JOURNAL OF ALGEBRA | 卷:381 |
Generators for the mod 2 cohomology of the Steinberg summand of Thom spectra over B(Z/2)n | |
Article | |
Nguyen Dang Ho Hai | |
关键词: Steenrod algebra; Hit problem; Steinberg module; | |
DOI : 10.1016/j.jalgebra.2013.02.009 | |
来源: Elsevier | |
【 摘 要 】
Let L-n,L-k be the Steinberg summand of the ideal generated by the k-th power of the top Dickson class of H*(B(Z/2)(n); Z/2). The module L-n,L-k is the mod 2 cohomology of the Steinberg summand of a Thom spectrum over the classifying space B(Z/2)(n). In this paper, using the Kameko map (Kameko, 1990 [6]) and short exact sequences induced by the cofibration sequences constructed by Takayasu (1999) [15], we construct a minimal generating set for L-n,L-k as a module over the mod 2 Steenrod algebra. This generalises the result of Masateru Inoue (2002) [5] for the cases k = 0, 1. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2013_02_009.pdf | 210KB | download |