOn-module.
2) In � 3(a,b,c), we have V/ /SL6 � R6 + R2 + R0 as SL2-module.
3) In � 4(a,b), we have V/ /Sp6 � R3 + R2 + R0 as SL2-module.
4) In � 5, we have V/ /SL4 � ∧2(R3) = R6 + R2 as SL2-module.

This explains why k[V ]G is not polynomial in 3b, 4a, 5.

In Table 2, we gather all representations with a toral generic stabiliser that are 
ϑ-groups in the sense of Vinberg (Example 4.2) and related restrictions. Namely, items 
6a, 7a, and 8a (which are not ϑ-groups!) are obtained from the genuine ϑ-groups (items 
6,7,8) by omitting the second factor of G0 and we say that these are “restrictions” of 
ϑ-groups. It appears that this passage does not change generic isotropy groups, which 
are always contained in the first factor of G0. Moreover, the number q(g1/ /G0) is not 
affected, too. Therefore the covariants {Fi} produced for these ϑ-groups, as described in 
the respective examples, are also suitable for their “restrictions”. The symbol (X(k)

n , m)
in column “ϑ” represents the following information on the automorphism ϑ of g. Here 
Xn is the Cartan type of g, m is the order of ϑ, and k is the minimal integer such that 
ϑk is inner (this number is omitted if it equals 1).

The theory of ϑ-groups implies that, for all items of Tables 2 and 3, k[V ]G is a 
polynomial ring. Our description of the corresponding covariants shows that, for all items 
except �5 in Table 2 and �2 in Table 3, k[q∗]Q is a polynomial ring, the Kostant criterion 
is always satisfied for q, and Ker(φ) is a free k[V ]-module generated by G-equivariant 
morphisms. The explicit construction of covariants Fi ∈ Ker(φ) is given in the examples 
mentioned in the column “Ref.”

The column (FA) in Table 4 refers to the presence of the property that k[V ]G is 
a polynomial ring. For items 1, 2, 3a, k[q∗]Q is a polynomial ring, while in case 3, 
only k[q∗]Ru(Q) is a polynomial ring. (A more precise information can be found in the 
respective examples.)
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Table 2
ϑ-groups with toral generic stabiliser and their “restrictions”.

� G0 g1 h ϑ Ref.

1 SO2m×Sp2m ϕ1ϕ
′
1 tm (A(2)

4m−1, 4) Example 6.3(i)
2 SO2m+1×Sp2m ϕ1ϕ

′
1 tm (A(2)

4m, 4) Example 6.3(ii)
3 SO2m+2×Sp2m ϕ1ϕ

′
1 tm+1 (A(2)

4m+1, 4) Example 6.3(iii)

4 (SLn)k × Tk−1

n∑
i=1

ϕ
(i)
1 ϕ

(i+1)
n−1 tn−1 (Akn−1, k) Example 5.3

5 SL4×SL4×SL2 ϕ1ϕ
′
1ϕ

′′
t3 (E7, 4) Example 5.1

6 SL6×SL3 ϕ2ϕ
′
1 t1 (E7, 3) Example 4.10

6a SL6 3ϕ2 t1 – Example 4.10
7 SL6×SL2 ϕ3ϕ

′
t2 (E6, 2) [12, Sect. 5]

7a SL6 2ϕ3 t2 –
8 SOn+2×SOn ϕ1ϕ

′
1 t1 (Dn+1, 2) [12, Sect. 5]

8a SOn+2 nϕ1 t1 – Example 6.4

Table 3
Reduced ϑ-groups with toral generic stabilisers.

� G(0)′ g(1) h Z-grading of g Ref.

1 SL2×SL2×SL2 ϕϕ′ϕ′′
t2 (D4, α2)

�
�

� � �
Example 5.2

2 SL3×SL3×SL2 ϕ1ϕ
′
1ϕ

′′
t2 (E6, α3)

�
�

� � � � �
Example 5.1

Table 4
The remaining representations with toral generic stabiliser.

� G V h Rem. (FA) Ref.

1 SLn ϕ2
1 + ϕ∗

2 t[n/2] n � 4 yes Example 6.1
2 SLn ϕ2

1 + ϕ2 t[n/2] n � 4 yes Example 6.2
3 SLn×SLn×SL2 ϕ1ϕ

′
1ϕ

′′
tn−1 n � 5 no Example 5.1

3a SLn×SLn ϕ1ϕ
′
1 + ϕ1ϕ

′
1 tn−1 n � 3 yes Example 5.1

4 SL8 ϕ3 + ϕ7 t2 – yes
5 SL8 ϕ3 + ϕ1 t2 – yes
6 Sp4×SO7 ϕ1ϕ

′
3 t2 – yes

We do not know whether it is possible to construct covariants F1, F2 ∈ Ker(φ) for 
items 4–6 of Table 4 such that degF1 + degF2 = dimV − q(V/ /G) and whether the 
k[V ]-module Ker(φ) is free or k[q∗]Q is a polynomial ring in these cases. Nevertheless, 
using Theorem 2.8 in [24], Remark 3.2, and the fact that H = g.i.g.(G : V ) � T2 is 
connected, one can prove that there do exist certain linearly independent G-equivariant 
morphisms F1, F2 ∈ Ker(φ). However, this existence assertion says nothing about their 
degrees.
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