期刊论文详细信息
JOURNAL OF ALGEBRA 卷:346
Galois subfields of inertially split division algebras
Article
Hanke, Timo
关键词: Noncommutative valuation;    Division algebra;    Maximal subfield;    Galois subfield;    Residue field;    Crossed product;    Noncrossed product;    Generic construction;   
DOI  :  10.1016/j.jalgebra.2011.08.019
来源: Elsevier
PDF
【 摘 要 】

Let D be a valued division algebra, finite-dimensional over its center F. Assume D has an unramified splitting field. The paper shows that if D contains a maximal subfield which is Galois over F (i.e. D is a crossed product) then the residue division algebra (D) over bar contains a maximal subfield which is Galois over the residue field (F) over bar. This theorem captures an essential argument of previously known noncrossed product proofs in the more general language of noncommutative valuations. The result is particularly useful in connection with explicit constructions. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2011_08_019.pdf 126KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次