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Abstract

Let D be an integrally closed domain, ∗ a star-operation on D, X an indeterminate over D, and N∗ =
{f ∈ D[X] | (Af )∗ = D}. For an e.a.b. star-operation ∗1 on D, let Kr(D,∗1) be the Kronecker function
ring of D with respect to ∗1. In this paper, we use ∗ to define a new e.a.b. star-operation ∗c on D. Then
we prove that D is a Prüfer ∗-multiplication domain if and only if D[X]N∗ = Kr(D,∗c), if and only if
Kr(D,∗c) is a quotient ring of D[X], if and only if Kr(D,∗c) is a flat D[X]-module, if and only if each
∗-linked overring of D is a Prüfer v-multiplication domain. This is a generalization of the following well-
known fact that if D is a v-domain, then D is a Prüfer v-multiplication domain if and only if Kr(D,v) =
D[X]Nv

, if and only if Kr(D,v) is a quotient ring of D[X], if and only if Kr(D,v) is a flat D[X]-module.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be an integral domain with quotient field K , and let X be an indeterminate over D.
For each polynomial f ∈ K[X], we denote by Af the fractional ideal of D generated by the
coefficients of f . An overring of D means a ring between D and K . Let F(D) (respectively,
f (D)) be the set of nonzero (respectively, nonzero finitely generated) fractional ideals of D; so
f (D) ⊆ F(D).

A map ∗ :F(D) → F(D), I �→ I ∗, is called a star-operation on D if the following three
conditions are satisfied for all 0 �= a ∈ K and I, J ∈ F(D): (i) (aD)∗ = aD and (aI)∗ = aI ∗,
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(ii) I ⊆ I ∗ and if I ⊆ J , then I ∗ ⊆ J ∗, and (iii) (I ∗)∗ = I ∗. Given a star-operation ∗ on D, we
can construct two new star-operations ∗f and ∗w on D as follows; for each I ∈ F(D), I ∗f =⋃{J ∗ | J ⊆ I and J ∈ f (D)} and I ∗w = {x ∈ K | xJ ⊆ I for some J ∈ f (D) with J ∗ = D} [1,
Theorem 2.1]. The simplest example of star-operations is the d-operation, which is the identity
map on F(D), i.e., I d = I for all I ∈ F(D). Other well-known star-operations are the v-, t- and
w-operations. The v-operation is defined by I v = (I−1)−1, where I−1 = {x ∈ K | xI ⊆ D}, for
all I ∈F(D), and the t-operation is given by t = vf and the w-operation is given by w = vw .

A star-operation ∗ on D is said to be endlich arithmetisch brauchbar (e.a.b.) if, for all
A,B,C ∈ f (D), (AB)∗ ⊆ (AC)∗ implies B∗ ⊆ C∗. It is well known that if D admits an e.a.b.

star-operation, then D is integrally closed [16, Corollary 32.8]. Conversely, if D is integrally
closed, define I b = ⋂{IV | V is a valuation overring of D} for each I ∈ F(D); then the map
b : F(D) → F(D), given by I �→ I b , is an e.a.b. star-operation D [16, Theorem 32.5]. Let ∗ be
an e.a.b. star-operation on D, and define

Kr(D,∗) = {0} ∪
{

f

g

∣∣∣ 0 �= f,g ∈ D[X] such that (Af )∗ ⊆ (Ag)
∗
}
.

Then Kr(D,∗) is a Bezout domain with quotient field K(X) = {f
g

| f,g ∈ D[X] and g �= 0} and
Kr(D,∗) ∩ K = D [16, Theorem 32.7]. We will call Kr(D,∗) the Kronecker function ring of D

with respect to the star-operation ∗.
Let ∗ be a star-operation on D, and let N∗ = {f ∈ D[X] | (Af )∗ = D}. An I ∈ F(D) is

said to be ∗-invertible if (II−1)∗ = D, while D is a Prüfer ∗-multiplication domain (P∗MD) if
each I ∈ f (D) is ∗f -invertible. Arnold proved that if D is integrally closed, then D is a Prüfer
domain if and only if D[X]Nd

= Kr(D,b), if and only if Kr(D,b) is a quotient ring of D[X] [4,
Theorem 4]. This was generalized to PvMDs as follows: if D is a v-domain (D is a v-domain
if the v-operation on D is an e.a.b. star-operation), then D is a PvMD if and only if Kr(D,v)

is a quotient ring of D[X], if and only if Kr(D,v) = D[X]Nv , if and only if Kr(D,v) is a flat
D[X]-module ([15, Theorem 2.5], [5, Theorem 3]). The purpose of this paper is to generalize
these results to arbitrary integrally closed domains (note that a v-domain is integrally closed (cf.
[16, Theorem 34.6 and Proposition 34.7])).

More precisely, let D be an integrally closed domain, and let {Vα} be the set of ∗-linked
valuation overrings of D (definition is reviewed in Section 3). In Section 3, we show that the
map ∗c :F(D) → F(D), given by I �→ I ∗c = ⋂

α IVα , is an e.a.b. star-operation on D such
that (∗c)f = ∗c , ∗c-Max(D) = ∗f -Max(D), and I ∗c = (ID[X]N∗)

b′ ∩ K for each I ∈ F(D),
where b′ is the b-operation on D[X]N∗ . Then we use these results to prove that D is a P∗MD if
and only if Kr(D,∗c) = D[X]N∗ , if and only if Kr(D,∗c) is a quotient ring of D[X], if and only
if Kr(D,∗c) is a flat D[X]-module, if and only if each ∗-linked overring of D is a PvMD. We
also prove that, for 0 �= f ∈ D[X], Af is ∗f -invertible if and only if (Afg)

∗w = (Af Ag)
∗w for

all 0 �= g ∈ D[X]. As a corollary, we have that D is a P∗MD if and only if (Af Ag)
∗w = (Afg)

∗w

for all 0 �= f,g ∈ D[X]. This is the star-operation analog of the fact that D is a Prüfer domain if
and only if Af Ag = Afg for all 0 �= f , g ∈ D[X] [16, Corollary 28.6].

2. Star-operations and P∗MD

In this section, we review definitions related to star-operations, and then we examine some
well-known characterizations of P∗MDs.
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Let D be an integral domain with quotient field K , and let ∗ be a star-operation on D. We
say that ∗ is of finite character if ∗f = ∗. It is clear that df = dw = d , (∗f )f = ∗f and (∗w)f =
∗w = (∗f )w; so d , ∗f and ∗w are of finite character. An I ∈ F(D) is called a ∗-ideal if I ∗ = I .
Let ∗-Max(D) denote the set of ∗-ideals maximal among proper integral ∗-ideals of D. We know
that if � is a star-operation of finite character on D, then �-Max(D) �= ∅ if D is not a field; each
�-ideal in �-Max(D), called a maximal �-ideal, is a prime ideal; each proper integral �-ideal is
contained in a maximal �-ideal; and each prime ideal minimal over a �-ideal is a �-ideal. Also,
∗f -Max(D) = ∗w-Max(D) [1, Theorem 2.16]. A ∗-ideal I ∈ F(D) is said to be ∗-finite if there
is a J ∈ f (D) such that I = J ∗. It is known that an I ∈ F(D) is ∗f -invertible if and only if
I ∗f is ∗f -finite and I is ∗f -locally principal, i.e., IDP is principal for all P ∈ ∗f -Max(D) [20,
Proposition 2.6].

If ∗1 and ∗2 are star-operations on D, we mean by ∗1 � ∗2 that I ∗1 ⊆ I ∗2 for all I ∈ F(D).
Obviously, ∗f � ∗, d � ∗ � v, d � ∗w � ∗f � t , and if ∗1 � ∗2, then (∗1)f � (∗2)f and (∗1)w �
(∗2)w (cf. [1, Section 2]). The following lemma follows directly from the definitions; we recall
it for the reader’s convenience.

Lemma 2.1. Let ∗1 and ∗2 be star-operations of finite character on D. If I ∗1 ⊆ I ∗2 for all
I ∈ f (D), then ∗1 � ∗2. In particular, ∗1 = ∗2 if and only if I ∗1 = I ∗2 for all I ∈ f (D).

Let N∗ = {f ∈ D[X] | (Af )∗ = D}; then N∗ is a saturated multiplicative subset of the
polynomial ring D[X]. Note that, for each I ∈ f (D) with I ⊆ D, we have I ∗ = I ∗f , and
I ∗f = D if and only if I � P for all P ∈ ∗f -Max(D); hence N∗ = N∗f

= N∗w by the fact
that ∗f -Max(D) = ∗w-Max(D). It is known that ID[X]N∗ ∩ K = I ∗w for all I ∈ F(D) ([13,
Proposition 3.4] or [6, Lemma 2.3]) and each invertible ideal of D[X]N∗ is principal [20, The-
orem 2.14]. If ∗ = d , then D[X]N∗ , denoted by D(X), is called the Nagata ring of D (see [16,
Section 33]). The Nagata ring K(X) of K is the quotient field of K[X].

It is obvious that if � is a star-operation of finite character on D, then an I ∈ F(D) is �-in-
vertible, i.e., (II−1)� = D if and only if II−1 � P for all P ∈ �-Max(D). Note again that
∗f -Max(D) = ∗w-Max(D) and (∗f )f = ∗f ; so D is a P∗MD ⇔ D is a P∗f MD ⇔ D is a
P∗wMD (cf. [10, Proposition 3.12]). The P∗MDs have been studied by many authors (see, for
example, [8–10,17,19,20,23]). We next review some well-known characterizations of P∗MDs.

Theorem 2.2. The following statements are equivalent for an integral domain D.

(1) D is a P∗MD.
(2) DP is a valuation domain for each maximal ∗f -ideal P of D.
(3) D is a PvMD and ∗f = t .
(4) D is a PvMD and ∗w = t .
(5) D is a PvMD and ∗f -Max(D) = t-Max(D).
(6) Each ∗-linked overring of D is integrally closed.
(7) D[X]N∗ is a Prüfer domain.
(8) D[X]N∗ is a Bezout domain.
(9) D is integrally closed and Q ∩ N∗ �= ∅ for each nonzero prime ideal Q of D[X] with Q ∩

D = (0).

Proof. (1) ⇔ (2) ⇔ (9). See [19, Theorem 1.1]. (1) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (7). These are
the star-operation versions of [10, Remark 3.14, Proposition 3.15, and Theorem 3.1]. (1) ⇔ (6).
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This is the star-operation version of the equivalence ((iii) ⇔ (viii)) of [9, Theorem 5.3] since the
notion “R is ∗-linked over D” is equivalent to that of “R is t-linked to (D,∗)” [6, Remark 3.4(3)].
(7) ⇒ (8). This follows because each invertible ideal of D[X]N∗ is principal [20, Theorem 2.14].
(8) ⇒ (7). Clear. �

Let ∗ be a star-operation on D. An x ∈ K is said to be ∗-integral over D if there exists an
I ∈ f (D) such that xI ∗ ⊆ I ∗. Let D[∗] = {x ∈ K | x is ∗-integral over D}; then D[∗], called the
∗-integral closure of D, is an integrally closed overring of D [24]. If D = D[∗], we say that D is
∗-integrally closed. Note that I ∗ = I ∗f for each I ∈ f (D); so D[∗] = D[∗f ]. It is known that D is
v-integrally closed if and only if D is a v-domain, if and only if (II−1)v = D for each I ∈ f (D)

(cf. [16, Theorem 34.6]). A valuation overring V of D is called a ∗-valuation overring of D if
I ∗ ⊆ IV for each I ∈ f (D). Halter-Koch proved that the ∗-integral closure is the intersection
of all ∗-valuation overrings [18, Theorem 3]. Hence D is ∗-integrally closed if and only if D is
the intersection of ∗-valuation overrings of D. It is clear that if ∗1 � ∗2 are star-operations on D,
then a ∗2-valuation overring of D is a ∗1-valuation overring, and hence a ∗2-integrally closed
domain is ∗1-integrally closed. In particular, a ∗-integrally closed domain is integrally closed.
The reader can be referred to [3,6,7,12,18,24] for more about ∗-integral closure.

Suppose that D is ∗-integrally closed, and let I ∗a = ⋂{IVβ | Vβ is a ∗-valuation overring
of D} for each I ∈ F(D). Then ∗a is an e.a.b. star-operation of finite character on D and
(∗a)a = ∗a ([18, Propositions 4 and 5] and [11, Proposition 4.5]). Note that the set of ∗-valuation
overrings coincides with the set of ∗f -valuation overrings; hence (∗f )a = ∗a . In particular, if
∗ = d , then the valuation overrings of D is equal to the ∗-valuation overrings, and thus ∗a = b.

Next, for a star-operation ∗ on D, let Kr(D,∗) = {0} ∪ {f
g

| 0 �= f,g ∈ D[X] and there is
an 0 �= h ∈ D[X] such that (Af Ah)

∗ ⊆ (AgAh)
∗}. Then Kr(D,∗) is a Bezout domain with

quotient field K(X) and Kr(D,∗) ∩ K = D[∗a ] [11, Theorem 5.1, Proposition 4.5(2), and
Corollary 3.5]. This was first introduced and studied by Fontana and Loper [11] (in the more
general setting of semistar-operations). Clearly, if ∗ is an e.a.b. star-operation, then Kr(D,∗)

is the usual Kronecker function ring (so we use the same notation Kr(D,∗)). It is clear that
Kr(D,∗) = Kr(D,∗f ) and if ∗1 � ∗2 are star-operations on D, then Kr(D,∗1) ⊆ Kr(D,∗2);
in particular, Kr(D,d) ⊆ Kr(D,w) ⊆ Kr(D, t) = Kr(D,v). Note that a Bezout domain is inte-
grally closed, so if D is not integrally closed, then D � Kr(D,∗) ∩ K .

Using this notion of Kronecker function rings, Fontana, Jara and Santos generalized some of
the classical characterizations of PvMDs (cf. [5, Theorem 3]).

Theorem 2.3. (See [10, Theorem 3.1 and Remark 3.1].) Let ∗ be a star-operation on an integral
domain D. Then the following statements are equivalent.

(1) D is a P∗MD.
(2) D[X]N∗ = Kr(D,∗w).
(3) ∗w is an e.a.b. star-operation.
(4) ∗w = ∗a .
(5) ∗f is an e.a.b. star-operation and (I ∩ J )∗f = I ∗f ∩ J ∗f for all I, J ∈ F(D).

Let ∗ be an e.a.b. star-operation on D, and let Kr(D,∗) be the Kronecker function ring. It
is known that IKr(D,∗) ∩ K = I ∗ for each I ∈ f (D) [16, Theorem 32.7]. So if ∗1 and ∗2
are e.a.b. star-operations on D, then Kr(D,∗1) = Kr(D,∗2) if and only if I ∗1 = I ∗2 for all
I ∈ f (D) [16, Remark 32.9]. Clearly, ∗ is an e.a.b. star-operation if and only if ∗f is an e.a.b.
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star-operation. Hence if ∗ is an e.a.b. star-operation on D, then Kr(D,∗) = Kr(D,∗f ). For more
on Kr(D,∗), see Fontana and Loper’s recent interesting survey article [14] or [13]. Any other
undefined terminology or notation is standard, as in [16] or [21].

3. New characterizations of P∗MD

Throughout this section, D is an integral domain with quotient field K , ∗ is a star-operation
on D, and N∗ = {f ∈ D[X] | (Af )∗ = D}.

As in [6], we say that an overring R of D is ∗-linked over D if R = R[X]N∗ ∩ K . It is
known that R is ∗-linked over D if and only if (Q ∩ D)∗f � D for each prime t-ideal Q

of R, if and only if I ∗ = D for an I ∈ f (D) implies (IR)v = R [6, Proposition 3.2]. This
shows that the concepts of ∗-, ∗f -, and ∗w-linkedness are all equivalent and that if ∗1 � ∗2

are star-operations on D, then each ∗2-linked overring of D is ∗1-linked over D [6, Re-
mark 3.4(2)]. In particular, each t-linked overring of D is ∗-linked over D. Note that if V is
a ∗-valuation overring of D, then, for each I ∈ f (D) with I ∗ = D, (IV )v = V . Hence V is
∗-linked over D, but a ∗-linked valuation overring need not be a ∗-valuation overring (see Re-
mark 3.5(2)).

Let ∗ be a star-operation on an integrally closed domain D. We first use ∗ to construct a new
e.a.b. star-operation ∗c on D. The ∗c-operation plays a central role in the study of P∗MDs of
this paper.

Lemma 3.1. Let D be an integrally closed domain, and let {Vα} be the set of ∗-linked valuation
overrings of D.

(1) The map ∗c :F(D) →F(D), given by I �→ I ∗c = ⋂
α IVα , is an e.a.b. star-operation on D.

(2) ∗c = (∗w)a , and hence ∗c is of finite character.
(3) ∗w = (∗c)w � ∗c and ∗f -Max(D) = ∗c-Max(D).
(4) If ∗1 � ∗2 are star-operations on D, then (∗1)c � (∗2)c .
(5) If D is ∗-integrally closed, then ∗c � ∗a .
(6) b = da = dc.

Proof. (1) Since D is integrally closed, D = ⋂
α Vα [6, Corollary 4.2]. Thus the map

∗c :F(D) → F(D), given by I �→ I ∗c = ⋂
α IVα , is an e.a.b. star-operation on D [16, The-

orem 32.5].
(2) Recall that the ∗w-valuation overrings coincide with the ∗-linked valuation overrings

and an integrally closed domain is ∗w-integrally closed [6, Corollaries 3.3 and 4.2(1)]. Hence
(∗w)a = ∗c, and thus ∗c is of finite character [11, Proposition 4.5].

(3) Step 1. ∗w � ∗c . (Proof. Let ∗α be the star-operation on Vα defined by J ∗α =
JVα[X]N∗ ∩ K for all J ∈ F(Vα) [6, Lemma 3.1]. If I ∈ f (D), then IVα is finitely gener-
ated, and so IVα is principal. Hence (IVα)v = IVα ⊆ (IVα)∗α ⊆ (IVα)v or (IVα)∗α = IVα . So
I ∗w = ID[X]N∗ ∩ K ⊆ IVα[X]N∗ ∩ K = (IVα)∗α = IVα (cf. [6, Lemma 2.3] for the first equal-
ity), and hence I ∗w ⊆ ⋂

α IVα = I ∗c . Thus, as ∗c and ∗w are of finite character, we have ∗w � ∗c

by Lemma 2.1.)
Step 2. N∗c = N∗. (Proof. Note that N∗ = N∗w and ∗w � ∗c by Step 1; so N∗ ⊆ N∗c . Con-

versely, let f ∈ D[X] \ N∗ be a nonzero polynomial. Then (Af )∗ � D, and hence there exists
a maximal ∗f -ideal P of D such that (Af )∗ ⊆ P . Let V be a valuation overring of D with
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maximal ideal M such that M ∩ D = P [16, Corollary 19.7]. Clearly, V is ∗-linked over D and
Af V ⊆ M ; so (Af )∗c � D and f /∈ N∗c . Hence N∗c ⊆ N∗, and thus N∗c = N∗.)

Step 3. ∗f -Max(D) = ∗c-Max(D), and hence ∗w = (∗c)w . (Proof. Let P be a nonzero prime
ideal of D. If P ∗c = D, then since ∗c is of finite character by (2), there is a nonzero finitely
generated ideal J ⊆ P such that J ∗c = D. Let f ∈ D[X] with J = Af ; then f ∈ N∗c = N∗ by
Step 2, and hence J ∗ = (Af )∗ = D. Thus P ∗f = D. Conversely, if P ∗f = D, then P ∗w = D, and
since ∗w � ∗c by Step 1, we have P ∗c = D. Thus ∗f -Max(D) = ∗c-Max(D), and so ∗w = (∗c)w
by definition.)

(4) This follows because each ∗2-linked overring of D is ∗1-linked over D.
(5) First, note that since D is ∗-integrally closed ∗a is a well-defined star-operation on D.

As we noted at the beginning of this section, since each ∗-valuation overring of D is ∗-linked
over D, we have I ∗c = ⋂

α IVα ⊆ ⋂{IW | W is a ∗-valuation overring of D} = I ∗a for each
I ∈ F(D). Thus ∗c � ∗a .

(6) Obviously, the valuation overrings of D are the d-valuation overrings. Hence D is
d-integrally closed, and thus da is well defined and b = da = dc. �

From now on, we denote by ∗c the e.a.b. star-operation on an integrally closed domain D

induced by ∗ as in Lemma 3.1. As we noted, the concepts of ∗-, ∗f - and ∗w-linkedness coincide,
and so ∗c = (∗f )c = (∗w)c . Also, since d � ∗ � v, we have dc � ∗c � vc, hence Kr(D,b) ⊆
Kr(D,∗c) ⊆ Kr(D,vc) ⊆ K(X).

Corollary 3.2. Let ∗ and ∗1 be star-operations on an integrally closed domain D.

(1) If Kr(D,∗c) = Kr(D, (∗1)c), then ∗c = (∗1)c .
(2) The following statements are equivalent.

(a) Kr(D,b) = Kr(D,∗c).
(b) b = ∗c.
(c) ∗w = d , i.e., each nonzero ideal of D is a ∗w-ideal.

Proof. (1) Note that I ∗c = IKr(D,∗c) ∩ K = IKr(D, (∗1)c) ∩ K = I (∗1)c for each I ∈ f (D)

[16, Theorem 32.7]. Hence, by Lemma 2.1, ∗c = (∗1)c because ∗c and (∗1)c are of finite charac-
ter by Lemma 3.1(2).

(2) (a) ⇒ (c). Let I ∈ f (D); then I ∗c = I dc by (1) and Lemma 3.1(6). Next, if I ∗ = D,
then IVα = (IVα)v = Vα for each ∗-linked valuation overring Vα of D. So I ∗c = D, and hence
I = I dc = D (cf. Lemma 3.1(3)). This means that each nonzero maximal ideal of D is a ∗f -ideal
(cf. [8, Theorem 2.6] for the t-operation). Thus ∗w = (∗f )w = dw = d . (c) ⇒ (b). ∗c = (∗w)a =
da = b by Lemma 3.1(2) and (6). (b) ⇒ (a). Clear. �
Lemma 3.3.

(1) If W is a valuation overring of D[X]N∗ , then AW ∩ K = A(W ∩ K) for each A ∈F(D).
(2) The set of ∗-linked valuation overrings of D is the set {W ∩ K | W is a valuation overring

of D[X]N∗}.

Proof. (1) Let u = ∑
aiwi ∈ AW ∩ K , where ai ∈ A and wi ∈ W . Since W is a valuation

domain with D ⊆ W , there exists an ak such that each ai ∈ W . Note that u = ∑ ai wi ∈ W ∩K ,

ak ak ak
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so u = ak

∑ ai

ak
wi ∈ A(W ∩ K). Hence AW ∩ K ⊆ A(W ∩ K), and since AK = K , we have

A(W ∩ K) = AW ∩ K .
(2) Assume that W is a valuation overring of D[X]N∗ , and let I ∈ f (D) with I ∗ = D. Then

ID[X]N∗ = D[X]N∗ , and since D[X]N∗ ⊆ W , we have IW = W . Hence I (W ∩K) = IW ∩K =
W ∩ K by (1), so (I (W ∩ K))v = W ∩ K . Thus W ∩ K is ∗-linked over D.

Conversely, assume that V is a ∗-linked valuation overring of D. Then, for each f ∈ N∗,
since (Af )∗ = D, we have Af V = (Af V )v = V , hence N∗ ⊆ (V [X] \ M[X]), where M is the
maximal ideal of V . Hence D[X]N∗ ⊆ V [X]M[X], and V [X]M[X] is a valuation domain [16,
Proposition 18.7]. Moreover, since V [X]M[X] ∩ K = V , the proof is completed. �

Let R be a Bezout domain. Then each (nonzero) finitely generated ideal of R is principal,
and hence each star-operation on R is an e.a.b. star-operation. Also, note that if J is a nonzero
finitely generated ideal of R, then J = J t , and hence each nonzero ideal of R is a t-ideal. This
implies that the d-operation on R is a unique star-operation of finite character on R, so d = b

on R. Now, suppose that D is ∗-integrally closed; then ∗a is an e.a.b. star-operation of finite
character on D and Kr(D,∗a) is a Bezout domain. Hence the b-operation on Kr(D,∗a) is the
unique e.a.b. star-operation of finite character on Kr(D,∗a). Also, since ∗a is of finite character,
we have IKr(D,∗a)∩K = I ∗a for all I ∈F(D) [16, Theorem 32.7(c)] (cf. [13, Corollary 5.2]).

Corollary 3.4. Let D be an integrally closed domain. If b′ is the b-operation on D[X]N∗ , then
I ∗c = (ID[X]N∗)

b′ ∩ K for each I ∈ F(D).

Proof. First, note that D[X]N∗ is integrally closed, and so the b-operation b′ on D[X]N∗ is a
well-defined e.a.b. star-operation. Therefore, (ID[X])b′ ∩ K = ⋂{IW | W is a valuation over-
ring of D[X]N∗} ∩K = ⋂{IW ∩K | W is a valuation overring of D[X]N∗} = ⋂{I (W ∩K) | W
is a valuation overring of D[X]N∗} = ⋂{IV | V is a ∗-linked valuation overring of D} = I ∗c by
Lemma 3.3. �
Remark 3.5. (1) Recall that ∗ is an e.a.b. star-operation on D if and only if ∗f is an e.a.b. star-
operation on D. Also, if ∗w is an e.a.b. star-operation, then ∗w = ∗f by Theorems 2.2 and 2.3.
But, ∗ being e.a.b. does not imply that ∗w is an e.a.b. star-operation. For example, if D is an
integrally closed domain and not a PvMD, then vc is an e.a.b. star-operation, but w = (vc)w is
not an e.a.b. star-operation on D by Lemma 3.1 and Theorem 2.3.

(2) As we noted, a ∗-valuation overring of D is ∗-linked over D, but a ∗-linked valuation
overring need not be a ∗-valuation overring. For example, let F be a field, y, z be indeterminates
over F , and V = F(z)�y� be the power series ring over the field F(z), and D = F + yF(z)�y�.
Then D is a quasi-local domain with maximal ideal yF(z)�y� and D is of (Krull) dimension
one. Note that yF(z)�y� is a t-ideal, and hence each overring of D is t-linked over D [8, Theo-
rem 2.6].

But, let V1 = F [z]zF [z]; then V1 is a valuation domain with quotient field F(z), and hence
D1 = V1 + yF(z)�y� is a valuation domain [16, Exercise 13, p. 203] such that D � D1 � V . Let
J = y(F + zF + yF(z)�y�); then J ∈ f (D) and J v = yF(z)�y� (see the proof of [3, Proposi-
tion 1.8(ii)]). But, since JD1 ⊆ y(V1 + yF(z)�y�) � yF(z)�y�, we have J v � JD1. Thus D1 is
not a t-valuation overring of D, and since D1 is an overring of D, D1 is t-linked over D.

However, since the domain D = F + yF(z)�y� is not t-integrally closed [3, Proposi-
tion 1.8(ii)], we may not deduce that ∗c �= ∗a .
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(3) Recall that ∗f -Max(D) = ∗c-Max(D) by Lemma 3.1(3), hence the ∗-linked valuation
overrings of D coincide with the ∗c-valuation overrings of D. Thus (∗c)c = ∗c . But we do not
know whether ∗c = ∗ when ∗ is an e.a.b. star-operation.

Let 0 �= f,g ∈ K[X] and let m be the degree of g. Then Am+1
f Ag = Am

f Afg by the Dedekind–
Mertens Lemma [16, Theorem 28.1]. So if Af is invertible, then Af Af = Afg . Conversely,
in [22], Loper and Roitman proved that Af is invertible if Af Ag = Afg for all 0 �= g ∈ K[X].
This cannot be generalized to the v-operation. For example, let D be an integrally closed domain
that is not a v-domain (see [16, Exercise 2, p. 429] for such an integral domain). Then there exists
a polynomial 0 �= f ∈ D[X] such that Af is not v-invertible, but since D is integrally closed, we
have (Af Ag)

v = (Afg)
v for all 0 �= g ∈ D[X] [25, Lemma 1].

Lemma 3.6. For 0 �= f ∈ D[X], the following statements are equivalent.

(1) Af is ∗w-invertible.
(2) Af is ∗f -invertible.
(3) (Afg)

∗w = (Af Ag)
∗w for all 0 �= g ∈ D[X].

(4) Af D[X]N∗ = f D[X]N∗ .

Proof. (1) ⇔ (2). This follows because ∗w-Max(D) = ∗f -Max(D) [1, Theorem 2.16].
(1) ⇒ (3). Assume that Af is ∗w-invertible, and let m be a positive integer such that

Am+1
f Ag = Am

f Afg . Then (Am+1
f Ag)

∗w = (Am
f Afg)

∗w , and since Af is ∗w-invertible, we have
(Afg)

∗w = (Af Ag)
∗w .

(3) ⇒ (1). Let P be a maximal ∗w-ideal of D. For a nonzero polynomial g ∈ DP [X], let
0 �= s ∈ D such that sg ∈ D[X]; then (Af sg)

∗w = (Af Asg)
∗w by (3). Note that s(Afg)

∗w =
(sAfg)

∗w = (Af sg)
∗w = (Af Asg)

∗w = (Af sAg)
∗w = s(Af Ag)

∗w . So (Af Ag)
∗w = (Afg)

∗w ,
and hence (Af DP )(AgDP ) = (Af Ag)DP = (Af Ag)

∗wDP = (Afg)
∗wDP = AfgDP (cf. [1,

Corollary 2.10]). So Af DP is principal [22, Theorem 4]. Thus Af is ∗w-invertible [20, Proposi-
tion 2.6].

(2) ⇔ (4). See [20, Lemma 2.11]. �
Next, we give new characterizations of P∗MDs, which generalize some of the classical char-

acterizations (in terms of e.a.b. star-operations) of Prüfer domains and PvMDs ([4, Theorem 4]
and [5, Theorem 3]).

Theorem 3.7. The following statements are equivalent for an integrally closed domain D.

(1) D is a P∗MD.
(2) Kr(D,∗c) is a quotient ring of D[X].
(3) D[X]N∗ = Kr(D,∗c).
(4) ∗w = ∗c .
(5) Kr(D,∗c) is a flat D[X]-module.
(6) Each ∗-linked overring of D is a PvMD.
(7) Each prime ideal of D[X]N∗ is extended from D.
(8) Each principal ideal of D[X]N∗ is extended from D.
(9) Each ideal of D[X]N∗ is extended from D.

(10) (Af Ag)
∗w = (Afg)

∗w for all 0 �= f,g ∈ D[X].
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Proof. (1) ⇒ (2). Note that D[X]N∗ is a Bezout domain by Theorem 2.2 and D[X]N∗ ⊆
Kr(D,∗c) ⊆ K(X) (cf. Lemma 3.1(3)). Thus Kr(D,∗c) is a quotient ring of D[X]N∗ [16, Theo-
rem 27.5], and hence of D[X].

(2) ⇒ (3). Let S = {0 �= f ∈ D[X] | 1
f

∈ Kr(D,∗c)}; then Kr(D,∗c) = D[X]S by (2). Note

that f ∈ S ⇔ 1
f

∈ Kr(D,∗c) ⇔ D = (1) ⊆ (Af )∗c ⊆ D ⇒ (Af )∗c = D; so (Af )∗ = D by

Lemma 3.1(3) or 1
f

∈ D[X]N∗ . Hence Kr(D,∗c) ⊆ D[X]N∗ , and since D[X]N∗ ⊆ Kr(D,∗c),
we have D[X]N∗ = Kr(D,∗c).

(3) ⇒ (4). Note that, for each I ∈ f (D), we have that I ∗w = ID[X]N∗ ∩ K [6, Lemma 2.3]
and IKr(D,∗c) ∩ K = I ∗c [16, Theorem 32.7(c)]. Thus ∗c = ∗a by Lemma 2.1 because ∗w and
∗c are of finite character.

(4) ⇒ (1). By (4) and Lemma 3.1(1), ∗w is an e.a.b. star-operation on D, and thus D is a
P∗MD by Theorem 2.3.

(3) ⇒ (5). Clear.
(5) ⇒ (3). Let Max(B) denote the set of maximal ideals of a ring B , and recall that an over-

ring R of an integral domain D1 is a flat D1-module if and only if RM = (D1)M∩D1 for all
M ∈ Max(R) [26, Theorem 2] and Max(D[X]N∗) = {P [X]N∗ | P ∈ ∗f -Max(D)} [20, Proposi-
tion 2.1].

Let A be an ideal of D[X] such that AKr(D,∗c) = Kr(D,∗c). Then there exists a poly-
nomial f ∈ A such that f Kr(D,∗c) = Kr(D,∗c) (cf. the proof of [16, Theorem 32.7(b)]); so
1
f

∈ Kr(D,∗c), and hence f ∈ A∩N∗ �= ∅ (see the proof of (2) ⇒ (3)). Hence, if P0 is a maximal
∗f -ideal of D, then P0Kr(D,∗c) � Kr(D,∗c), and since P0[X]N∗ is a maximal ideal of D[X]N∗ ,
there is a maximal ideal M0 of Kr(D,∗c) such that M0 ∩ D[X] = (M0 ∩ D[X]N∗) ∩ D[X] =
P0[X]N∗ ∩ D[X] = P0[X]. Thus by (5), Kr(D,∗c)M0 = D[X]P0[X] = (D[X]N∗)P0[X]N∗ .

Let M1 be a maximal ideal of Kr(D,∗c), and let P1 be a maximal ∗f -ideal of D such that
M1 ∩ D[X]N∗ ⊆ P1[X]N∗ . By the above paragraph, there is a maximal ideal M2 of Kr(D,∗c)

such that Kr(D,∗c)M2 = (D[X]N∗)P1[X]N∗ . Note that Kr(D,∗c)M2 ⊆ Kr(D,∗c)M1 , M1 and
M2 are maximal ideals, and Kr(D,∗c) is a Prüfer domain; hence M1 = M2 (cf. [16, Theo-
rem 17.6(c)]) and Kr(D,∗c)M1 = (D[X]N∗)P1[X]N∗ . Thus

Kr(D,∗c) =
⋂

M∈Max(Kr(D,∗c))

Kr(D,∗c)M =
⋂

P∈∗f - Max(D)

(
D[X]N∗

)
P [X]N∗

= D[X]N∗ .

(1) ⇒ (6). Let R be a ∗-linked overring of D, and let Q be a maximal t-ideal of R. Then
(Q ∩ D)∗f � D, and hence DQ∩D is a valuation domain by Theorem 2.2. Since DQ∩D ⊆ RQ, it
follows that RQ is a valuation domain [16, Theorem 17.6]. Thus, again by Theorem 2.2, R is a
PvMD (here ∗ = v and ∗f = t). (Or see the proof of [9, Corollary 5.5].)

(6) ⇒ (1). Let P be a maximal ∗f -ideal of D. For 0 �= u ∈ K , let R = D[u2, u3]D\P . Then
DP and R are ∗-linked over D [6, Remark 3.4(7)]; so DP and R are PvMDs (hence integrally
closed). Hence u ∈ R, and since R = DP [u2, u3], there exists a polynomial h ∈ DP [X] such that
h(u) = 0 and AhDP = DP . So u or u−1 is in DP [21, Theorem 67]. Hence DP is a valuation
domain. Thus D is a P∗MD by Theorem 2.2.

(1) ⇒ (8). Let 0 �= f ∈ D[X]. Then Af is ∗f -invertible by (1), and hence f D[X]N∗ =
Af D[X]N∗ by Lemma 3.6.

(8) ⇒ (9). Let A be an ideal of D[X]N∗ ; then A = ∑
f ∈A f D[X]N∗ . For each f ∈ A, there

exists an ideal If of D such that f D[X]N∗ = If D[X]N∗ by (8). Let I = ∑
f ∈A If . Then I is
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an ideal of D and A = ∑
f ∈A(If D[X]N∗) = ID[X]N∗ (cf. [16, Theorem 4.3(4)] for the second

equality).
(9) ⇒ (8) and (9) ⇒ (7). Clear.
(7) ⇒ (1). Let Q be a nonzero prime ideal of D[X] such that Q∩D = (0). Then QD[X]N∗ =

D[X]N∗ by (7), and hence Q ∩ N∗ �= ∅. Thus D is a P∗MD by Theorem 2.2.
(1) ⇔ (10). This follows directly from Lemma 3.6. �
The next result gives new characterizations of PvMDs in which some of the statements extend

the result [5, Theorem 3] to arbitrary integrally closed domains. This is the v-operation version
of Theorem 3.7.

Corollary 3.8. The following statements are equivalent for an integrally closed domain D.

(1) D is a PvMD.
(2) Kr(D,vc) is a quotient ring of D[X].
(3) D[X]Nv = Kr(D,vc).
(4) w = vc.
(5) Kr(D,vc) is a flat D[X]-module.
(6) Each t-linked overring of D is a PvMD.
(7) (Af Ag)

w = (Afg)
w for all 0 �= f,g ∈ D[X].

Let ∗ be a star-operation on an integral domain D. By Theorems 2.2, 2.3 and 3.7, we have
that if D is a P∗MD, then ∗c = ∗a = ∗f = ∗w = w = t . In particular, if D is a PvMD, then
vc = va = t = w, and hence Kr(D,v) = Kr(D, t) = Kr(D,w) = D[X]Nv . However, ∗c = ∗a

does not imply P∗MD. For example, let L be a field, y, z be indeterminates over L, M = (y, z)

be a maximal ideal of the polynomial ring L[y, z], and D = L[y, z]M . Then dc = da on D by
Lemma 3.1(6), but it is clear that D is not a PdMD.

On January 26, 2007, Zafrullah sent me a preprint of his recent paper with Anderson and
Fontana [2] that contains some interesting results on P∗MDs. In particular, they also proved that
D is a P∗MD if and only if (Afg)

∗w = (Af Ag)
∗w for all 0 �= f,g ∈ K[X] (in the more general

setting of semistar-operations) [2, Corollary 1.2].
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