期刊论文详细信息
JOURNAL OF ALGEBRA 卷:250
Finite affine groups: Cycle indices, Hall-Littlewood polynomials, and probabilistic algorithms
Article
Fulman, J
关键词: conjugacy class;    classical group;    affine group;    Hall-Littlewood polynomial;    symmetric function;    random matrix;   
DOI  :  10.1006/jabr.2001.9104
来源: Elsevier
PDF
【 摘 要 】

The study of asymptotic properties of the conjugacy class of a random element of the finite affine group leads one to define a probability measure on the set of all partitions of all positive integers. Four different probabilistic understandings of this measure are given-three using symmetric function theory and one using Markov chains. This leads to non-trivial enumerative results. Cycle index generating functions are derived and are used to compute the large dimension limiting probabilities that an element of the affine group is separable, cyclic, or semisimple and to study the convergence to these limits. The semisimple limit involves both Rogers-Ramanujan identities. This yields the first examples of such computations for a maximal parabolic subgroup of a finite classical group. (C) 2002 Elsevier Science (USA).

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jabr_2001_9104.pdf 186KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次