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The purpose of this note is to extend the classical Aschbacher–
O’Nan–Scott theorem on finite groups to the class of countable
linear groups. This relies on the analysis of primitive actions
carried out in Gelander and Glasner (2008) [GG08]. Unlike the
situation for finite groups, we show here that the number of
primitive actions depends on the type: linear groups of almost
simple type admit infinitely (and in fact unaccountably) many
primitive actions, while affine and diagonal groups admit only
one. The abundance of primitive permutation representations
is particularly interesting for rigid groups such as simple and
arithmetic ones.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A group action Γ � Ω is called primitive if there is no nontrivial Γ -invariant equivalence relation
on the set Ω . Equivalently, primitive actions are transitive, of the form Γ � Γ/�, where � is a
maximal subgroup. One says that a group Γ is a primitive group if it admits a faithful primitive action
on a set. Whenever we use the word countable in this note we mean infinite and countable.

The classical Aschbacher–O’Nan–Scott theorem (hereafter AOS theorem) describes the structure
of finite primitive groups. In what follows we will always refer to the version of this theorem as it
appears in [DM96, Section 4.8, page 137] where the finite primitive groups are sorted into five distinct
categories; which we refer to as AOS categories. The classification there strongly depends on the socle
of the group which is just the product of its minimal normal subgroups.

✩ T.G. acknowledges support of the European Research Council (ERC), grant agreement 203418, and the ISF grant 1345/07.
Y.G. acknowledges support of the ISF grant 441/11.

* Corresponding author.
E-mail addresses: gelander@math.huji.ac.il (T. Gelander), yairgl@math.bgu.ac.il (Y. Glasner).
0021-8693/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2012.11.041

http://dx.doi.org/10.1016/j.jalgebra.2012.11.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:gelander@math.huji.ac.il
mailto:yairgl@math.bgu.ac.il
http://dx.doi.org/10.1016/j.jalgebra.2012.11.041


T. Gelander, Y. Glasner / Journal of Algebra 378 (2013) 58–63 59
When analyzing countable primitive linear groups one quickly finds infinite counterparts to many
of the AOS categories. We describe infinite linear analogs for primitive groups of affine and diagonal
types in Sections 2.1 and 2.2 respectively. It is not difficult to come up with analogues of the other
AOS categories. For example, for any field F , the almost simple group PSL2(F ) acts 3-transitively on
the corresponding projective line P1 F . However, when attempting to classify primitive groups one
soon encounters actions that do not resemble any of the finite AOS categories. For example the free
group F2 has a trivial socle (as it has no nontrivial minimal normal subgroups), but it was shown by
McDonough [McD77] that this group admits a highly transitive action, i.e. an action that is k-transitive
for every k.

In [GG08] we find the right generalization of the concept of almost simple groups, in the setting of
countable linear groups. Instead of considering simplicity of the group itself we say that a group is of
almost simple type if it admits a faithful linear representation whose Zariski closure is simple or close
to being simple (see precise definition in Section 2.3). It is shown in [GG08, Theorem 1.9] that any
countable primitive nontorsion linear group falls into exactly one of the three categories: primitive
of affine type, primitive of diagonal type or primitive of almost simple type. While primitive groups of
affine type directly generalize the corresponding finite AOS category, primitive groups of diagonal type
actually generalize only the special situation where H is a product of two minimal normal subgroups.
The latter category, primitive groups of almost simple type, contains all other primitive groups. It
encompasses simple groups like PSL2(F ) together with many groups with trivial socle such as free
groups and arithmetic groups (e.g. PSLn(Z), n � 2). A fact that attracted some criticism after the
publication of [GG08] was that the category of infinite groups of almost simple type contains also
groups that seem to be direct infinite generalizations of groups of product or diagonal type, such as
for example T m � Sm where T is any infinite simple linear group.

Our main result – Theorem in Section 3 – reinforces the analogy between our classification of
countable linear primitive groups with the finite Aschbacher–O’Nan–Scott theorem. We show that,
while the primitive action is uniquely determined by the algebraic structure of the group for count-
able linear groups of affine and diagonal types; groups of almost simple type admit uncountably many
nonisomorphic faithful primitive actions. For example the group PSL2(Q) admits many faithful prim-
itive actions in addition to its well known 3-transitive action on the projective line P1Q. A similar
situation holds for groups of almost simple type, that might be constructed in the same manner as
groups of product or diagonal AOS types.

This paper, as well as our previous work [GG08], were inspired by the beautiful paper of Margulis
and Soifer [MS81].

2. Types of primitive actions

2.1. Primitive groups of affine type

Definition. Let M be a countable vector space over a prime field, namely either M = ⊕∞
1 Fp or M =⊕∞

1 Q with n ∈ N ∪ {∞}. Let � � GL(M) be such that there are no nontrivial �-invariant subgroups
of M .

The action of M on itself by left translations combined with the action of � on M by conjugation
yields an action of the semidirect product Γ := �� M � M . We refer to this as the affine action of Γ

on M . It follows from the condition on � that the affine action is primitive. We say in this case that
the permutation group Γ � M is primitive of affine type.

Example. The natural two transitive action Q∗ �Q � Q is primitive of affine type. More generally one
can consider the group GLn(F )� F n with its affine action on F n , for any countable field F .

2.2. Primitive groups of diagonal type

Definition. Let M be a nonabelian characteristically simple group, and � � Aut(M). Assume that
Inn(M) � � and that there are no nontrivial �-invariant subgroups of M . Just as in the affine case
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our condition on � ensures that the affine action Γ = �� M � M is primitive. We then say that the
permutation group Γ is primitive of diagonal type.

Remark. A group Γ of diagonal type as above contains another normal subgroup which is isomorphic
to and commutes with M . This group is

M ′ def= {
ι
(
m−1)m

∣∣ m ∈ M
}
,

where ι : M → Inn(M) < � is the natural injection. Thus the action of M × M ′ on M is given by
(m,m′) · x = mx(m′)−1, so that this action can be identified with the action of M × M ′ on the cosets
of the diagonal subgroup {(m,m) | m ∈ M}. This is where the terminology diagonal groups comes from.

Example. The direct power M = Sn of a simple group is always characteristically simple. While in the
finite case every characteristically simple group is of this form, in the infinite case there are more
examples. For instance M = PSLn(F[x]) is characteristically simple by [Wil76] and hence Aut(M) � M
is primitive of diagonal type.

2.3. Groups with an almost simple Zariski closure

Definition. We say that a linear group Γ is primitive of almost simple type if there exists a faithful linear
representation ρ : Γ → GLn(K ) over an algebraically closed field K for which the identity connected
component of the Zariski closure

G
def= (

ρ(Γ )Z )0 = H × H × · · · × H

is a product of isomorphic, simple center-free algebraic groups and the action of Γ by conjugation is
transitive on the set of simple factors.

Example. SL2(C) contains a Zariski dense copy of every countable free group. More generally, by the
Borel density theorem, every lattice in a connected noncompact simple Lie group has a simple Zariski
closure.

2.4. The classification of countable primitive linear groups, from [GG08]

Let Γ be a countable linear group. If the ground field has positive characteristic, assume further
that Γ is not torsion (i.e. not all elements of Γ have finite order). Then Γ admits a faithful primitive
action on a countable set if and only if it falls into one of the following, mutually exclusive, categories:

(1) Γ is primitive of affine type,
(2) Γ is primitive of diagonal type,
(3) Γ is primitive of almost simple type.

3. The main theorem

Definition. An action Γ � Ω of a group on a set is called quasiprimitive if every normal subgroup
N � Γ acts either trivially or transitively on Ω .

Every primitive group action is quasiprimitive because the orbits of a normal subgroup are equiv-
alence classes for a Γ -invariant equivalence relation.

Theorem. Let Γ be a countable primitive linear group as in Theorem in Section 2.4, then the following di-
chotomy holds:

(1) If Γ is primitive of affine or diagonal type, then it admits a unique (up to isomorphism of actions)
faithful quasiprimitive action. Moreover this action is primitive.
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(2) If Γ is primitive of almost simple type, then it admits uncountably many nonisomorphic faithful prim-
itive actions on a countable set.

Remark. We establish the existence of uncountably many (i.e. � ℵ0) nonisomorphic primitive actions.
It is a natural question whether one can construct 2ℵ0 nonisomorphic actions without appealing to
the continuum hypothesis.

Remark. The faithfulness assumption is necessary in the theorem above. Take for example the group
SL2(Q) � Q2. This is a typical group of affine type and hence admits a unique faithful primitive ac-
tion. But it maps onto the group PSL2(Q) which is clearly of almost simple type and hence admits
uncountably many nonisomorphic primitive actions.

Proof of the theorem. We use the notations from [BG03,BG07,GG08]. In particular by “the canonical”
attracting point or repelling hyperplane of a proximal projective transformation g ∈ PGLn(k), we mean
these fixed point v g and fixed hyperplane H g obtained in [BG07, Lemma 3.2].

We shall start with few reductions. Let Γ be a countable primitive linear group. If Γ is linear over
a field of characteristic p > 0 assume further that Γ is not torsion. For Γ of affine or diagonal type,
it is proved in [GG08, Proposition A.1(2)] that the given primitive action of Γ is the unique faithful
quasiprimitive action of this group. Below we will assume that Γ is of almost simple type, i.e. that
it comes with a linear representation as in Section 2.3 and prove that Γ admits uncountably many
nonisomorphic faithful primitive actions.

Recall that a group action Γ � Γ/� is faithful if and only if

CoreΓ (�) :=
⋂

γ ∈Γ

�γ = 〈e〉.

So in group theoretic terms we have to show that Γ contains uncountably many nonconjugate maxi-
mal subgroups of infinite index and trivial core. In practice we need never worry about the conjugacy
between maximal subgroups because, since Γ is countable, there are at most countably many differ-
ent maximal subgroups conjugate to any given one.

Let K be an arbitrary field and Γ � GLn(K ) a countable group for which the connected component
G0 of G = Γ Z is a power of simple K algebraic group and the action of Γ on G0 by conjugation is
faithful and permutes the simple factors of G0 transitively. In [GG08] we construct

• a complete valuation field k (which is a local field in case Γ happens to be finitely generated),
• a strongly irreducible algebraic projective representation

ρ : G(k) → PGLn(k),

defined over a local subfield k′ < k, and
• elements {x, y, δ1, δ2, . . . , η1, η2, . . .} ⊂ Γ .

Such that the following properties are satisfied

(i) {δ1, δ2, . . . , η1, η2, . . .} are very proximal elements, forming a ping-pong tuple with respect to
the action on Pn−1(k). Furthermore each of these elements satisfies the conditions of [BG07,
Lemma 3.2].

(ii) �
def= 〈δ1, δ2, . . .〉 is prodense in Γ . By definition this means that �N = Γ, for every normal sub-

group 〈e〉 �= N � Γ .

(iii) � has a nontrivial intersection with every double coset of F
def= 〈x, y〉,

� ∩ Fγ F �= ∅ ∀γ ∈ Γ.
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Denote the attracting points and repelling hyperplanes associated with the very proximal element
ηi by vηi , vη−1

i
, Hηi , Hη−1

i
, and the corresponding attracting and repelling neighborhoods by A(ηi),

A(η−1
i ), R(ηi), R(η−1

i ).

Remark. A reader willing to take the above construction from [GG08] upon faith is not required to
delve any further into the technical details of [GG08] in order to understand the argument below.
However in order to verify the validity of this construction we suggest the following “road map”
of [GG08]:

For the construction of the elements {δi} in [GG08] see Section 7.3, and for the construction of
x, y (referred to as h1,h2) see the final paragraph of Section 7 and the paragraph at the bottom of
page 1494 at Section 3. The elements {ηi} do not actually appear in [GG08]. Nevertheless the inductive
argument constructing the countably many ping-pong players {δ1, δ2, . . .} can equally well yield the
additional elements {ηi}. Each element in its turn is required to satisfy some useful property as well
as to play ping-pong with all the previous ones. We can vary the procedure slightly, dedicating the
odd steps of the induction to this construction, while reserving the even steps for the construction of
the elements ηi .

We will make use of the following simple group theoretic lemma:

Lemma. Let Γ be a group, M � Γ a proper subgroup, and assume that γ , l ∈ Γ with l /∈ M. Then

{
γ lγ ,γ 2lγ

} �⊂ M and
{
γ l, γ 2l

} �⊂ M.

Proof. If both γ lγ and γ (γ lγ ) belong to M then also γ ∈ M and hence l = γ −1(γ lγ )γ −1 ∈ M , in
contradiction to our assumption. The second statement’s proof is identical. �

Assume, by way of contradiction that Γ admits only countably or finitely many maximal subgroups
of infinite index with trivial core. We enumerate all these subgroups

M1, M2, M3, . . .

and conclude the theorem by constructing a new maximal subgroup � < M � Γ , such that
M �= Mi ∀i. Note that as � is prodense so is every group containing it, and as such M is of infi-
nite index and has trivial core.

First step. It is possible to choose elements li ∈ Γ \ Mi such that

li(vηi ) /∈ Hηi and li(vη−1
i

) /∈ Hη−1
i

. (1)

Indeed let li ∈ Γ \ Mi be any element. If Eq. (1) does not hold choose an element a ∈ Γ such that

ali vηi /∈ Hηi , a2li vηi /∈ Hηi , ali vη−1
i

/∈ Hη−1
i

, a2li vη−1
i

/∈ Hη−1
i

.

This is possible since Γ acts strongly irreducibly on P1(k). By the lemma at least one of the elements
ali,a2li does not belong to M . After replacing li by that element Eq. (1) holds.

Second step. We can require

liA(ηi) ∩R(ηi) = liA
(
η−1

i

) ∩R
(
η−1

i

) = ∅. (2)
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Eq. (2) is achieved by replacing ηi by some positive proper power of it, thereby reducing the
neighborhoods A(ηi), R(ηi), A(η−1

i ), R(η−1
i ). By [BG07, Lemma 3.2] this does not harm the prop-

erties (i), (ii), (iii) above. Finally we appeal once more to the lemma, replacing ηi by an element θi
chosen from the set {ηiliηi, η

2
i liηi} such that θi /∈ Mi . It is easy to see that these elements θi admit

similar dynamics as the original ηi . For example:

ηiliηi
(
Pn−1(k) \R(ηi)

) ⊂ ηili
(
A(ηi)

)

⊂ ηi
(
Pn−1(k) \R(ηi)

) ⊂ A(ηi).

Now, since the attracting and repelling neighborhoods for θi are contained in the corresponding
neighborhoods for ηi , the collection {δ1, δ2, . . . , θ1, θ2 . . .} still forms a ping-pong tuple and is therefore

independent. Let Σ
def= 〈δ1, δ2, . . . , θ1, θ2 . . .〉 be the subgroup generated by these elements and let

Σ � M � Γ be a subgroup of Γ , containing Σ and maximal with respect to the property that it
does not contain F = 〈x, y〉 as a subgroup. Such a group exists by a simple Zorn’s lemma argument.
Furthermore M is a maximal subgroup of Γ , because any subgroup that strictly contains M must
contain F together with a representative for every double coset Fγ F , by property (3) of �. Since �

is prodense so is the group M > � and hence CoreΓ M = 〈e〉. So M is a maximal subgroup with trivial
core. But for every i ∈ N we have M �= Mi because θi ∈ M \ Mi . This is a contradiction to the fact that
the collection {M1, M2, . . .} consists of all the maximal subgroups with trivial core inside Γ . �
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