期刊论文详细信息
JOURNAL OF ALGEBRA 卷:478
Jordan algebras and 3-transposition groups
Article
De Medts, Tom1  Rehren, Felix2 
[1] Univ Ghent, Dept Math, Krijgslaan 281 S22, B-9000 Ghent, Belgium
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词: Jordan algebras;    3-transposition groups;    Fischer spaces;    Peirce decomposition;    Matsuo algebras;    Root systems;   
DOI  :  10.1016/j.jalgebra.2017.01.025
来源: Elsevier
PDF
【 摘 要 】

An idempotent in a Jordan algebra induces a Peirce decomposition of the algebra into subspaces whose pairwise multiplication satisfies a certain fusion rule Phi)(1/2). On the other hand, 3-transposition groups (G, D) can be algebraically characterised as Matsuo algebras M alpha,(G,D) with idempotents satisfying the fusion rule Phi(a) for some a. We classify the Jordan algebras J which are isomorphic to a Matsuo algebra M-1/2,(G,D), in which case (G,D) is a subgroup of the (algebraic) automorphism group of J; the only possibilities are G = Sym(n) and G = 3(2) : 2. Along the way, we also obtain results about Jordan algebras associated to root systems. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2017_01_025.pdf 475KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次