期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:322 |
Stanley depth of squarefree monomial ideals | |
Article | |
Keller, Mitchel T.1  Young, Stephen J.1  | |
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA | |
关键词: Stanley depth; Squarefree monomial ideal; Boolean lattice; Partition; Interval; | |
DOI : 10.1016/j.jalgebra.2009.05.021 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we answer a question posed by Y.H. Shen. We prove that if I is an m-generated squarefree monomial ideal in the polynomial ring S = K[x(1), ..., x(n)] with K a field, then sclepth I >= n - left perpendicularm/2right perpendicular. The proof is inductive and uses the correspondence between a Stanley decomposition of a monomial ideal and a partition of a particular poset into intervals established by Herzog, Vladoiu and Zheng. (C) 2009 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2009_05_021.pdf | 121KB | download |