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in 2003. Furthermore it is proved that any minimal superalgebra,
whose graded simple components of the semisimple part are sim-
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same conclusion holds when the semisimple part of a minimal su-
peralgebra has exactly two arbitrary graded simple components.
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1. Introduction

Let F be a field of characteristic zero and let F 〈X〉 be the free associative algebra on a countable
set X over F . If V is a variety of associative algebras over F , let us denote by Id(V) the T -ideal of F 〈X〉
associated to V . Recall that Id(V) is a two-sided ideal invariant under all endomorphisms of F 〈X〉 and
consists of the polynomial identities satisfied by all the algebras of V . An algebra A generates V if the
set Id(A) of polynomial identities it satisfies coincides with Id(V). In this case, we write V = var(A).
A variety V is called non-trivial if Id(V) is non-zero and V is proper if it is non-trivial and contains a
non-zero algebra.

A fundamental tool for the investigation of varieties is the concept of codimension sequence, in-
troduced by Regev in the seminal paper [23]. For every variety V and for every n � 1 the n-th
codimension cn(V) of V is the dimension of the vector space Pn

Pn∩Id(V)
, where Pn is the space of
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multilinear polynomials of degree n in a fixed set of n variables. Since F has characteristic zero and,
hence, Id(V) is completely determined by multilinear polynomials it contains, {cn(V)}n�1 gives us,
in some sense, the growth of the identities of given degree of the variety V . The starting point for
understanding the asymptotic behaviour of this sequence is a result of [23] stating that, when V is
proper, {cn(V)}n�1 is exponentially bounded, that is there exists a constant a > 0 such that cn(V) � an

for all n. Later Kemer in [19] characterized the varieties whose codimension sequence is polynomially
bounded (see also [15]). From his work it turns out that there exists no variety with intermediate
growth of the codimensions between polynomial and exponential. A fundamental step in this setting
is a remarkable result due to Giambruno and Zaicev ([13] and [14]) establishing that for any proper
variety V the limit

exp(V) := lim
m→+∞

m
√

cm(V)

exists and is a non-negative integer, which is called the exponent of the variety V . If V = var(A), we
write exp(A) := exp(V), the exponent of the algebra A. The most important feature of the exponent
is that it provides an integral scale allowing us to measure the growth of any variety. By virtue of this,
the theory has developed towards a classification of varieties according to the asymptotic behaviour
of their codimension sequences. A deep result in this direction is provided by Giambruno and Zaicev
in [17] with the characterization of minimal varieties of given exponent d � 2, namely those varieties
V such that exp(V) = d and exp(U) < d for all proper subvarieties U of V . In particular, they proved
that a variety is minimal of exponent d if, and only if, it is generated by the Grassmann envelope of
a so-called minimal superalgebra.

More generally, superalgebras play a basic role in the theory of varieties. In fact, according to a
celebrated result of Kemer (see [20]), any T -ideal of polynomial identities of a non-trivial variety
coincides with the T -ideal of polynomial identities satisfied by the Grassmann envelope of a suitable
finite-dimensional superalgebra. Nevertheless, their graded polynomial identities have been the object
of a good deal of independent attention.

Let F 〈Y ∪ Z〉 be the free associative algebra on the disjoint countable sets of variables Y :=
{y1, y2, . . .} and Z := {z1, z2, . . .}. It has a natural superalgebra structure if we require that the vari-
ables from Y have degree 0 and those from Z have degree 1. The superalgebra F 〈Y ∪ Z〉 is called
the free associative superalgebra on Y and Z over F . An element f (y1, . . . , yn, z1, . . . , zm) of F 〈Y ∪ Z〉
is said to be a Z2-graded polynomial identity or superidentity for an F -superalgebra A = A(0) ⊕ A(1)

if f (a1, . . . ,an,b1, . . . ,bm) = 0 for all a1, . . . ,an ∈ A(0) and b1, . . . ,bm ∈ A(1) . Let T2(A) be the set of
all the Z2-graded identities satisfied by A, which is easily seen to be a T2-ideal of F 〈Y ∪ Z〉, namely
an ideal of F 〈Y ∪ Z〉 invariant under all the endomorphisms of F 〈Y ∪ Z〉 preserving the grading.
A variety of associative superalgebras or supervariety V sup is the class of all associative F -superalgebras
whose T2-ideals of graded identities contain the T2-ideal of F 〈Y ∪ Z〉 associated to V sup , denoted by
T2(Vsup). The supervariety V sup is generated by the superalgebra A if T2(Vsup) = T2(A) and in this
case we write V sup = supvar(A). By following the same procedure of the ordinary case, let us con-
sider the n-th Z2-graded codimension (or n-th supercodimension) csup

n (A) of a superalgebra A defined

as dimF
P sup

n

P sup
n ∩T2(A)

, where P sup
n denotes the space of multilinear polynomials of degree n of F 〈Y ∪ Z〉

in y1, z1, . . . , yn, zn . Since F has characteristic zero, the spaces P sup
n ∩ T2(A) determine T2(A). In

[12] it was proved that {csup
n (A)}n�1 is exponentially bounded if, and only if, A satisfies an ordi-

nary polynomial identity. In [3] the authors captured the exponential growth of this sequence in the

case in which A is finitely generated and PI by proving that the limm→+∞ m
√

csup
m (A) exists and is a

non-negative integer, called the Z2-graded exponent or superexponent of A and denoted by exp2(A).
If V sup = supvar(A), set exp2(Vsup) := exp2(A), the superexponent of the supervariety V sup . Recently,
the existence of the graded exponent has been established for any PI algebra graded by a finite abelian
group (see [7,1] and [10]).

As in the ordinary case, in the superalgebras setting a considerable amount of work has been
devoted to the investigation of the asymptotic behaviour of supercodimensions. In [11] the authors
provided a list of five superalgebras characterizing the supervarieties of polynomial growth, namely
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those supervarieties with polynomially bounded supercodimension sequence. More precisely, they
showed that a supervariety V sup has polynomial growth if, and only if, none of the superalgebras
of the list belongs to V sup . As a consequence, the supervarieties generated by those superalgebras are
the only supervarieties of almost polynomial growth, namely, in terms of superexponent, those vari-
eties of superalgebras of superexponent d � 2 such that any proper subvariety has superexponent at
most 1. Following this direction, La Mattina in [22] has completely classified all subvarieties of the
varieties of superalgebras of almost polynomial growth by determining, among the other things, all
their minimal subvarieties of polynomial growth.

In this framework it becomes of particular interest to investigate minimal varieties of PI super-
algebras of given superexponent, which are the natural generalization of supervarieties of almost
polynomial growth.

Definition 1.1. A variety V sup of PI associative superalgebras is said to be minimal of superexponent d if
exp2(Vsup) = d and exp2(U sup) < d for all proper subvarieties U sup of V sup .

The present paper originates from the attempt to characterize supervarieties of finite basic rank
(that is generated by a finitely generated and PI superalgebra) which are minimal with respect to
their superexponent. In the first part we prove that any such supervariety is generated by a minimal
superalgebra. In the second one we show that any minimal superalgebra in which all the graded
simple components of the semisimple part are simple generates a minimal supervariety. Finally we
prove that the same conclusion holds when the semisimple part of a minimal superalgebra has exactly
two arbitrary graded simple components.

The corresponding problem for finite-dimensional algebras with involution was studied and solved
in a series of papers ([6,8] and [9]) in which special block triangular matrix algebras with involution
were constructed.

Before proceeding, a simple consideration is in order. As mentioned above, varieties of superal-
gebras of superexponent 1, namely varieties of polynomial growth, have been characterized in [11].
In particular, this result states that a Z2-graded algebra has polynomially bounded supercodimension
sequence if, and only if, it satisfies a certain set of Z2-graded polynomial identities. It is easy to see
that any graded identity of this set is a consequence of the polynomials [y1, y2] and z1, which are the
generators of the T2-ideal of Z2-graded polynomial identities satisfied by F (with its natural grading
(F ,0)). Obviously, the supervariety generated by F is minimal of superexponent 1. By collecting all
these deductions one has that supvar(F ) is the unique minimal supervariety of polynomial growth.
For this reason, in the sequel we shall deal with minimal supervarieties of exponential growth.

2. Preliminaries and minimal superalgebras

Throughout the rest of the paper, unless otherwise stated, let F denote a field of characteristic
zero and all the algebras are assumed to be associative and to have the same ground field F .

Recall that an algebra A is a superalgebra (or Z2-graded algebra) if it has a vector space decomposi-
tion A = A(0) ⊕ A(1) such that A(0) A(0) + A(1) A(1) ⊆ A(0) and A(0) A(1) + A(1) A(0) ⊆ A(1) . The subspaces
A(0) and A(1) are said to be the even and the odd component of A, respectively. Accordingly, the el-
ements of A(0) are called even (or homogeneous of degree 0) and those of A(1) are called odd (or
homogeneous of degree 1). An element w of A is homogeneous if it is homogeneous of degree 0
or 1 (and we write |w| = 0 and |w| = 1, respectively), whereas a subspace V ⊆ A is homogeneous if
V = (V ∩ A(0)) ⊕ (V ∩ A(1)). The superalgebra A is called graded simple (or Z2-simple) if the multipli-
cation is non-trivial and it has no non-trivial homogeneous ideals.

Assume that A is a finite-dimensional superalgebra and J = J (A) is its Jacobson radical. Then J is
homogeneous and set J (i) := J ∩ A(i) for i = 0,1. Moreover, by the generalization of the Wedderburn–
Malcev Theorem we can write A = Ass + J , where Ass is a maximal semisimple subalgebra of A having
an induced Z2-grading. Also Ass can be written as the direct sum of graded simple superalgebras
whose structure is well known, at least when the ground field is algebraically closed (see [24]). In
fact, they are one of the following types:
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(a) Mk,l :=
(

A B
C D

)
, where k � l � 0, k �= 0, A ∈ Mk , D ∈ Ml , B ∈ Mk×l and C ∈ Ml×k , endowed with the

grading M(0)

k,l :=
(

A 0
0 D

)
and M(1)

k,l :=
(

0 B
C 0

)
;

(b) Mm(F ⊕ t F ), where t2 = 1 with grading (Mm, tMm),

where, for any pair of positive integers m and s, the symbol Mm×s means the F -vector space of all
rectangular matrices with m rows and s columns, and Mm := Mm×m . When in (a) l = 0, Mk,0 is noth-
ing but the matrix algebra Mk with the trivial grading (Mk,0). In the sequel we refer to superalgebras
of type (a) and (b) as canonical simple superalgebras.

Giambruno and Zaicev in [17] introduced the definition of minimal superalgebra in the following
manner.

Definition 2.1. Let F be an algebraically closed field. An F -superalgebra A is called minimal if it is
finite-dimensional and A = Ass + J where

(i) Ass = A1 ⊕ · · · ⊕ An with A1, . . . , An canonical simple superalgebras;
(ii) there exist homogeneous elements w12, . . . , wn−1,n ∈ J (0) ∪ J (1) and minimal graded idempotents

e1 ∈ A1, . . . , en ∈ An such that

ei wi,i+1 = wi,i+1ei+1 = wi,i+1, i = 1, . . . ,n − 1

and

w12 w23 · · · wn−1,n �= 0;

(iii) w12, . . . , wn−1,n generate J as two-sided ideal of A.

We observe that, when n = 1, A is nothing but a canonical simple superalgebra.
In Lemma 3.5 of [17] it was shown that the minimal superalgebra A has the following vector space

decomposition:

A =
⊕

1�i� j�n

Aij, (1)

where A11 := A1, . . . , Ann := An and, for all i < j,

Aij := Ai wi,i+1 Ai+1 · · · A j−1 w j−1, j A j.

Moreover J = ⊕
i< j Ai j and Aij Akl = δ jk Ail , where δ jk is the Kronecker delta.

As stressed in Chapter 8 of [18], the order of the simple components A1, . . . , An of the semisimple
part Ass of a minimal superalgebra A is important. For this reason in the sequel we shall tacitly
agree that if A = Ass + J is a minimal superalgebra with semisimple part Ass = A1 ⊕ · · · ⊕ An , then
A1 J A2 J · · · J An �= 0. According to the main result of [3], exp2(A) = dimF Ass .

3. Generators of minimal supervarieties of finite basic rank

The aim of this section is to show that any minimal supervariety of finite basic rank is generated
by a suitable minimal superalgebra. The first important feature of these superalgebras (which will be
very useful for our aims) is the following result.

Lemma 3.1. Let A be a finite-dimensional superalgebra over an algebraically closed field. Then there exists a
minimal superalgebra B ⊆ A such that exp2(A) = exp2(B).



186 O.M. Di Vincenzo, E. Spinelli / Journal of Algebra 368 (2012) 182–198
Proof. See Lemma 8.1.4 of [18]. �
We are in position to state the first of our main results.

Proposition 3.2. Let V sup be a supervariety of finite basic rank. If V sup is minimal of superexponent d � 2,
then V sup = supvar(B), where B is a suitable minimal superalgebra.

Proof. Since V sup is of finite basic rank, according to Kemer’s result (see Theorem 2.2 of [20]) there
exists a finite-dimensional superalgebra A over F such that V sup = supvar(A) and exp2(A) = d.
Let F be the algebraic closure of F and A := A ⊗F F . Then A has an induced grading given by
A(0) = A(0) ⊗F F and A(1) = A(1) ⊗F F . It follows that the n-th supercodimension csup

n (A) of A over F
coincides with the n-th supercodimension csup

n (A) of A over F . Hence exp2(A) = d (over F ). By
Lemma 3.1, supvar(A) contains a minimal superalgebra B of superexponent d. Since A as an F -super-
algebra belongs to V sup , it follows that B belongs to V sup . By the minimality of V sup we get that
Vsup = supvar(B), and this concludes the proof. �

Also by taking into account the characterization of minimal varieties of associative algebras of
given exponent (see [16] and [17]), it is natural to conjecture that a supervariety of finite basic rank
is minimal if, and only if, it is generated by a suitable minimal superalgebra. Hence the open question
to tackle is whether the supervariety generated by a minimal superalgebra is minimal with respect to
its superexponent.

Let us discuss the obvious strategy to use for this end. Let A be a minimal superalgebra and
let V sup := supvar(A). Let U sup ⊆ Vsup such that exp2(Vsup) = exp2(U sup). We aim to show that
U sup = Vsup . Since V sup satisfies some Capelli identities, U sup has finite basic rank (see Theorem 11.4.3
of [18]). By Kemer’s result, U sup is generated by a finite-dimensional superalgebra B ′ . On the other
hand, according to Lemma 3.1, there exists a minimal superalgebra B such that T2(B ′) ⊆ T2(B) and
exp2(B ′) = exp2(B). Consequently, T2(A) ⊆ T2(B) and exp2(A) = exp2(B). We have to prove that
T2(A) = T2(B). Thus we reduce our problem to comparing T2-ideals of identities of minimal su-
peralgebras with the same superexponent.

The following result will be crucial for our aims.

Lemma 3.3. Let A = Ass + J (A) and B = Bss + J (B) be minimal superalgebras such that T2(A) ⊆ T2(B) and
exp2(A) = exp2(B). Then Ass = Bss.

Before proving the lemma, the following considerations are in order. Let us denote by G the
infinite-dimensional Grassmann algebra over F with its natural Z2-grading G = G(0) ⊕ G(1) . If
A = A(0) ⊕ A(1) is a superalgebra, we use G(A) for the Grassmann envelope of A, namely G(A) =
(A(0) ⊗ G(0)) ⊕ (A(1) ⊗ G(1)). A celebrated theorem of Kemer says that every T -ideal of F 〈X〉 is the
T -ideal of the identities of G(A), where A is a suitable finite-dimensional superalgebra. Furthermore,
a T -ideal I of F 〈X〉 is verbally prime if I1 I2 ⊆ I for any T -ideals I1, I2 of F 〈X〉 implies that either
I1 ⊆ I or I2 ⊆ I . According to a well-known result of Kemer (see [20]), a proper T -ideal I is verbally
prime if, and only if, I = Id(G(A)) for some canonical simple superalgebra A.

The key role played by minimal superalgebras in PI theory and the connection with verbally prime
T -ideals is in the classification of minimal varieties of algebras of given exponent, which is the core
of [17].

Theorem 3.4. (See 7.5 of [17].) Let V be a variety of algebras such that exp(V) � 2. The following statements
are equivalent:

(i) V is a minimal variety of exponent d;
(ii) Id(V) is a product of verbally prime T -ideals;

(iii) V = var(G(A)), for some minimal superalgebra A = Ass + J such that dimF Ass = d.
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In particular, according to Corollary 4.4 of [17], if V = var(G(A)) is a minimal variety of given
exponent and A = (A1 ⊕ · · · ⊕ An) + J is the Wedderburn–Malcev decomposition of A, then

Id(V) = Id
(
G(A1)

) · · · Id
(
G(An)

)
. (2)

Proof of Lemma 3.3. From the assumption that T2(A) ⊆ T2(B) it follows that T2(G(A)) ⊆ T2(G(B)) as
well. Consequently, Id(G(A)) ⊆ Id(G(B)). Moreover, by virtue of the main result of [14],

exp
(
G(A)

) = exp2(A) = exp2(B) = exp
(
G(B)

)
.

Since G(A) is minimal with respect to its exponent, one has that

Id
(
G(A)

) = Id
(
G(B)

)
.

Let A = (A1 ⊕ · · · ⊕ An) + J (A) and B = (B1 ⊕ · · · ⊕ Bm) + J (B) be the Wedderburn–Malcev decom-
positions of the superalgebras A and B , respectively. The relation (2) yields

Id
(
G(A)

) = Id
(
G(A1)

) · · · Id
(
G(An)

)
and

Id
(
G(B)

) = Id
(
G(B1)

) · · · Id
(
G(Bm)

)
.

By invoking Lemma 8.5.4 of [18], the above equalities give us m = n and Id(G(Ai)) = Id(G(Bi)) for all
1 � i � n. By using the same arguments of the proof of Lemma 8.5.1 of [18], we conclude that Ai is
isomorphic (as a superalgebra) to Bi for all 1 � i � n. Since Ai and Bi are canonical simple superalge-
bras, this is equivalent to saying that Ai = Bi for all 1 � i � n, and this concludes the proof. �

A first immediate consequence of Lemma 3.3 is the following

Corollary 3.5. Any canonical simple superalgebra of dimension d > 1 generates a minimal supervariety of
superexponent d.

4. Minimal superalgebras with simple ZZZ2-simple components

Let us consider the complete matrix algebra Mn for some integer n � 2. A Z2-grading on Mn is
called elementary if there exists an n-tuple (g1, . . . , gn) ∈ Z

n
2 such that the matrix units Eij of Mn are

homogeneous and Eij ∈ M(k)
n if, and only if, k = g j − gi . In an equivalent manner, we can say that it

is defined a map | | : {1, . . . ,n} → Z2 inducing a grading on Mn by setting the degree of Eij equal to
| j| − |i|.

It is clear that canonical simple superalgebras of the form Mk,l have the structure of superalgebras
with elementary grading given by the (k + l)-tuple (0, . . . ,0︸ ︷︷ ︸

k times

,1, . . . ,1︸ ︷︷ ︸
l times

).

Now we show that, if A is a minimal superalgebra in which all the graded simple components of
the semisimple part are simple (as algebras), then it can be realized as a block triangular matrix alge-
bra with an elementary grading. In the sequel, for a finite sequence of positive integers (d1, . . . ,dn),
let us denote by UT(d1, . . . ,dn) the algebra of upper block triangular matrices of size d1, . . . ,dn .

Proposition 4.1. Let A = Ass + J be a minimal superalgebra. If Ass = A1 ⊕ · · · ⊕ An, where A j = Mk j ,l j for
all j, then A is isomorphic (as a superalgebra) to UT(k1 + l1, . . . ,kn + ln) equipped with a suitable elementary
grading.
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Proof. For all 1 � i � n, let | |i be the map defining the grading on the component Ai = Mki ,li . Set

η0 := 0 and, for all 1 � i � n, αi := ki + li and ηi := ∑i
k=1 αk , we want to construct a map

| |A : {1, . . . , ηn} → Z2

inducing a grading on UT(α1, . . . ,αn) so that A and S := (UT(α1, . . . ,αn), | |A) are isomorphic as su-
peralgebras.

For all 1 � i � n, let Bli := {ηi−1 + 1, . . . , ηi}. Then we have a partition of the set {1, . . . , ηn} into
n blocks, Bl1, . . . ,Bln . At this point, let us define the map | |A block-by-block, according to the degrees
|wi,i+1| of the homogeneous radical elements wi,i+1 appearing in Definition 2.1, in the following
manner. Set

| j|A := | j|1 ∀ j ∈ Bl1.

Then, inductively, for all 2 � i � n let us define

| j|A := | j − ηi−1|i ∀ j ∈ Bli

if

• either |t|A = |t − ηi−2|i−1 for all t ∈ Bli−1 and |wi−1,i| = 0
• or |t|A = |t − ηi−2|i−1 + 1 for all t ∈ Bli−1 and |wi−1,i | = 1.

Otherwise, set

| j|A := | j − ηi−1|i + 1 ∀ j ∈ Bli .

If the Eij ’s are the usual matrix units of S , set, for all 1 � i � j � n and 1 � r � αi , 1 � s � α j ,

E(i j)
rs := Eηi−1+r,η j−1+s and observe that, for all 1 � i � n, |E(ii)

rs |A = |s|i − |r|i . Hence there exists a
graded isomorphism φi between the i-th diagonal block Mαi of S (endowed with the grading induced
by that on S) and the Z2-simple component Ai of A. We can assume that in this isomorphism
E(ii)

11 �→ ei , where the ei ’s are the minimal graded idempotents of Definition 2.1.
Now, let us consider the subspaces Aij of A appearing in the decomposition (1). By the definition

Ai,i+1 = Ai wi,i+1 Ai+1, whereas, for the indices j > i + 1, setting wij := wi,i+1 wi+1,i+2 · · · w j−1, j , we
get that Aij = Ai wij A j . In fact, we notice that any minimal graded idempotent of the superalgebra
Ml,m is a minimal idempotent of the algebra Ml+m . Thus, for all 1 � k � n − 1, ek is a minimal
idempotent of Ak and hence one has that

wk−1,k Ak wk,k+1 = wk−1,kek Akek wk,k+1

is the vector subspace generated by {wk−1,k, wk,k+1}.

At this stage, observing that the matrix unit E(i j)
rs of S coincides with E(ii)

r1 E(i j)
11 E( j j)

1s , take the linear
map φ : S → A such that

E(i j)
rs �→

{
φi(E(ii)

r1 ) · wij · φ j(E( j j)
1s ) if i < j;

φi(E(i j)
rs ) if i = j.

Straightforward computations show that φ is a graded isomorphism from S to A, and this concludes
the proof. �

In this way we reduce the investigation of minimal superalgebras in which all the graded sim-
ple components of the semisimple part are simple to that of upper block triangular matrix algebras
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equipped with elementary gradings. In particular, we are interested in studying possible different
elementary Z2-gradings on the same block triangular matrix algebra.

Throughout the sequel, if | |A and | |B are maps defining an elementary Z2-grading on
UT(α1, . . . ,αn), set η0 := 0, for all 1 � i � n let us define ηi := ∑i

k=1 αk , Bli := {ηi−1 + 1, . . . , ηi},

pi := ∣∣{ j
∣∣ j ∈ Bli, | j|A = 0

}∣∣ and qi := ∣∣{ j
∣∣ j ∈ Bli, | j|A = 1

}∣∣.
Furthermore, let ri and si be the integers corresponding to pi and qi with respect to the grading
induced by | |B . It immediately follows that, for all 1 � i � n,

pi + qi = ri + si . (3)

We prove now an easy (but useful) isomorphism criterion.

Lemma 4.2. Let A := (UT(α1, . . . ,αn), | |A) and B := (UT(α1, . . . ,αn), | |B). If either (p1, . . . , pn) =
(r1, . . . , rn) or (p1, . . . , pn) = (s1, . . . , sn), then A and B are isomorphic as superalgebras.

Proof. We notice that, if (g1, . . . , gm) ∈ Z
m
2 defines an elementary grading on Mm , then, for all σ ∈ Sm

the element (gσ(1), . . . , gσ(m)) of Z
m
2 defines an elementary grading on Mm isomorphic to that in-

duced by (g1, . . . , gm).
Now, according to (3), if (p1, . . . , pn) = (r1, . . . , rn), then (q1, . . . ,qn) = (s1, . . . , sn). On the other

hand, if (p1, . . . , pn) = (s1, . . . , sn) it must be (q1, . . . ,qn) = (r1, . . . , rn). Therefore, in the case in which
(p1, . . . , pn) = (r1, . . . , rn), it is easy to see that the grading on B is obtained by a permutation σ of
the elements of the ηn-tuple inducing the grading on A such that σ(Bli) = Bli . Thus the result follows
from the above observation.

Hence assume that (p1, . . . , pn) = (s1, . . . , sn). The grading induced by the map | |A′ defined by
|i|A′ := |i|A + 1 for all 1 � i � ηn on UT(α1, . . . ,αn) is the same as that induced by | |A . If (p′

1, . . . , p′
n)

is the n-tuple corresponding to (p1, . . . , pn) with respect to | |A′ , one has that (p′
1, . . . , p′

n) =
(q1, . . . ,qn) = (r1, . . . , rn) and, as above, the expected conclusion holds. �

In the next lemma we show that the equality among the sequence of p j ’s and that of r j ’s or s j ’s
holds as soon as the graded identities satisfied by A are satisfied also by B . This is crucial in order to
state the main result of the section.

Lemma 4.3. Let A := (UT(α1, . . . ,αn), | |A) and B := (UT(α1, . . . ,αn), | |B). If T2(A) ⊆ T2(B), then either
(p1, . . . , pn) = (r1, . . . , rn) or (p1, . . . , pn) = (s1, . . . , sn). Consequently, A and B are isomorphic as superal-
gebras.

For its proof we need to introduce some terminology and preliminary results. Let us recall that,
for any positive integer n, the n-th Capelli polynomial Capn(x1, . . . , xn, xn+1, . . . , x2n+1) is the element
of the free associative algebra F 〈X〉 defined as∑

σ∈Sn

sgn(σ )xn+1xσ (1)xn+2xσ (2)xn+3 · · · x2nxσ (n)x2n+1,

whereas, when n = 0, it is nothing but the (n + 1)-st variable xn+1. The Standard polynomial in n vari-
ables Stn(x1, . . . , xn) is the element of F 〈X〉 defined as∑

σ∈Sn

sgn(σ )xσ (1)xσ (2) · · · xσ (n).

They play a prominent role in PI theory and we shall use them as a main tool throughout the rest of
the section.
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We quote now some results dealing with evaluations of Capelli and Standard polynomials in matrix
algebras without reporting their proofs, which are straightforward computations or consequences of
the Amitsur–Levitzki Theorem.

Lemma 4.4. The Standard polynomial Stt(x1, . . . , xt) is a polynomial identity for the upper block triangular
matrix algebra UT(d1, . . . ,dn) if, and only if, t � 2(d1 + · · · + dn).

Lemma 4.5. The Capelli polynomial Capt(x1, . . . , x2t+1) is a polynomial identity for the upper block triangu-
lar matrix algebra UT(d1, . . . ,dn) if, and only if, t � n + ∑n

i=1 d2
i . In particular, set k := n − 1 + ∑n

i=1 d2
i ,

for any 1 � l � d1 and 1 + ∑n−1
i=1 di � m �

∑n
i=1 di there exists an evaluation of Capk(x1, . . . , x2k+1) in

UT(d1, . . . ,dn) at matrix units equal to Elm.

Lemma 4.6. Let k > l be integers. The polynomial St2k−1(y1, . . . , y2k−1) is not a graded polynomial identity
for the simple superalgebra Mk,l and all its non-zero graded evaluations in Mk,l are linear combinations of
the matrix units Ei j for 1 � i, j � k. In particular, for any 1 � i, j � k there exists a graded evaluation of
St2k−1(y1, . . . , y2k−1) in Mk,l equal to Eij .

We are in position to prove Lemma 4.3. We recall that the notations are those introduced before
Lemma 4.2.

Proof of Lemma 4.3. Our proof will be by induction on n. Before proceeding, we notice that, in any
case, we can assume without loss of generality that p1 � q1, r1 � s1, | j|A = 0 for all 1 � j � p1 and
|k|B = 0 for all 1 � k � r1.

Let n = 1 and assume, if possible, that p1 > r1. By virtue of (3), q1 < s1. An easy application of
Lemma 4.6 shows that the element St2q1 (y1, . . . , y2q1 ) · z1 · St2q1 (y2q1+1, . . . , y4q1) of F 〈Y ∪ Z〉 is in
T2(A), but not in T2(B). This contradicts the original assumption that T2(A) ⊆ T2(B). Consequently,
p1 = r1, and we are done.

Thus, suppose that n � 2 and consider the superalgebras

A′ := (
UT(α1, . . . ,αn−1), | |A′

)
and

B ′ := (
UT(α1, . . . ,αn−1), | |B ′

)
,

where | |A′ and | |B ′ are the restrictions of the maps | |A and | |B to the set {1, . . . , ηn−1}, respec-
tively. Let us prove that T2(A′) ⊆ T2(B ′). Assume, if possible, that the inclusion does not hold. Hence
there exists f ∈ T2(A′) \ T2(B ′). Let us denote by An the n-th diagonal block of A with the grading
induced by the restriction of | |A to Bln and by B the subalgebra UT(αn−1,αn) equipped with the
grading induced by the restriction of | |B to the set Bln−1 ∪ Bln . Observe that the set T2(An) \ T2(B)

is non-empty (otherwise exp2(An) � exp2(B), which is false since exp2(B) > exp2(An)). Let us pick
one element g ∈ T2(An) \ T2(B) whose variables are pairwise different from those involved in f . Set
u := y + z, where y is an even variable and z an odd variable of F 〈Y ∪ Z〉 involved neither in f nor
in g . Then f ug is not a Z2-graded identity for the superalgebra B , but f ug ∈ T2(A′) · T2(An) ⊆ T2(A),
which contradicts the fact that T2(A) ⊆ T2(B).

Therefore we can apply the induction assumption to the superalgebras A′ and B ′ and, by combin-
ing it with (3), conclude that either

(p1, . . . , pn−1) = (r1, . . . , rn−1) and (q1, . . . ,qn−1) = (s1, . . . , sn−1) (4)

or

(p1, . . . , pn−1) = (s1, . . . , sn−1) and (q1, . . . ,qn−1) = (r1, . . . , rn−1). (5)
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In the same manner, let us consider the superalgebras

A′′ := (
UT(α2, . . . ,αn), | |A′′

)
and

B ′′ := (
UT(α2, . . . ,αn), | |B ′′

)
,

where | |A′′ and | |B ′′ are the restrictions of the maps | |A and | |B to the set {η1 + 1, . . . , ηn}, respec-
tively. As above, T2(A′′) ⊆ T2(B ′′). In this case from the induction assumptions it follows that either

(p2, . . . , pn) = (r2, . . . , rn) and (q2, . . . ,qn) = (s2, . . . , sn) (6)

or

(p2, . . . , pn) = (s2, . . . , sn) and (q2, . . . ,qn) = (r2, . . . , rn). (7)

If the equalities (4) and (6) occur, one has that (p1, . . . , pn) = (r1, . . . , rn). The same is true also
in the case in which (5) and (6) hold. In fact, in such an event, p1 = s1 � r1 = q1. Consequently,
p1 = q1 = r1 = s1, and we are done. The proof is concluded also when (5) and (7) are satisfied since
these equalities yield (p1, . . . , pn) = (s1, . . . , sn).

Thus, assume that the relations (4) and (7) hold simultaneously. This implies that, when n > 2,

pi = qi = ri = si ∀2 � i � n − 1.

If p1 = q1, it must be also r1 = p1 = q1 = s1 and we have nothing to show, since (p1, . . . , pn) =
(s1, . . . , sn). Therefore, assume that p1 > q1. We can also suppose that pn �= qn , otherwise their equal-
ity implies that (p1, . . . , pn) = (r1, . . . , rn). Furthermore, we can assume that | j|A = 0 and | j|B = 1 for
all ηn−1 + 1 � j � ηn−1 + pn .

At this stage, we distinguish two cases: when pn < qn and when pn > qn .
Now, the homogeneous components of degree 0 of A and B are isomorphic to a direct sum of

upper block triangular matrix algebras, namely

A(0) ∼= UT(p1, . . . , pn) ⊕ UT(q1, . . . ,qn)

and

B(0) ∼= UT(r1, . . . , rn) ⊕ UT(s1, . . . , sn).

Set t := qn + ∑n−1
i=1 pi , and let us consider the element of F 〈Y ∪ Z〉

f := St2t−1(y1, . . . , y2t−1).

Under the assumption that pn < qn , by Lemma 4.4 we get that f ∈ T2(A). But St2t−1(x1, . . . , x2t−1)

is not a polynomial identity for UT(r1, . . . , rn), since qn = rn . Therefore f is not in T2(B), which is a
contradiction.

Finally, suppose, if possible, that pn > qn . Let us consider the polynomials of F 〈Y ∪ Z〉

f1 := y(1)
1 St2p1−1

(
y(1)

2 , . . . , y(1)
2p1

)
y(1)

2p1+1

and

fn := y(n)
1 St2pn−1

(
y(n)

2 , . . . , y(n)
2p

)
y(n)

2p +1,
n n
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where y(1)
1 , . . . , y(1)

2p1+1, y(n)
1 , . . . , y(n)

2pn+1 are pairwise distinct variables from Y . If A1 is the first diag-
onal block of A with the grading induced by the restriction of | |A to Bl1, from Lemma 4.6 it follows
that f1 /∈ T2(A1) and fn /∈ T2(An). Denoted by B1 and Bn the first and the n-th diagonal block of B
with the grading induced by the restriction of | |B to Bl1 and Bln , respectively, since A1 ∼= B1 and
An ∼= Bn , f1 /∈ T2(B1) and fn /∈ T2(Bn) as well.

Set p := n − 1 + ∑n
i=1 α2

i . According to Lemma 4.5, for any 1 � l � η1 and ηn−1 + 1 � m � ηn

there exists an evaluation of Capp(x1, . . . , x2p+1) in UT(α1, . . . ,αn) equal to Elm . In particular, we
can choose to evaluate the variables x1, . . . , x2p+1 at matrix units. Consequently, for any 1 � l � η1
and ηn−1 + 1 � m � ηn there exist suitable homogeneous variables v1, . . . , v2p+1 in Y ∪ Z differ-
ent from those involved in f1 and fn such that the polynomial Capp(v1, . . . , v2p+1) has a graded
evaluation Capp(v̄1, . . . , v̄2p+1) = Elm in the superalgebra B . Indeed, to construct such a polynomial
let us consider one of the evaluations x̄1, . . . , x̄2p+1 at matrix units of the variables x1, . . . , x2p+1 in
UT(α1, . . . ,αn) so that Capp(x̄1, . . . , x̄2p+1) = Elm . Hence, for all 1 � k � 2p + 1, we choose to take vk
from Y (Z , respectively) if the degree of x̄k with respect to the grading | |B is 0 (1, respectively). As
an element of the free superalgebra F 〈Y ∪ Z〉, the so constructed polynomial Capp(v1, . . . , v2p+1) has
degree equal to the degree of Elm in B , namely |m|B − |l|B .

At this stage, let us fix 1 � i � p1 and ηn−1 + 1 � j � ηn−1 + pn and pick one element of F 〈Y ∪ Z〉
of the form Capp(v1, . . . , v2p+1) constructed as above having a graded evaluation in B equal to Eij . Let
us call this polynomial g . Since | j|B = 1 and |i|B = 0, g has total degree 1. Furthermore, by applying
Lemma 4.6 it is easy to see that there exists in B a graded evaluation of f1 equal to Eii and one of
fn which is equal to E jj (it is sufficient to evaluate f1 in B1 and fn in Bn , respectively). Therefore we
can conclude that there exists a non-zero graded evaluation of the polynomial h := f1 g fn in B .

Now let us look at the graded evaluations of h in the superalgebra A. Since h is multilinear, we
consider only graded evaluations of h at matrix units. First of all, we observe that any non-zero graded
evaluation ν : F 〈Y ∪ Z〉 → A of g in A is such that ν(g) ∈ J (A)n−1. Hence, it is a linear combination
of the matrices Elj , where 1 � l � η1 and ηn−1 + 1 � j � ηn . As J (A)n = 0, any possible non-zero
graded evaluation of h in A must be such that f1 must be evaluated in A1 and fn in An . But, by
invoking Lemma 4.6, these evaluations of the f i ’s are in the square of length pi of A(0)

i . Since g has
total degree 1, this forces to be h in T2(A). Thus h is in T2(A) \ T2(B), which contradicts the original
assumption that T2(A) ⊆ T2(B). Therefore it must be pn = qn , and this concludes the proof. �
Remark. The above lemma shows that one can distinguish the elementary Z2-gradings on
UT(α1, . . . ,αn) by their superidentities. This result is in the same spirit of those of [21] and [2],
having the aim to decide if graded algebras in some important class are determined, up to graded
isomorphism, by their graded identities.

At this point it is easy to obtain the main statement of the section, whose proof uses exactly the
same arguments of the discussion before Lemma 3.3.

Theorem 4.7. Let A = Ass + J be a minimal superalgebra. If Ass = A1 ⊕· · ·⊕ An, where A j = Mk j ,l j for all j,
then supvar(A) is minimal of superexponent dimF Ass.

Proof. Set V sup := supvar(A) and let us consider a subvariety U sup ⊆ Vsup such that exp2(Vsup) =
exp2(U sup). Since V sup satisfies some Capelli identities, U sup has finite basic rank and, by Kemer’s
result, it is generated by a finite-dimensional superalgebra B ′ . According to Lemma 3.1, there exists a
minimal superalgebra B such that T2(B ′) ⊆ T2(B) and exp2(B ′) = exp2(B). Therefore T2(A) ⊆ T2(B)

and exp2(A) = exp2(B) as well.
By virtue of Lemma 3.3 we know that Bss = A1 ⊕ · · · ⊕ An . Moreover, by invoking Proposition 4.1,

both A and B can be realized as the same block triangular matrix algebra, UT(k1 + l1, . . . ,kn + ln),
equipped with a suitable elementary grading constructed as in the proof of the mentioned result.
At this stage, we can apply Lemma 4.3 and conclude that A is isomorphic to B as a superalgebra.
Consequently T2(A) = T2(B), and the proof is done. �
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Giambruno and Zaicev proved that a variety of associative algebras of finite basic rank is minimal
if, and only if, it is generated by an upper block triangular matrix algebra UT(d1, . . . ,dn) and that
the T -ideal of identities of UT(d1, . . . ,dn) is factorable, namely it coincides with Id(Md1 ) · · · Id(Mdn )

(Theorems 1 and 2 of [16]). Working with superalgebras, the situation appears more involved. In fact,
as we have shown above, minimal superalgebras in which all the graded simple components of the
semisimple part are simple generate minimal supervarieties, but in general they do not generate the
same supervariety even if they have the same graded components A1, . . . , An (for instance, the case
in which A1 = · · · = An = F has been discussed in [4]). As a consequence, in general we cannot hope
that the T2-ideal of superidentities of these minimal superalgebras coincides with the product of the
T2-ideals of superidentities of the graded simple components A1, . . . , An . Nevertheless, in any case
the T -ideal of identities of their Grassmann envelope is equal to Id(G(A1)) · · · Id(G(An)) (Corollary 4.4
of [17]).

5. Minimal superalgebras with two ZZZ2-simple components

In this section we shall discuss in detail the special case in which the semisimple part of a minimal
superalgebra has exactly two Z2-simple components, A1 and A2.

First of all, let us describe the structure of such a superalgebra when at least one of A1 and A2
is a canonical simple superalgebra of type (b) by using the language of φ-actions. In fact, it is well
known that any superalgebra A can be viewed as an algebra with φ-action, where φ is an auto-
morphism of A of order at most 2. Indeed, the homomorphism φ of A = A(0) ⊕ A(1) defined by
φ(a0) := a0 and φ(a1) := −a1 for any a0 ∈ A(0) and a1 ∈ A(1) is an automorphism of A of order at
most 2. Conversely, if A is an algebra with an automorphism φ of order at most 2, then, by setting
A(0) := {a | a ∈ A, φ(a) = a} and A(1) := {a | a ∈ A, φ(a) = −a}, A is a superalgebra with grading
(A(0), A(1)).

Case I. Assume that A1 and A2 are both non-simple, A1 = Mm(F ⊕ cF ) and A2 = Mn(F ⊕ dF ),
where c2 = d2 = 1, and let us call A = Ass + J the minimal superalgebra having Ass = A1 ⊕ A2.
According to Definition 2.1, there exist homogeneous idempotents e1, e2 (of degree zero) and a ho-
mogeneous element w := w12 such that

e1 we2 = e1 w = we2 = w.

By regarding A as a φ-algebra, for i = 1,2, we can write Ai = Ii ⊕ φ(Ii) where Ii is a minimal two-
sided ideal of Ai and ei = ρi + φ(ρi) with ρi a non-homogeneous minimal idempotent. Hence

w = e1 we2 = (
ρ1 + φ(ρ1)

)
w

(
ρ2 + φ(ρ2)

)
= ρ1 wρ2 + ρ1 wφ(ρ2) + φ(ρ1)wρ2 + φ(ρ1)wφ(ρ2).

As w �= 0, either ρ1 wρ2 + φ(ρ1)wφ(ρ2) �= 0 or ρ1 wφ(ρ2) + φ(ρ1)wρ2 �= 0. For a suitable choice of
ε1 and ε2, we can write the above non-zero element as v := ε1 wε2 + φ(ε1)wφ(ε2), with, possibly,
u := φ(ε1)wε2 + ε1 wφ(ε2) �= 0. Furthermore

φ(v) =
{

v if |w| = 0;
−v if |w| = 1.

Thus v is homogeneous and (ε1 + φ(ε1))v = v = v(ε2 + φ(ε2)). Set v1 := ε1 wε2 and v2 :=
φ(ε1)wφ(ε2), one has that

φ(vi) =
{

vi+1 if |w| = 0;
−v if |w| = 1,
i+1
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where the subindex i + 1 of v is obviously intended modulo 2. We write u as u1 + u2, with u1 :=
φ(ε1)wε2 and u2 := ε1 wφ(ε2) and argue in the same manner for it. Now, for the subspace A12
appearing in the decomposition (1) of A we get

A12 = A1 w A2 = A1(v + u)A2 = A1 v A2 ⊕ A1u A2.

Moreover,

A1 v A2 = A1(v1 + v2)A2 = I1 v1 I2 ⊕ φ(I1)v2φ(I2)

and

A1u A2 = A1(u1 + u2)A2 = φ(I1)u1 I2 ⊕ I1u2φ(I2).

Since I1 ∼= Mm and I2 ∼= Mn , the modules appearing in the decomposition of A12, if non-zero, are
isomorphic to Mm×n . Therefore A can be represented as a block triangular matrix algebra of the
following form:

⎛
⎜⎝

B1 0 J1 J2
0 B2 J3 J4
0 0 C1 0
0 0 0 C2

⎞
⎟⎠ , Bi ∈ Mm, Ci ∈ Mn, J j ∈ Mm×n, (8)

with J2 = J3 = 0 if u = 0. The φ-action on A depends on the degree of the radical element w . In

particular, φ maps the element

⎛
⎝ a 0 x y

0 b z h
0 0 α 0
0 0 0 β

⎞
⎠ of A into

⎛
⎜⎝

b 0 h z
0 a y x
0 0 β 0
0 0 0 α

⎞
⎟⎠ if |w| = 0,

⎛
⎜⎝

b 0 −h −z
0 a −y −x
0 0 β 0
0 0 0 α

⎞
⎟⎠ if |w| = 1.

Consequently, if w is even, the grading on A is given by

⎛
⎜⎝

⎛
⎜⎝

B 0 X Y
0 B Y X
0 0 C 0
0 0 0 C

⎞
⎟⎠ ,

⎛
⎜⎝

B 0 X Y
0 −B −Y −X
0 0 C 0
0 0 0 −C

⎞
⎟⎠

⎞
⎟⎠ ,

otherwise it is given by

⎛
⎜⎝

⎛
⎜⎝

B 0 X Y
0 B −Y −X
0 0 C 0
0 0 0 C

⎞
⎟⎠ ,

⎛
⎜⎝

B 0 X Y
0 −B Y X
0 0 C 0
0 0 0 −C

⎞
⎟⎠

⎞
⎟⎠ .

We notice that the above gradings are equivalent, that is the so constructed superalgebras are isomor-
phic.

Case II. Assume that A1 is non-simple and A2 is simple, A1 = Mm(F ⊕ cF ) and A2 = Mk,l , where
c2 = 1 and k � l, and let us again call A the minimal superalgebra having semisimple part equal to
A1 ⊕ A2. As before, there exist non-trivial homogeneous idempotents e1, e2 and a homogeneous ele-
ment w := w12 such that e1 we2 = e1 w = we2 = w �= 0. Let us write A1 = I1 ⊕ φ(I1), where I1 is a
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minimal two-sided ideal of A1. Thus e1 = ρ1 + φ(ρ1), with ρ1 a non-homogeneous minimal idempo-
tent, and

w = e1 we2 = (
ρ1 + φ(ρ1)

)
we2 = ρ1 we2 + φ(ρ1)we2 �= 0.

Hence ρ1 we2 �= 0 and φ(ρ1)we2 = ±φ(φ(ρ1)we2) �= 0. Set v1 := ρ1 we2 and v2 := φ(ρ1)we2, one
has that

φ(vi) =
{

vi+1 if |w| = 0;
−vi+1 if |w| = 1.

Now, the subspace A12 of A coincides with I1 w A2 ⊕φ(I1)w A2. But I1 w A2 = I1 v1 A2 and φ(I1)w A2 =
φ(I1)v2 A2 and, since I1 ∼= Mm , these modules are isomorphic to Mm×(k+l) . Hence the superalgebra A
can be represented as a block triangular matrix algebra of the following form:

⎛
⎜⎝

B1 0 J1 J2
0 B2 J3 J4
0 0 C D
0 0 E H

⎞
⎟⎠ ,

with Bi ∈ Mm , J1, J3 ∈ Mm×k , J2, J4 ∈ Mm×l , C ∈ Mk , H ∈ Ml , D ∈ Mk×l , E ∈ Ml×k . If w is even, the
grading on A is given by

⎛
⎜⎝

⎛
⎜⎝

B 0 X Y
0 B X −Y
0 0 C 0
0 0 0 H

⎞
⎟⎠ ,

⎛
⎜⎝

B 0 X Y
0 −B −X Y
0 0 0 D
0 0 E 0

⎞
⎟⎠

⎞
⎟⎠ ,

otherwise one has ⎛
⎜⎝

⎛
⎜⎝

B 0 X Y
0 B −X Y
0 0 C 0
0 0 0 H

⎞
⎟⎠ ,

⎛
⎜⎝

B 0 X Y
0 −B X −Y
0 0 0 D
0 0 E 0

⎞
⎟⎠

⎞
⎟⎠ .

Also in this case the above gradings are equivalent.
When A1 = Mk,l and A2 = Mm(F ⊕ cF ), the superalgebra A can be represented as

⎛
⎜⎝

C D J1 J2
E H J3 J4
0 0 B1 0
0 0 0 B2

⎞
⎟⎠ ,

with C ∈ Mk , H ∈ Ml , D ∈ Mk×l , E ∈ Ml×k , Bi ∈ Mm , J1, J2 ∈ Mk×m and J3, J4 ∈ Ml×m , with (unique)
grading given by

⎛
⎜⎝

⎛
⎜⎝

C 0 X X
0 H Y −Y
0 0 B 0
0 0 0 B

⎞
⎟⎠ ,

⎛
⎜⎝

0 D X −X
E 0 Y Y
0 0 B 0
0 0 0 −B

⎞
⎟⎠

⎞
⎟⎠ .

It is interesting to notice that the above superalgebras can be obtained as homogeneous subalge-
bras of matrix algebras endowed with an elementary grading. More precisely we get
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Proposition 5.1. Let A = Ass + J be a minimal superalgebra such that Ass = A1 ⊕ A2 , where A1 , A2 are
canonical simple superalgebras with at least one of them of type (b). Then A is isomorphic to one of the follow-
ing superalgebras:

(i)

⎛
⎝ B1 B2 J1 J2

B2 B1 J3 J4
0 0 C1 C2
0 0 C2 C1

⎞
⎠, where Bi ∈ Mm, Ci ∈ Mn, J j ∈ Mm×n, with grading induced by the (2m + 2n)-tuple

(0, . . . ,0︸ ︷︷ ︸
m times

,1, . . . ,1︸ ︷︷ ︸
m times

,0, . . . ,0︸ ︷︷ ︸
n times

,1, . . . ,1︸ ︷︷ ︸
n times

), if A1 = Mm(F ⊕ cF ) and A2 = Mn(F ⊕ dF );

(ii)

⎛
⎝ B1 B2 J1 J2

B2 B1 J2 J1
0 0 C1 C2
0 0 C2 C1

⎞
⎠, where Bi ∈ Mm, Ci ∈ Mn, J i ∈ Mm×n, with grading induced by the (2m + 2n)-tuple

(0, . . . ,0︸ ︷︷ ︸
m times

,1, . . . ,1︸ ︷︷ ︸
m times

,0, . . . ,0︸ ︷︷ ︸
n times

,1, . . . ,1︸ ︷︷ ︸
n times

), if A1 = Mm(F ⊕ cF ) and A2 = Mn(F ⊕ dF );

(iii)

⎛
⎝ B1 B2 J1 J2

B2 B1 J3 J4
0 0 C D
0 0 E H

⎞
⎠, where Bi ∈ Mm, J1, J3 ∈ Mm×k, J2, J4 ∈ Mm×l , C ∈ Mk, H ∈ Ml, D ∈ Mk×l , E ∈

Ml×k, with grading induced by the (2m + k + l)-tuple (0, . . . ,0︸ ︷︷ ︸
m times

,1, . . . ,1︸ ︷︷ ︸
m times

,0, . . . ,0︸ ︷︷ ︸
k times

,1, . . . ,1︸ ︷︷ ︸
l times

), if A1 =
Mm(F ⊕ cF ) and A2 = Mk,l;

(iv)

⎛
⎝ C D J1 J2

E H J3 J4
0 0 B1 B2
0 0 B2 B1

⎞
⎠, where C ∈ Mk, H ∈ Ml, D ∈ Mk×l , E ∈ Ml×k, Bi ∈ Mm, J1, J2 ∈ Mk×m and J3, J4 ∈

Ml×m, with grading induced by the (k+ l+2m)-tuple (0, . . . ,0︸ ︷︷ ︸
k times

,1, . . . ,1︸ ︷︷ ︸
l times

,0, . . . ,0︸ ︷︷ ︸
m times

,1, . . . ,1︸ ︷︷ ︸
m times

), if A1 = Mk,l

and A2 = Mm(F ⊕ cF ).

Proof. (i) Let us consider the elements W :=
⎛
⎝ a 0 x y

0 a y x
0 0 b 0
0 0 0 b

⎞
⎠ of A(0) and T :=

⎛
⎝ a 0 x y

0 −a −y −x
0 0 b 0
0 0 0 −b

⎞
⎠ of A(1) . Then

the linear map such that

W �→
⎛
⎜⎝

a 0 x + y 0
0 a 0 x − y
0 0 b 0
0 0 0 b

⎞
⎟⎠ , T �→

⎛
⎜⎝

0 a 0 x − y
a 0 x + y 0
0 0 0 b
0 0 b 0

⎞
⎟⎠

is an isomorphism of superalgebras.
(ii) Analogously to (1) by taking y = 0.

(iii) Let us pick R :=
⎛
⎝ a 0 x y

0 a x −y
0 0 b 0
0 0 0 c

⎞
⎠ ∈ A(0) and S :=

⎛
⎝ a 0 x y

0 −a −x y
0 0 0 b
0 0 c 0

⎞
⎠ ∈ A(1) . Then the linear map such

that

R �→
⎛
⎜⎝

a 0 x 0
0 a 0 y
0 0 b 0
0 0 0 c

⎞
⎟⎠ , S �→

⎛
⎜⎝

0 a 0 y
a 0 x 0
0 0 0 b
0 0 c 0

⎞
⎟⎠

is the required isomorphism.



O.M. Di Vincenzo, E. Spinelli / Journal of Algebra 368 (2012) 182–198 197
(iv) Let us pick U :=
⎛
⎝ a 0 x x

0 b y −y
0 0 c 0
0 0 0 c

⎞
⎠ ∈ A(0) and V :=

⎛
⎝ 0 a x −x

b 0 y y
0 0 c 0
0 0 0 −c

⎞
⎠ ∈ A(1) . In this case the required

isomorphism is given by the linear map such that

U �→
⎛
⎜⎝

a 0 x 0
0 b 0 y
0 0 c 0
0 0 0 c

⎞
⎟⎠ , V �→

⎛
⎜⎝

0 a 0 x
b 0 y 0
0 0 0 c
0 0 c 0

⎞
⎟⎠ . �

We give now sufficient conditions so that the T2-ideal of superidentities of minimal superalgebras
with two graded simple components is factorable. To this end we premise a simple observation.

Remark 5.2. Let us consider the canonical simple superalgebra A := Mm(F ⊕ cF ) for some m � 1 and
a polynomial f (y1, . . . , yl, z1, . . . , zn) of F 〈Y ∪ Z〉. Then f (y1, . . . , yl, z1, . . . , zn) ∈ T2(A) if, and only
if, the polynomial f (x1, . . . , xl, xl+1, . . . , xl+n) of the free algebra F 〈X〉 is in Id(Mm).

Theorem 5.3. Let A = Ass + J be a minimal superalgebra such that Ass = A1 ⊕ A2 , where A1 , A2 are canonical
simple superalgebras. Then T2(A) = T2(A1) · T2(A2) if one of the following conditions is satisfied:

(i) at least one of A1 and A2 is of type (b);
(ii) A1 and A2 are both simple Z2-simple and there exists 1 � i � 2 such that Ai = Mki ,ki .

Proof. If A1 and A2 are as in (ii), Proposition 4.1 yields that A is isomorphic to an upper block tri-
angular matrix algebra equipped with a suitable elementary grading. At this point, the result directly
follows by combining Theorems 5.4 and 4.5 of [5].

Therefore assume that at least one of A1 and A2 is non-simple as an algebra. Proposition 5.1 states
that A is isomorphic to a homogeneous subalgebra R of a suitable matrix algebra Mα endowed with
an elementary grading. If A is as in the cases (i), (iii) or (iv) of Proposition 5.1, then R is a Z2-graded

block triangular matrix algebra of the form
(

R1 U
0 R2

)
. Clearly R1 is isomorphic to A1 and R2 to A2,

whereas U is the bimodule of all rectangular matrix algebras of suitable size (and depending on
that of the matrices of A1 and A2). Furthermore, if Ai is the non-simple graded simple component
of Ass , then the superalgebra Ri is Z2-regular (see Proposition 5.2 of [5] and its proof). By applying
Theorem 4.5 of [5] we conclude that T2(A) is factorable.

Finally suppose that A is as in Proposition 5.1(ii). Hence A can be represented as in (8) with
J2 = J3 = 0. Now, let us consider a polynomial f (y1, . . . , yr, z1, . . . , zs) ∈ T2(A). If A1 = Mm(F ⊕ cF )

and A2 = Mn(F ⊕ dF ), the polynomial f (x1, . . . , xr, xr+1, . . . , xr+s) of F 〈X〉 is an identity for UT(m,n).
According to Theorem 2 of [16], f (x1, . . . , xr+s) ∈ Id(Mm) · Id(Mn). From Remark 5.2 we get that
f (y1, . . . , yr, z1, . . . , zs) ∈ T2(A1) · T2(A2), and the expected conclusion holds. �

An easy consequence of Theorem 5.3 is the following result.

Theorem 5.4. Let A = Ass + J be a minimal superalgebra such that Ass = A1 ⊕ A2 , where A1 , A2 are canonical
simple superalgebras. Then the supervariety generated by A is minimal of superexponent dimF (A1 ⊕ A2).

Proof. When A1 and A2 are both simple (as algebras) the result is a special case of Theorem 4.7.
Thus assume that at least one of A1 and A2 is a canonical simple superalgebra of type (b). By

using exactly the same arguments of the proof of Theorem 4.7, we reduce to considering a minimal
superalgebra B with semisimple part Bss = Ass such that T2(A) ⊆ T2(B). At this point, it is sufficient
to show that T2(A) = T2(B), but this directly follows from Theorem 5.3(i). �
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