期刊论文详细信息
JOURNAL OF ALGEBRA 卷:368
On some minimal supervarieties of exponential growth
Article
Di Vincenzo, Onofrio Mario2  Spinelli, Ernesto1 
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
[2] Univ Basilicata, Dipartimento Matemat & Informat, I-85100 Potenza, Italy
关键词: Superalgebras;    Polynomial identities;    Superexponent;   
DOI  :  10.1016/j.jalgebra.2012.07.005
来源: Elsevier
PDF
【 摘 要 】

In the present paper we investigate minimal supervarieties of given superexponent over fields of characteristic zero. We show that any minimal supervariety of finite basic rank is generated by one of the minimal superalgebras, introduced by Giambruno and Zaicev in 2003. Furthermore it is proved that any minimal superalgebra, whose graded simple components of the semisimple part are simple, generates a minimal supervariety. Finally we state that the same conclusion holds when the semisimple part of a minimal superalgebra has exactly two arbitrary graded simple components. (c) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2012_07_005.pdf 256KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次