期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:564 |
Peirce decompositions, idempotents and rings | |
Article | |
Anh, Pham N.1  Birkenmeier, Gary F.2  van Wyk, Leon3  | |
[1] Hungarian Acad Sci, Renyi Inst Math, Pf 127, H-1364 Budapest, Hungary | |
[2] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA | |
[3] Stellenbosch Univ, Dept Math Sci, P Bag X1, ZA-7602 Stellenbosch, South Africa | |
关键词: Idempotent; Peirce decomposition; Peirce trivial; n-Peirce ring; Generalized matrix ring; Morita context; J-trivial; B-trivial; | |
DOI : 10.1016/j.jalgebra.2020.08.003 | |
来源: Elsevier | |
【 摘 要 】
Idempotents dominate the structure theory of rings. The Peirce decomposition induced by an idempotent provides a natural environment for defining and classifying new types of rings. This point of view offers a way to unify and to expand the classical theory of semiperfect rings and idempotents to much larger classes of rings. Examples and applications are included. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2020_08_003.pdf | 518KB | download |