期刊论文详细信息
JOURNAL OF ALGEBRA 卷:503
On minimal free resolutions of sub-permanents and other ideals arising in complexity theory
Article
Efremenko, Klim1  Landsberg, J. M.2  Schenck, Hal3  Weyman, Jerzy4 
[1] Ben Gurion Univ Negev, Dept Comp Sci, Beer Sheva, Israel
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[4] Univ Connecticut, Dept Math, Storrs, CT USA
关键词: Computational complexity;    Free resolution;    Determinant;    Permanent;   
DOI  :  10.1016/j.jalgebra.2018.01.021
来源: Elsevier
PDF
【 摘 要 】

We compute the linear strand of the minimal free resolution of the ideal generated by k x k sub-permanents of an n x n generic matrix and of the ideal generated by square-free monomials of degree k. The latter calculation gives the full minimal free resolution by [1]. Our motivation is to lay groundwork for the use of commutative algebra in algebraic complexity theory. We also compute several Hilbert functions relevant for complexity theory. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2018_01_021.pdf 263KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次