JOURNAL OF ALGEBRA | 卷:369 |
A variant of Wang's theorem | |
Article | |
Watanabe, Kei-ichi1  Yoshida, Ken-ichi1  | |
[1] Nihon Univ, Coll Humanities & Sci, Dept Math, Setagaya Ku, Tokyo 1568550, Japan | |
关键词: Gorenstein ring; Cohen-Macaulay ring; Regular ring; Test ideal; Multiplier ideal; Integral closure; Goto number; | |
DOI : 10.1016/j.jalgebra.2012.07.012 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we give a new formula of J : (J) over bar for any parameter ideal J in a Gorenstein local ring R of positive characteristic in terms of test ideals: J : (J) over bar = J + tau (J(d-1)), where tau (J(d-1)) denotes the J(d-1)-test ideal of R. As an application, we give a variant of Wang's theorem. Namely, we prove that if J is a parameter ideal in a Cohen-Macaulay local ring (R, m) of dimension d >= 2 with J subset of m(s), then J : m((d-1)(s-1)) (resp. J : m((d-1)(s-1)+1)) is integral over J (resp. if R is not regular). Moreover, we prove that, after reduction to characteristic p >> 0, a similar assertion holds true for Cohen-Macaulay Q-Gorenstein normal local domain essentially of finite type over a field of characteristic zero under some extra assumption. (c) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2012_07_012.pdf | 254KB | download |