JOURNAL OF ALGEBRA | 卷:319 |
Prufer *-multiplication domains, Nagata rings, and Kronecker function rings | |
Article | |
Chang, Gyu Whan | |
关键词: (e.a.b.) *-operation; Prufer *-multiplication domain; Nagata ring; Kronecker function ring; | |
DOI : 10.1016/j.jalgebra.2007.10.010 | |
来源: Elsevier | |
【 摘 要 】
Let D be an integrally closed domain, * a star-operation on D, X an indeterminate over D, and N*= {f is an element of D[X] | (A(f))* = D}. For an e.a.b. star-operation *(1) on D, let Kr(D, *(1)) be the Kronecker function ring of D with respect to *(1). In this paper, we use * to define a new e.a.b. star-operation *(c) on D. Then we prove that D is a Prufer *-multiplication domain if and only if D[X](N*) = Kr(D, *(c)), if and only if Kr(D, *(c)) is a quotient ring of D[X], if and only if Kr(D, *(c)) is a flat D[X]-module, if and only if each *-linked overring of D is a Prufer v-multiplication domain. This is a generalization of the following well-known fact that if D is a v-domain, then D is a Pruter v-multiplication domain if and only if Kr(D, v) = D[X]N-v, if and only if Kr(D, v) is a quotient ring of D[X], if and only if Kr(D, v) is a flat D[X]-module. (C) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2007_10_010.pdf | 165KB | download |