JOURNAL OF PURE AND APPLIED ALGEBRA | 卷:224 |
On Einstein Lorentzian nilpotent Lie groups | |
Article | |
Boucetta, Mohamed1  Tibssirte, Oumaima1  | |
[1] Univ Cadi Ayyad, Fac Sci & Tech, BP 549, Marrakech, Morocco | |
关键词: Einstein Lorentzian manifolds; Nilpotent Lie groups; Nilpotent Lie algebras; | |
DOI : 10.1016/j.jpaa.2020.106443 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we study Lorentzian left invariant Einstein metrics on nilpotent Lie groups. We show that if the center of such Lie groups is degenerate then they are Ricci-flat and their Lie algebras can be obtained by the double extension process from an abelian Euclidean Lie algebra. We show that all nilpotent Lie groups up to dimension 5 endowed with a Lorentzian Einstein left invariant metric have degenerate center and we use this fact to give a complete classification of these metrics. We show that if g is the Lie algebra of a nilpotent Lie group endowed with a Lorentzian left invariant Einstein metric with non zero scalar curvature then the center Z(g) of g is nondegenerate Euclidean, the derived ideal [g, g] is nondegenerate Lorentzian and Z(g) subset of [g, g]. We give the first examples of Ricci-flat Lorentzian nilpotent Lie algebra with nondegenerate center. (C) 2020 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jpaa_2020_106443.pdf | 446KB | download |