
Journal of Algebra 346 (2011) 147–151
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Galois subfields of inertially split division algebras

Timo Hanke

Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64, D-52062 Aachen, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 October 2010
Available online 15 September 2011
Communicated by Michel Van den Bergh

MSC:
primary 16K20
secondary 16S35

Keywords:
Noncommutative valuation
Division algebra
Maximal subfield
Galois subfield
Residue field
Crossed product
Noncrossed product
Generic construction

Let D be a valued division algebra, finite-dimensional over its
center F . Assume D has an unramified splitting field. The paper
shows that if D contains a maximal subfield which is Galois over F
(i.e. D is a crossed product) then the residue division algebra D
contains a maximal subfield which is Galois over the residue
field F . This theorem captures an essential argument of previously
known noncrossed product proofs in the more general language
of noncommutative valuations. The result is particularly useful in
connection with explicit constructions.
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1. Introduction

Let (F , v) be an arbitrary valued field. By a valuation v on F we mean a Krull valuation, i.e. there
is no restriction on the rank or divisibility of the value group. Let D be a finite-dimensional central
F -division algebra. Assume v extends to a valuation on D and denote this extension also by v . By a
valuation on D we mean a valuation in the sense of Schilling [12], i.e. v corresponds to an invariant
valuation ring of D . We call (D, v) inertially split if there exists an unramified field extension L/F
such that L splits D .1 Let F , D denote the residue field of (F , v) and the residue division algebra of
(D, v), respectively. A maximal subfield of D means a commutative subfield of D which is maximal
with respect to inclusion.
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1 In other words, D is inertially split if and only if D is split by the maximal unramified extension F h

nr of the Henselization F h

of (F , v).
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Theorem 1. Let (D, v) be inertially split, F = Z(D). If D contains a maximal subfield Galois over F then D
contains a maximal subfield Galois over F . The converse holds if v is Henselian.

A division algebra D is called a crossed product if it contains a maximal subfield Galois over its
center, otherwise a noncrossed product. The existence as well as the construction of noncrossed prod-
ucts has spawned research interest from around 1930, when the question of existence first arose, to
the present day. Since Amitsur’s existence proof in 1972 more examples were found or constructed
by various authors and by various methods. In this context, Theorem 1 is regarded as a noncrossed
product criterion for valued division algebras which is formulated purely “on the residue level”. Note
that the condition ‘D does not contain a maximal subfield Galois over F ’ is weaker than ‘D is a
noncrossed product’ because F is in general a strict subfield of the center of D .

Valuations on division rings have played a crucial role in works on noncrossed products (explicitly
or implicitly, as [14, §5] points out). So it comes as no surprise that special cases of Theorem 1 can be
identified as a key ingredient in previously known noncrossed product proofs (even where valuations
on division rings are not explicitly mentioned), starting with Brussel [2]. In fact, it was the motivation
of the present paper to provide an abstraction of this useful argument in the language of noncommu-
tative valuations, which seems to capture its essence best. The precise relation of Theorem 1 to the
relevant literature is discussed in several remarks. We also point out its usefulness in connection with
explicit noncrossed product constructions.

For the most part the paper contains condensed material from the author’s thesis [4], described in
its historical context up to recent work in [7].

2. The main theorem

Let D be a division algebra, finite-dimensional over its center Z(D). Jacob and Wadsworth show
in [8, Thm. 5.15(b)] that if D is inertially split2 and contains a maximal subfield L Galois over Z(D)

then D contains the maximal subfield L Z(D), which is normal over Z(D). They conclude further that
D is a crossed product using a result of Saltman [10, Lem. 3]. This section points out that replacing
[10, Lem. 3] by a slightly stronger statement (see Proposition 2 below) leads to Theorem 1. In the
preface of [4] Theorem 1 appears as “Noncrossed Product Criterion”, and in the text as Theorem 5.20.

Proposition 2. Let F ⊆ Z(D) be a subfield such that Z(D)/F is finite and separable. If D contains a maximal
subfield that is normal over F then D also contains a maximal subfield that is Galois over F .

The case F = Z(D) is [10, Lem. 3]. An inspection of the proof reveals that it also handles the case
when Z(D)/F is finite and separable. Further details can be found in the appendix of [4]. Note that
this is essentially a statement about p-algebras.

Theorem 3. Let (D, v) be inertially split, F ⊆ Z(D) a finite degree subfield. Suppose Z(D)/F and Z(D)/F are
Galois. If D contains a maximal subfield which is Galois over F then D contains a maximal subfield which is
Galois over F . The converse holds if v is Henselian.

If F = Z(D) then the hypothesis ‘Z(D)/F is Galois’ is automatically satisfied [8, Lem. 5.1]. Thus
Theorem 1 is a special case of Theorem 3. The generality of Theorem 3 lends itself to an iterated
application for composite valuations, which is possible but not pursued further in this paper.

Proof of Theorem 3. Let L be a maximal subfield of D which is Galois over F . Following the lines
of proof of [8, Thm. 5.15], L Z(D) is a maximal subfield of D . Since L/F is Galois, L/F is normal
[3, p. 107]. Since Z(D)/F is Galois by hypothesis, L Z(D)/F is normal. Proposition 2 shows that D
contains a maximal subfield Galois over F .

2 We may assume the valuation to be Henselian by passing to the Henselization of D in the sense of [9].
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Conversely, let L be a maximal subfield of D which is Galois over F . Assume v is Henselian. By
[8, Thm. 2.9], D contains an inertial lift L̃ of L over F and L̃/F is Galois. Hence M := Z(D )̃L is Galois
over F and inertial over Z(D). Since M = L we have [M : Z(D)] = [L : Z(D)] = ind D by the index
formula in [8, Thm. 5.15]. Thus, M is maximal in D . �
3. Existence of inertially split division algebras

Assume (F , v) is Henselian. The inertially split division algebras over F then form a subgroup
of the Brauer group; this subgroup is the relative Brauer group Br(Fnr/F ), where Fnr is the max-
imal unramified extension of F . Let G = Gal(F sep/F ), Γ = v(F ∗), � the divisible hull of Γ . Any
continuous homomorphism χ ∈ Homc(G,�/Γ ) has a finite image when �/Γ is equipped with
the discrete topology because G is profinite. Thus, denoting the fixed field of ker(χ) by F (χ), the
extension F (χ)/F is finite abelian. Moreover, Gal(F (χ)/F ) has rank at most the rank of v . Let
resF→F (χ) : Br(F ) → Br(F (χ)),α �→ αχ denote the restriction map. There is a (noncanonical) exact
sequence, due to Witt [15] and Scharlau [11]:

0 → Br(F ) → Br(Fnr/F )
γ−→ Homc(G,�/Γ ) → 0. (1)

The interpretation of the cohomological data in this sequence has been extensively studied by Jacob
and Wadsworth in [8, p. 154ff]: Let (D, v) be inertially split with center F . Then Z(D) = F (γ [D])
[8, Thm. 5.6(b)] and ind D = ind D · [F (γ [D]) : F ] [8, Thm. 5.15(a)]. There exists a splitting map δ

for γ such that

D is a field for each [D] ∈ im(δ) (2)

[8, Rem. 5.9(ii)]. For any such δ, if [D] = α + δ(χ) with α ∈ Br(F ) and χ ∈ Homc(G,�/Γ ) then
[D] = αχ (following the proof of [8, Thm. 5.15(a)]). Proposition 4 below is an immediate consequence
of these facts. Suppose E is a finite-dimensional division algebra over F (not necessarily central).

Proposition 4. E is the residue of an F -central inertially split (D, v) if and only if Z(E) = F (χ) for some
χ ∈ Homc(G,�/Γ ) and [E] ∈ im(resF→Z(E)).

An F -central inertially split (D, v) with residue division algebra E will be called an F -central
lift of E (v is not required to be Henselian for this definition). Proposition 4 appears in the preface
of [4] as “Lift Theorem”, and in the text as Theorem 5.25. All F -central lifts of E are obtained by
taking, for a fixed δ satisfying (2), the underlying division algebras of α + δ(χ) where χ runs over all
χ ∈ Homc(G,�/Γ ) with F (χ) = Z(E) and α runs over all α ∈ Br(F ) with αχ = [E]. There is, however,
no canonical F -central lift because there is no canonical choice for α.3 Translating Theorem 1 in terms
of α and χ yields

Corollary 5. Suppose δ satisfies (2). Given a pair (α,χ) ∈ Br(F ) × Homc(G,�/Γ ), the division algebra D
underlying α + δ(χ) is a crossed product if and only if there is a Galois extension M/F of degree ind D that
contains F (χ) and splits α.

Proof. Let M ⊇ F (χ). Since αχ = [D], M splits α if and only if M splits D . Since ind D =
ind D · [F (χ) : F ], M is a maximal subfield of D if and only if [M : F ] = ind D . The assertion is thus
equivalent to Theorem 1. �

3 As a consequence, for instance, the exponent of an F -central lift of E is in general not determined by E . Note that δ

can be chosen order preserving by [8, Ex. 4.3]. In that case, following the proof of [8, Thm. 5.15(a)], one derives exp D =
lcm(expα,expχ). This expression is in general not determined by E; see [4, Ex. 5.13] for an example.
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The existence of noncrossed products over F can thus be shown by exhibiting pairs (α,χ) for
which no M as in Corollary 5 exists. This approach is original to [2] and has been followed in [7] (see
remark b) in Section 5 below).

4. Construction of inertially split division algebras

Let (F , v) be an arbitrary valued field. Let E be a finite-dimensional division algebra over F . As-
sume Z(E) = F (χ) for some χ ∈ Homc(G,�/Γ ) and [E] ∈ im(resF→Z(E)). Proposition 4 states the

existence of an F -central lift of E (over any Henselian valued field (F , v) with residue field F ) but
does not give a direct construction of the lift. Here, a construction is direct if we are not required to
pass from some representative of the class α + δ(χ) to its underlying division algebra. This section
points out that if one is allowed to choose F then a lift can be obtained by Tignol’s construction [13]
of a generic abelian extension of E . The construction is as follows, similar to the generic abelian crossed
products of Amitsur and Saltman in [1].

Since [E] lies in the image of resF→Z(E) , there is a central-simple F -algebra A and an F -algebra
embedding of E into A such that E is the centralizer of Z(E) in A. Suppose A as well as the em-
bedding of E are explicitly given, and identify E with its image in A. Choose a minimal set of
generators (σ1, . . . , σr) of the abelian group Gal(Z(E)/F ). By the Skolem–Noether theorem, choose
for each 1 � i � r an element zi ∈ A so that ziaz−1

i = σi(a) for all a ∈ Z(E). Let E[x1, . . . , xr; z] denote
the twisted polynomial ring defined by the relations

xia = (
ziaz−1

i

)
xi, xi x j = (

zi z j z
−1
i z−1

j

)
x jxi,

for all a ∈ E , 1 � i, j � r. Note that ziaz−1
i and zi z j z

−1
i z−1

j lie in E . Let E(x1, . . . , xr; z) denote the ring
of central quotients of E[x1, . . . , xr; z]. As in the proof of [13, Thm. 2.3] one may verify

Theorem 6. E(x1, . . . , xr; z) is an F -central lift of E where F is isomorphic to the rational function field
F (t1, . . . , tr).

Theorem 6 appears in [4] as Theorem 11.14. Theorems 1 and 6 allow to construct explicit examples
of noncrossed products by exhibiting division algebras E as above that do not contain a maximal
subfield Galois over F . Here, an example is explicit if the structure constants of the noncrossed product
are known. This approach is original to [4] and has been followed in [5,6].

5. Rank 1 valuations

Assume v has rank 1. We conclude with remarks and references about this important case.

a) Every tame division algebra (in the sense of Jacob and Wadsworth [8, §6]) is inertially split. This
can be seen as follows: By [8, Lem. 6.2], any tame D has a decomposition D ∼ S ⊗ T where S is
inertially split and T is tame and totally ramified. In the rank 1 case, T must be trivial because
there are no non-trivial tame and totally ramified division algebras.

b) If v is discrete (i.e. Γ = Z) then (1) is split exact and the splitting homomorphism δ satisfies (2).
Thus, one recovers Witt’s theorem

Br(Fnr/F ) ∼= Br(F ) ⊕ Homc(G,Q/Z). (3)

Moreover, in Corollary 5, (α,χ) is the decomposition of D according to (3). In this form, Corol-
lary 5 is not new; it is original to Brussel [2] where it appears as “Corollary” on p. 381 (for
char F = 0). It also appears in [7, §6] as “Brussel’s Lemma”. Note that Br(Fnr/F ) = Br(F ) if F is
perfect.
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c) Replacing in [7] the use of Corollary 5 by Theorem 1 leads to the following reformulation of the
main result of [7]: Suppose F is a global field and v is discrete. For any finite cyclic extension
K/F and any m ∈ N let Bm(K ) denote the set of all inertially split F -central division algebras
with Z(D) = K and ind D = m. The sets Bm(K ) form a partition of Br(Fnr/F ). There is a formal
product4 b(K ) = ∏

p∈P pbp with bp ∈ N ∪ {∞} such that

Bm(K ) consists entirely of crossed products if and only if m|b(K ).

If m � b(K ) then Bm(K ) contains infinitely many noncrossed products. The numbers b(K ) are com-
puted in [7] by a precise formula in terms of the number of roots of unity in K and a measure for
the embeddability of the cyclic extension K/F into larger cyclic extensions. For example, if F = Q
then b2(Q(

√−1 )) = 2, hence B2(Q(
√−1 )) and B4(Q(

√−1 )) consist entirely of crossed products
while B8(Q(

√−1 )) contains infinitely many noncrossed products. All elements of B8(Q(
√−1 ))

have index 16.
d) The result formulated in c) holds not only for discrete v . In the non-discrete case, however, certain

sets Bm(K ) can be empty. In order to get a partition of Br(Fnr/F ) we have to restrict ourselves to
the cyclic extensions K/F of the form K = F (χ) for some χ ∈ Homc(G,�/Γ ).
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