期刊论文详细信息
JOURNAL OF ALGEBRA 卷:378
An Aschbacher-O'Nan-Scott theorem for countable linear groups
Article
Gelander, Tsachik1  Glasner, Yair1 
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词: Linear groups;    Infinite permutation groups;    Margulis-Soifer theorem;    Primitive groups;    Aschbacher-O'Nan-Scott theorem;   
DOI  :  10.1016/j.jalgebra.2012.11.041
来源: Elsevier
PDF
【 摘 要 】

The purpose of this note is to extend the classical Aschbacher-O'Nan-Scott theorem on finite groups to the class of countable linear groups. This relies on the analysis of primitive actions carried out in Gelander and Glasner (2008) [GG08]. Unlike the situation for finite groups, we show here that the number of primitive actions depends on the type: linear groups of almost simple type admit infinitely (and in fact unaccountably) many primitive actions, while affine and diagonal groups admit only one. The abundance of primitive permutation representations is particularly interesting for rigid groups such as simple and arithmetic ones. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2012_11_041.pdf 136KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次