期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:182
Demazure crystals for specialized nonsymmetric Macdonald polynomials
Article
Assaf, Sami1  Gonzalez, Nicolle2 
[1] Univ Southern Calif, Dept Math, 3620 S Vermont Ave, Los Angeles, CA 90089 USA
[2] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
关键词: Demazure crystal;    Demazure character;    Nonsymmetric Macdonald polynomial;    Hall-Littlewood polynomial;    Kostka-Foulkes polynomial;   
DOI  :  10.1016/j.jcta.2021.105463
来源: Elsevier
PDF
【 摘 要 】

We give an explicit, nonnegative formula for the expansion of nonsymmetric Macdonald polynomials specialized at t = 0 in terms of Demazure characters. Our formula results from constructing Demazure crystals whose characters are the nonsymmetric Macdonald polynomials, which also gives a new proof that these specialized nonsymmetric Macdonald polynomials are positive graded sums of Demazure characters. Demazure crystals are certain truncations of classical crystals that give a combinatorial skeleton for Demazure modules. To prove our construction, we develop further properties of Demazure crystals, including an efficient algorithm for computing their characters from highest weight elements. As a corollary, we obtain a new formula for the Schur expansion of Hall-Littlewood polynomials in terms of a simple statistic on highest weight elements of our crystals. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2021_105463.pdf 1275KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次