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In this paper, we answer a question posed by Y.H. Shen. We
prove that if I is an m-generated squarefree monomial ideal in the
polynomial ring S = K [x1, . . . , xn] with K a field, then sdepth I �
n − �m/2�. The proof is inductive and uses the correspondence
between a Stanley decomposition of a monomial ideal and a
partition of a particular poset into intervals established by Herzog,
Vladoiu and Zheng.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In [1], Stanley introduced the idea of what is now called the Stanley depth of a Z
n-graded module

over a commutative ring and conjectured that the Stanley depth is always at least the module’s depth.
While some special cases of the conjecture have been resolved, it still remains largely open. Herzog,
Vladoiu and Zheng considered the Stanley depth of monomial ideals in [2] and showed that the
Stanley depth of a monomial ideal can be computed by partitioning a finite poset associated to the
ideal into intervals. Biró, Howard, Keller, Trotter and Young used this correspondence in [3] to show
that for K a field, the Stanley depth of the maximal ideal (x1, . . . , xn) ⊆ K [x1, . . . , xn] is exactly �n/2�.
Shen subsequently showed in [4] that the result of Biro et al. can be extended to show that the
Stanley depth of a complete intersection monomial ideal minimally-generated by m monomials is
n − �m/2�. Shen’s proof relies on a theorem of Cimpoeaş [5] which states that the Stanley depth of
a complete intersection monomial ideal is equal to that of its radical, which allows for a focus on
squarefree ideals.

In addition to finding the exact value of the Stanley depth of an m-generated complete intersection
monomial ideal, Shen proved two results regarding squarefree monomial ideals that are not complete
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intersection monomial ideals. In particular, [4] shows that if I ⊆ K [x1, . . . , xn] is a 3-generated square-
free monomial ideal, then sdepth I � n − 1, and if I is a 4-generated squarefree monomial ideal, then
sdepth I � n − 2. An example is also given to show that the inequality may be strict. The following
theorem, which is the main result of this paper, provides an affirmative answer to Shen’s Question 4.3.

Theorem 1.1. Let K be a field and I ⊆ K [x1, . . . , xn] be an m-generated squarefree monomial ideal. Then
sdepth I � n − �m/2�.

Shen’s proof for the m = 3 case of Theorem 1.1 involves four steps spanning multiple pages. The
proof relies upon finding an appropriate interval partition of the poset associated to I but passes
a number of times between the language of ideals and the combinatorial question of partitioning.
Our proof of Theorem 1.1 is considerably shorter and proceeds by inductively constructing an interval
partition with the desired property. This suggests that the combinatorial approach provides a powerful
tool for resolving questions involving Stanley depth.

Before restating Theorem 1.1 in terms of interval partitions and giving a proof in Section 3, we
establish our notation and the needed background in Section 2.

2. Notation and background

For a positive integer n, let [n] = {1,2, . . . ,n} and let 2n denote the Boolean algebra consisting of
all subsets of [n]. For x � y in a poset P, we let [x, y] = {z: x � z � y} and call [x, y] an interval in P.
An antichain in a poset is a set of pairwise incomparable elements of the poset. For 2n , an antichain is
simply a set of subsets of [n] such that no subset is contained in any other. If P is a poset and x ∈ P,
we let U [x] = {y ∈ P: y � x} and call this the up-set of x. An element x of P is minimal if there is no
y with y � x in P.

Throughout this paper, we will let K denote a field and S = K [x1, . . . , xn]. If M is a finitely gen-
erated Z

n-graded S-module, u ∈ M is a homogeneous element, and Z ⊆ {x1, . . . , xn}, then we call the
K -subspace uK [Z ] of M generated by the elements uv where v is a monomial in K [Z ] a Stanley space
of dimension |Z | if uK [Z ] is a free K [Z ]-module. We call a presentation of the Z

n-graded K -vector
space M as a finite direct sum of Stanley spaces D : M = ⊕m

i=1 ui K [Zi] in the category of Z
n-graded

K -vector spaces a Stanley decomposition of M . The Stanley depth of D , sdepth D, is min{|Zi |: 1 � i � m}
and the Stanley depth of M is then

sdepth M = max
D

sdepth D,

where the maximum is taken over all Stanley decompositions D of M .
In [2], Herzog et al. introduced a powerful connection between the Stanley depth of a monomial

ideal and a combinatorial partitioning problem for partially ordered sets. For c ∈ N
n , let xc denote the

monomial xc(1)
1 xc(2)

2 · · · xc(n)
n . Let I = (xa1 , . . . , xar ) ⊆ S be a monomial ideal. Let g ∈ N

n be such that
g � ai for all i. The characteristic poset of I with respect to g , denoted Pg

I , is defined as the induced
subposet of N

n with ground set

{
c ∈ N

n
∣∣ c � g and there is i such that c � ai

}
.

(The definition in [2] includes the more general case of the module I/ J where J ⊆ I are monomial
ideals, but this definition is sufficient for our purposes.)

Let C be a partition of Pg
I into intervals. For J = [x, y] ∈ C , define

Z J = {
i ∈ [n] ∣∣ y(i) = g(i)

}
.

Define the Stanley depth of a partition C to be sdepth C = min J∈C |Z J | and the Stanley depth of the
poset Pg

I to be sdepth Pg
I = maxC sdepth C , where the maximum is taken over all partitions C of Pg

I
into intervals. Herzog et al. showed in [2] that sdepth I = sdepth Pg

I .
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If I is squarefree, then we may take g = (1, . . . ,1) and work inside {0,1}n , which is isomorphic
to 2n . A monomial v in S then can be identified with the subset of [n] whose elements correspond
to the subscripts of the variables appearing in v . If I = (v1, . . . , vm) is squarefree and Ai ⊆ [n] corre-
sponds to vi , then the definition of Pg

I clearly simplifies to Pg
I = ⋃m

i=1 U [Ai] as a subposet of 2n . For
an interval J = [X, Y ], we then have that |Z J | corresponds to |Y |.

3. A combinatorial theorem and proof

With the definitions of the previous section, we are now ready to state and prove the combinato-
rial version of Theorem 1.1. They are clearly equivalent once we note that if I is minimally generated
by v1, . . . , vm , then the sets corresponding to the vi must form an antichain.

Theorem 3.1. Let A be an antichain of size m in 2n and let P = ⋃
A∈A U [A]. Then there exists a partition C of

P into intervals such that for each interval [X, Y ] ∈ C , |Y | � n − �m/2�.

Proof. Let k be the number of elements of [n] that appear in at least two sets in A. Our proof will
be by induction on k. The base case is k = 0, which follows from Theorem 2.4 of [4] since the sets in
A being disjoint corresponds to a complete intersection monomial ideal.

We assume that the result holds (for all n and m) if at most k � 0 elements of [n] occur in
more than one set in an antichain. Let A be an antichain in 2n in which exactly k + 1 elements
of [n] occur in more than one set. Fix an element x ∈ [n] that appears in at least two elements
of A. Let A0 = {A ∈ A: x /∈ A} and A1 = {A ∈ A: x ∈ A}. Since x /∈ A for all A ∈ A0, we can define
P0 = ⋃

A∈A0
U [A], taking up-sets inside the lattice of subsets of [n] − {x} so that we may view P0 as

a subposet of 2n−1. We also define

P1 =
( ⋃

A∈A1

U [A]
)

∪
( ⋃

A∈A0

U
[

A ∪ {x}]
)

as a subposet of 2n and note that it is isomorphic to the poset

( ⋃
A∈A1

U
[

A − {x}]
)

∪
( ⋃

A∈A0

U [A]
)

,

which is a subposet of the lattice of subsets of [n] − {x} and thus isomorphic to a subposet of 2n−1.
We will use P1 to refer to whichever of these representations is more convenient. Although these
representations do not give, strictly speaking, a representation of P1 as the union of the up-sets of
elements of an antichain, we note that P1 can be represented in this way using the minimal elements
M of A1 ∪ {A ∪ {x}: A ∈ A0}. We note that P is the disjoint union of P0 and P1 when they are
considered as subposets of 2n .

Note that since x does not occur in any of the sets of P0, at most k of the elements of [n] − {x}
occur in more than one set of A0, so by induction we may partition P0 into a collection C0 of intervals
such that for each [X, Y ] ∈ C0,

|Y | � (n − 1) −
⌊ |A0|

2

⌋
� (n − 1) −

⌊
m − 2

2

⌋
= n −

⌊
m

2

⌋
.

Similarly, x does not appear in any of the sets of the second representation of P1, so by induction
we have a partition C1 of P1 into intervals so that for each [X, Y ] ∈ C1,

|Y | � (n − 1) −
⌊ |M|

2

⌋
� (n − 1) −

⌊
m

2

⌋
.
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Since our goal is to think of P as being the disjoint union of P0 and P1 inside 2n , we now lift the
intervals of C1 and form the partition

C′
1 = {[

X ∪ {x}, Y ∪ {x}]: [X, Y ] ∈ C1
}
,

which is a partition of the first representation of P1. Now notice that the upper bounds of the intervals
have increased in size by one, so that for each [X, Y ] ∈ C′

1 we have |Y | � n − �m/2�.
The partition C = C0 ∪ C′

1 is the desired partition of P with |Y | � n −�m/2� for each [X, Y ] ∈ C . �
4. Conclusion

It is worth noting that the bound of Theorem 3.1 is only nontrivial for a fraction of the possible
values of m, since 2n contains an antichain of size

( n
�n/2�

)
. It may be possible to formulate a stronger

bound involving the number of elements of [n] that appear in more than one set in the antichain A.
In fact, we can use A to form a hypergraph ([n], A), and perhaps studying this hypergraph will pro-
vide additional insight. Furthermore, the techniques developed thus far for interval partitioning seem
to just scratch the surface. An investigation of other classes of monomial ideals that have characteristic
posets that have been studied in other contexts may prove fruitful to both algebra and combinatorics.
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