期刊论文详细信息
JOURNAL OF ALGEBRA 卷:537
On flat pseudo-Euclidean nilpotent Lie algebras
Article
Boucetta, Mohamed1  Lebzioui, Hicham2 
[1] Univ Cadi Ayyad, Fac Sci & Tech, BP 549, Marrakech, Morocco
[2] Univ Sultan Moulay Slimane, Ecole Super Technol Khenifra, BP 170, Khenifra, Morocco
关键词: Nilpotent Lie algebras;    Nilpotent Lie groups;    Flat left-invariant metrics;    Double extension;   
DOI  :  10.1016/j.jalgebra.2019.07.018
来源: Elsevier
PDF
【 摘 要 】

A flat pseudo-Euclidean Lie algebra is a real Lie algebra with a non degenerate symmetric bilinear form and a left symmetric product whose the commutator is the Lie bracket and such that the left multiplications are skew-symmetric. We show that the center of a flat pseudo-Euclidean nilpotent Lie algebra of signature (2, n - 2) must be degenerate and all flat pseudo-Euclidean nilpotent Lie algebras of signature (2, n -2) can be obtained by using the double extension process from flat Lorentzian nilpotent Lie algebras. We show also that the center of a flat pseudo-Euclidean 2-step nilpotent Lie algebra is degenerate and all these Lie algebras are obtained by using a sequence of double extension from an abelian Lie algebra. In particular, we determine all flat pseudo-Euclidean 2-step nilpotent Lie algebras of signature (2, n-2). The paper contains also some examples in low dimension. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2019_07_018.pdf 408KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次