JOURNAL OF ALGEBRA | 卷:566 |
R matrix for generalized quantum group of type A | |
Article | |
Kwon, Jae-Hoon1,2  Yu, Jeongwoo1  | |
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea | |
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea | |
关键词: Quantum group; Crystal base; Lie superalgebra; R matrix; | |
DOI : 10.1016/j.jalgebra.2020.09.009 | |
来源: Elsevier | |
【 摘 要 】
The generalized quantum group U(epsilon) of type A is an affine analogue of quantum group associated to a general linear Lie superalgebra gl(M vertical bar N). We prove that there exists a unique R matrix on the tensor product of fundamental type representations of U(epsilon) for arbitrary parameter sequence E corresponding to a non-conjugate Borel subalgebra of gl(M vertical bar N). We give an explicit description of its spectral decomposition, and then as an application, construct a family of finite-dimensional irreducible U(epsilon)-modules which have subspaces isomorphic to the Kirillov-Reshetikhin modules of usual affine type A(M -)( 1)(()(1)) or A(N - )(1)((1)). (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2020_09_009.pdf | 587KB | download |