期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
On Einstein Lorentzian nilpotent Lie groups
Article
Boucetta, Mohamed1  Tibssirte, Oumaima1 
[1] Univ Cadi Ayyad, Fac Sci & Tech, BP 549, Marrakech, Morocco
关键词: Einstein Lorentzian manifolds;    Nilpotent Lie groups;    Nilpotent Lie algebras;   
DOI  :  10.1016/j.jpaa.2020.106443
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study Lorentzian left invariant Einstein metrics on nilpotent Lie groups. We show that if the center of such Lie groups is degenerate then they are Ricci-flat and their Lie algebras can be obtained by the double extension process from an abelian Euclidean Lie algebra. We show that all nilpotent Lie groups up to dimension 5 endowed with a Lorentzian Einstein left invariant metric have degenerate center and we use this fact to give a complete classification of these metrics. We show that if g is the Lie algebra of a nilpotent Lie group endowed with a Lorentzian left invariant Einstein metric with non zero scalar curvature then the center Z(g) of g is nondegenerate Euclidean, the derived ideal [g, g] is nondegenerate Lorentzian and Z(g) subset of [g, g]. We give the first examples of Ricci-flat Lorentzian nilpotent Lie algebra with nondegenerate center. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2020_106443.pdf 446KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次