期刊论文详细信息
JOURNAL OF ALGEBRA 卷:320
The crossing model for regular An-crystals
Article
Danilov, Vladimir I.2  Karzanov, Alexander V.1  Koshevoy, Gleb A.2 
[1] Russian Acad Sci, Inst Syst Anal, Moscow 117312, Russia
[2] Russian Acad Sci, Cent Inst Econ & Math, Moscow 117418, Russia
关键词: Simply-laced algebra;    Crystal of representation;    Gelfand-Tsetlin pattern;   
DOI  :  10.1016/j.jalgebra.2008.08.006
来源: Elsevier
PDF
【 摘 要 】

A regular A(n)-crystal is an edge-colored directed graph, with n colors, related to an irreducible highest weight integrable module over U-q(sl(n+1)). Based on Stembridge's local axioms for regular simply-laced crystals and a structural characterization of regular A(2)-crystals in [V.I. Danilov, AN. Karzanov, G.A. Koshevoy, Combinatorics of regular A(2)-crystals, J. Algebra 310 (2007) 218-234], we present a new combinatorial construction, the so-called crossing model, and prove that this model generates precisely the set of regular A(n)-crystals. Using the model, we obtain a series of results on the combinatorial structure of such crystals and properties of their subcrystals. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2008_08_006.pdf 428KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次