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Abstract

Let D be an integrally closed domain, * a star-operation on D, X an indeterminate over D, and Ny =
{f eD[X]] (Af)* = D}. For an e.a.b. star-operation x| on D, let Kr(D, %) be the Kronecker function
ring of D with respect to ;. In this paper, we use * to define a new e.a.b. star-operation *. on D. Then
we prove that D is a Priifer *-multiplication domain if and only if D[X]y, = Kr(D, %), if and only if
Kr(D, %.) is a quotient ring of D[X], if and only if Kr(D, *.) is a flat D[X]-module, if and only if each
#-linked overring of D is a Priifer v-multiplication domain. This is a generalization of the following well-
known fact that if D is a v-domain, then D is a Priifer v-multiplication domain if and only if Kr(D, v) =
D[X]y,, if and only if Kr(D, v) is a quotient ring of D[X], if and only if Kr(D, v) is a flat D[X]-module.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be an integral domain with quotient field K, and let X be an indeterminate over D.
For each polynomial f € K[X], we denote by Ay the fractional ideal of D generated by the
coefficients of f. An overring of D means a ring between D and K. Let F (D) (respectively,
f (D)) be the set of nonzero (respectively, nonzero finitely generated) fractional ideals of D; so
f(D) < F(D).

A map *:F(D) — F(D), I — I*, is called a star-operation on D if the following three
conditions are satisfied for all 0 2a € K and I, J € F(D): (i) (aD)* =aD and (al)* = al*,
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(i) I C I* and if I C J, then I* C J*, and (iii) (/*)* = I'*. Given a star-operation * on D, we
can construct two new star-operations sy and #,, on D as follows; for each I € F(D), I*/ =
U{J*|JCTand J € f(D)}and I*™ ={x € K | xJ C I for some J € f(D) with J* = D} [1,
Theorem 2.1]. The simplest example of star-operations is the d-operation, which is the identity
map on F(D), i.e., I¢ = I for all I € F(D). Other well-known star-operations are the v-, ¢- and
w-operations. The v-operation is defined by IV = (I=Y~!, where I ={x € K | xI C D}, for
all I € (D), and the t-operation is given by t = vy and the w-operation is given by w = vy,.

A star-operation * on D is said to be endlich arithmetisch brauchbar (e.a.b.) if, for all
A,B,C € f(D), (AB)* C (AC)* implies B* C C*. It is well known that if D admits an e.a.b.
star-operation, then D is integrally closed [16, Corollary 32.8]. Conversely, if D is integrally
closed, define I? = (Y{IV | V is a valuation overring of D} for each I € F(D); then the map
b:F(D)— F(D),givenby I — I isan e.a.b. star-operation D [16, Theorem 32.5]. Let * be
an e.a.b. star-operation on D, and define

Kr(D, %) = {0} U {g ) 0% f. g € D[X] such that (A ,)* C (Ag)*}.

Then Kr(D, %) is a Bezout domain with quotient field K (X) = {% | f,g € D[X]and g # 0} and
Kr(D, )N K = D [16, Theorem 32.7]. We will call Kr(D, x) the Kronecker function ring of D
with respect to the star-operation .

Let * be a star-operation on D, and let Ny = {f € D[X]| (Ay)* = D}. An I € F(D) is
said to be x-invertible if (11~")* = D, while D is a Priifer s-multiplication domain (PxMD) if
each I € f(D) is * g-invertible. Arnold proved that if D is integrally closed, then D is a Priifer
domain if and only if D[X]y, = Kr(D, b), if and only if Kr(D, b) is a quotient ring of D[X] [4,
Theorem 4]. This was generalized to PuMDs as follows: if D is a v-domain (D is a v-domain
if the v-operation on D is an e.a.b. star-operation), then D is a PuMD if and only if Kr(D, v)
is a quotient ring of D[X], if and only if Kr(D, v) = D[X]n,, if and only if Kr(D, v) is a flat
D[X]-module ([15, Theorem 2.5], [5, Theorem 3]). The purpose of this paper is to generalize
these results to arbitrary integrally closed domains (note that a v-domain is integrally closed (cf.
[16, Theorem 34.6 and Proposition 34.7])).

More precisely, let D be an integrally closed domain, and let {V,} be the set of x-linked
valuation overrings of D (definition is reviewed in Section 3). In Section 3, we show that the
map *.:F(D) — F(D), given by I > I* =), [V, is an e.a.b. star-operation on D such
that (x.) f = *c, *.-Max(D) = *y-Max(D), and I* = (ID[X]N*)b/ N K for each I € F(D),
where b’ is the b-operation on D[X]y,. Then we use these results to prove that D is a PxMD if
and only if Kr(D, *.) = D[X],, if and only if Kr(D, *.) is a quotient ring of D[X], if and only
if Kr(D, *.) is a flat D[X]-module, if and only if each x-linked overring of D is a PyMD. We
also prove that, for 0 # f € D[X], Ay is *¢-invertible if and only if (A zg)** = (AyAg)* for
all 0 # g € D[X]. As a corollary, we have that D is a PxMD if and only if (AfAg)*» = (A fg)*»
for all 0 # f, g € D[X]. This is the star-operation analog of the fact that D is a Priifer domain if
andonlyif AfA, = Ay, forall 0 # f, g € D[X] [16, Corollary 28.6].

2. Star-operations and P+MD

In this section, we review definitions related to star-operations, and then we examine some
well-known characterizations of PxMDs.



G.W. Chang / Journal of Algebra 319 (2008) 309-319 311

Let D be an integral domain with quotient field K, and let % be a star-operation on D. We
say that * is of finite character if * y = *. Itis clear that dy =d,y =d, (x )y =* and () f =
#y = (% f)w; 50 d, % and %, are of finite character. An I € F(D) is called a x-ideal if I* = 1.
Let %-Max(D) denote the set of x-ideals maximal among proper integral x-ideals of D. We know
that if « is a star-operation of finite character on D, then x-Max(D) # ¢ if D is not a field; each
*-ideal in »-Max(D), called a maximal -ideal, is a prime ideal; each proper integral x-ideal is
contained in a maximal x-ideal; and each prime ideal minimal over a x-ideal is a x-ideal. Also,
* p-Max (D) = *,,-Max(D) [1, Theorem 2.16]. A x-ideal I € F(D) is said to be -finite if there
isa J e f(D) such that I = J*. It is known that an I € F(D) is * p-invertible if and only if
I*1 is x p-finite and I is * ¢-locally principal, i.e., I Dp is principal for all P € *s-Max(D) [20,
Proposition 2.6].

If %1 and *, are star-operations on D, we mean by *; < *; that I*1 C I*2 for all I € F(D).
Obviously, * f <#*,d <* < v,d <y <xp <t andif #) <oko, then k) p < (%2) 7 and (1) y <
(*2)y (cf. [1, Section 2]). The following lemma follows directly from the definitions; we recall
it for the reader’s convenience.

Lemma 2.1. Let | and %, be star-operations of finite character on D. If I*' C I*2 for all
I € f(D), then x| < *2. In particular, x| = %, if and only if I"' = I*2 forall I € f (D).

Let N. ={f € D[X]]| (Af)* = D}; then N, is a saturated multiplicative subset of the
polynomial ring D[X]. Note that, for each I € f(D) with I € D, we have I* = [*/, and
I*/ = D if and only if g P for all P € *¢-Max(D); hence N, = N*f = Ny, by the fact
that * p-Max(D) = %,,-Max(D). It is known that I D[X]y, N K = I*» for all I € F(D) ([13,
Proposition 3.4] or [6, Lemma 2.3]) and each invertible ideal of D[X]y, is principal [20, The-
orem 2.14]. If * =d, then D[X]y,, denoted by D(X), is called the Nagata ring of D (see [16,
Section 33]). The Nagata ring K (X) of K is the quotient field of K[X].

It is obvious that if  is a star-operation of finite character on D, then an I € F (D) is *-in-
vertible, i.e., (II~1)* = D if and only if 1! g P for all P € x-Max(D). Note again that
* f-Max(D) = *,-Max(D) and (xf)r =*7; 50 D isa PxMD & D isa PxfMD & D is a
Px,,MD (cf. [10, Proposition 3.12]). The PxMDs have been studied by many authors (see, for
example, [8-10,17,19,20,23]). We next review some well-known characterizations of PxMDs.

Theorem 2.2. The following statements are equivalent for an integral domain D.

(1) D isa PxMD.

(2) Dp is a valuation domain for each maximal * p-ideal P of D.

(3) DisaPvMD and s =t.

(4) D isa PvMD and *,, =t.

(5) D is a PuMD and * y-Max(D) = t-Max(D).

(6) Each x-linked overring of D is integrally closed.

(7) DI[X]ln, is a Priifer domain.

(8) DI[Xl]n, is a Bezout domain.

(9) D is integrally closed and Q N N, # @ for each nonzero prime ideal Q of D[X] with Q N
D = (0).

Proof. (1) & (2) & (9). See [19, Theorem 1.1]. (1) & (3) & (4) & (5) < (7). These are
the star-operation versions of [10, Remark 3.14, Proposition 3.15, and Theorem 3.1]. (1) < (6).
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This is the star-operation version of the equivalence ((iii) <> (viii)) of [9, Theorem 5.3] since the
notion “R is x-linked over D” is equivalent to that of “R is ¢-linked to (D, *)” [6, Remark 3.4(3)].
(7) = (8). This follows because each invertible ideal of D[X]y, is principal [20, Theorem 2.14].
B)= (7). Clear. O

Let * be a star-operation on D. An x € K is said to be x-integral over D if there exists an
I € f(D) such that xI* C I*. Let D* = {x € K | x is *-integral over D}; then D'*, called the
s-integral closure of D, is an integrally closed overring of D [24]. If D = D*I, we say that D is
x-integrally closed. Note that [* = [*/ foreach I € f(D);so D*! = DUs1 Itis known that D is
v-integrally closed if and only if D is a v-domain, if and only if (I~")" = D foreach I € f(D)
(cf. [16, Theorem 34.6]). A valuation overring V of D is called a x-valuation overring of D if
I* C IV for each I € f(D). Halter-Koch proved that the x-integral closure is the intersection
of all x-valuation overrings [18, Theorem 3]. Hence D is *-integrally closed if and only if D is
the intersection of x-valuation overrings of D. It is clear that if *; < *; are star-operations on D,
then a x,-valuation overring of D is a *;-valuation overring, and hence a *;-integrally closed
domain is *i-integrally closed. In particular, a *-integrally closed domain is integrally closed.
The reader can be referred to [3,6,7,12,18,24] for more about *x-integral closure.

Suppose that D is x-integrally closed, and let I*« = ("\{I Vg | Vj is a x-valuation overring
of D} for each I € F(D). Then *, is an e.a.b. star-operation of finite character on D and
(*)q)a = *4 ([18, Propositions 4 and 5] and [11, Proposition 4.5]). Note that the set of x-valuation
overrings coincides with the set of * ¢-valuation overrings; hence (* f), = *,. In particular, if
* = d, then the valuation overrings of D is equal to the x-valuation overrings, and thus %, = b.

Next, for a star-operation * on D, let Kr(D, x) = {0} U {g | 0 # f, g € D[X] and there is
an 0 # h € D[X] such that (AyAp)* € (AgAp)*}. Then Kr(D, ) is a Bezout domain with
quotient field K (X) and Kr(D,*) N K = D™ [11, Theorem 5.1, Proposition 4.5(2), and
Corollary 3.5]. This was first introduced and studied by Fontana and Loper [11] (in the more
general setting of semistar-operations). Clearly, if * is an e.a.b. star-operation, then Kr(D, *)
is the usual Kronecker function ring (so we use the same notation Kr(D, *)). It is clear that
Kr(D,*) = Kr(D, x¢) and if %1 < %) are star-operations on D, then Kr(D, x1) C Kr(D, *2);
in particular, Kr(D, d) € Kr(D, w) € Kr(D, t) = Kr(D, v). Note that a Bezout domain is inte-
grally closed, so if D is not integrally closed, then D C Kr(D,*) N K.

Using this notion of Kronecker function rings, Fontana, Jara and Santos generalized some of
the classical characterizations of PuMDs (cf. [5, Theorem 3]).

Theorem 2.3. (See [10, Theorem 3.1 and Remark 3.1].) Let * be a star-operation on an integral
domain D. Then the following statements are equivalent.

(1) D isa PxMD.

(2) DIX]In, = Kr(D, *y).

(3) %y is an e.a.b. star-operation.

(4) =y = *4.

(5) *y isane.a.b. star-operation and (I N J)* =1*F NJ*/ forall I, J € F (D).

Let * be an e.a.b. star-operation on D, and let Kr(D, ) be the Kronecker function ring. It
is known that IKr(D,*) N K = I* for each I € f(D) [16, Theorem 32.7]. So if *; and *;
are e.a.b. star-operations on D, then Kr(D, 1) = Kr(D, %) if and only if I*! = [*2 for all
I € f(D) [16, Remark 32.9]. Clearly, * is an e.a.b. star-operation if and only if % ¢ is an e.a.b.
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star-operation. Hence if * is an e.a.b. star-operation on D, then Kr(D, *) = Kr(D, * ). For more
on Kr(D, %), see Fontana and Loper’s recent interesting survey article [14] or [13]. Any other
undefined terminology or notation is standard, as in [16] or [21].

3. New characterizations of P+MD

Throughout this section, D is an integral domain with quotient field K, * is a star-operation
on D,and N, ={f € D[X]| (Ay)* = D}.

As in [6], we say that an overring R of D is *-linked over D if R = R[X]ny, N K. It is
known that R is x-linked over D if and only if (Q N D)*f C D for each prime t-ideal Q
of R, if and only if I* = D for an I € f(D) implies (/R)" = R [6, Proposition 3.2]. This
shows that the concepts of *-, *¢-, and x*,-linkedness are all equivalent and that if *; < *;
are star-operations on D, then each #;-linked overring of D is x;-linked over D [6, Re-
mark 3.4(2)]. In particular, each ¢-linked overring of D is *-linked over D. Note that if V is
a x-valuation overring of D, then, for each I € f(D) with I* = D, (IV)” = V. Hence V is
#-linked over D, but a *-linked valuation overring need not be a x-valuation overring (see Re-
mark 3.5(2)).

Let * be a star-operation on an integrally closed domain D. We first use * to construct a new
e.a.b. star-operation %, on D. The %.-operation plays a central role in the study of PxMDs of
this paper.

Lemma 3.1. Let D be an integrally closed domain, and let {Vy} be the set of x-linked valuation
overrings of D.

(1) The map *.:F(D) — F(D), givenby I — I* ="\, I Vy, is an e.a.b. star-operation on D.
(2) *¢ = (ky)a, and hence *. is of finite character.

(3) *y = (xc)w < *¢ and * p-Max(D) = x.-Max(D).

(4) If 1 < xp are star-operations on D, then (x1) < (¥2).

(5) If D is x-integrally closed, then *. < *,.

6) b=d, =d,.

Proof. (1) Since D is integrally closed, D = (), Va [6, Corollary 4.2]. Thus the map
*.: F(D) — F(D), given by I > I = ﬂa 1V, is an e.a.b. star-operation on D [16, The-
orem 32.5].

(2) Recall that the s, -valuation overrings coincide with the *-linked valuation overrings
and an integrally closed domain is s,,-integrally closed [6, Corollaries 3.3 and 4.2(1)]. Hence
(*w)a = *¢, and thus *, is of finite character [11, Proposition 4.5].

(3) Step 1. %y < .. (Proof. Let %, be the star-operation on V, defined by J* =
JVu[ X1y, N K for all J € F(Vy) [6, Lemma 3.1]. If I € f(D), then IV, is finitely gener-
ated, and so 1V, is principal. Hence (I Vy)' = IV, C (I Vy)*® C (IVy)? or (I Vy)** =1V,. So
I = ID[X]n,NK CIVu[X]In, NK = (I Vy)* =1V, (cf. [6, Lemma 2.3] for the first equal-
ity), and hence I*» C (1), I Vo = I'*. Thus, as *. and *,, are of finite character, we have #,, < .
by Lemma 2.1.)

Step 2. Ny, = N,. (Proof. Note that N, = N, and *,, < *. by Step 1; so N, € N, . Con-
versely, let f € D[X]\ N, be a nonzero polynomial. Then (A z)* C D, and hence there exists
a maximal *-ideal P of D such that (Ay)* C P. Let V be a valuation overring of D with
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maximal ideal M such that M N D = P [16, Corollary 19.7]. Clearly, V is x-linked over D and
ArV S M;so(Ap)* C Dand f ¢ Ny . Hence Ny, C Ny, and thus Ny, = N..)

Step 3. * p-Max(D) = *.-Max(D), and hence *,, = (*¢)y. (Proof. Let P be a nonzero prime
ideal of D. If P* = D, then since *. is of finite character by (2), there is a nonzero finitely
generated ideal J C P such that J* = D. Let f € D[X] with J = Ay; then f € Ny, = N, by
Step 2, and hence J* = (A s)* = D. Thus P*/ = D. Conversely, if P*/ = D, then P*» = D, and
since #,, < *¢ by Step 1, we have P* = D. Thus * ;-Max (D) = *.-Max(D), and 50 s, = (¥¢)w
by definition.)

(4) This follows because each x,-linked overring of D is *i-linked over D.

(5) First, note that since D is *-integrally closed *, is a well-defined star-operation on D.
As we noted at the beginning of this section, since each x-valuation overring of D is *-linked
over D, we have I*c = (), IV, € ({IW | W is a %-valuation overring of D} = I"*« for each
I € F(D). Thus %, < *,.

(6) Obviously, the valuation overrings of D are the d-valuation overrings. Hence D is
d-integrally closed, and thus d,, is well defined and b=d, =d.. O

From now on, we denote by . the e.a.b. star-operation on an integrally closed domain D
induced by * as in Lemma 3.1. As we noted, the concepts of *-, * - and *,,-linkedness coincide,
and S0 *¢ = (k)¢ = (kw)e. Also, since d < * < v, we have d. < *¢ < v, hence Kr(D, b) C
Kr(D,x.) CKr(D,v.) C K(X).

Corollary 3.2. Let * and =1 be star-operations on an integrally closed domain D.

(1) If Kr(D, %¢) = Kr(D, (x1)c), then ¢ = (*1)c.
(2) The following statements are equivalent.
(a) Kr(D,b) =Kr(D, ).
(b) b=
(c) *y =d, i.e., each nonzero ideal of D is a *,-ideal.

Proof. (1) Note that I* = IKr(D, x.) N K = IKr(D, (x1).) N K = Ve for each I € f(D)
[16, Theorem 32.7]. Hence, by Lemma 2.1, %, = (1), because *. and (1), are of finite charac-
ter by Lemma 3.1(2).

(2) (@) = (c). Let I € f(D); then I*¢ = I% by (1) and Lemma 3.1(6). Next, if I* = D,
then 1V, = (I1Vy)V = V,, for each x-linked valuation overring V,, of D. So I'*¢ = D, and hence
[ = I% = D (cf. Lemma 3.1(3)). This means that each nonzero maximal ideal of D is a % f-ideal
(cf. [8, Theorem 2.6] for the ¢-operation). Thus %, = (¥ )y =dy =d. (¢) = (b). *c = (¥y)g =
d, = b by Lemma 3.1(2) and (6). (b) = (a). Clear. O

Lemma 3.3.

(1) If W is a valuation overring of D[X]y,, then AW N K = A(W N K) for each A € F(D).
(2) The set of x-linked valuation overrings of D is the set {W N K | W is a valuation overring
of D[X]n,}.

Proof. (1) Let u = > a;w; € AW N K, where a; € A and w; € W. Since W is a valuation

domain with D C W, there exists an a; such that each Z—; € W. Note that % => Z—iw,- e WNK,



G.W. Chang / Journal of Algebra 319 (2008) 309-319 315

sou=agy. Z—]iwi e AOWNK). Hence AWNK € A(WNK), and since AK = K, we have
AWNK)=AWNK.

(2) Assume that W is a valuation overring of D[X]y,, and let I € f(D) with I* = D. Then
ID[X]n, = D[X]p,,andsince D[X]y, € W,wehave IW = W.Hence [WNK)=IWNK =
WNKby(),so(I(WNK))»=WNK.Thus WN K is *-linked over D.

Conversely, assume that V is a x-linked valuation overring of D. Then, for each f € N,
since (Ay)* =D, wehave AV = (A; V)" =V, hence N, C (V[X]\ M[X]), where M is the

maximal ideal of V. Hence D[X]n, € V[X]Im[x), and V[X]y[x] is a valuation domain [16,

Proposition 18.7]. Moreover, since V[X]yx] N K =V, the proof is completed. O

Let R be a Bezout domain. Then each (nonzero) finitely generated ideal of R is principal,
and hence each star-operation on R is an e.a.b. star-operation. Also, note that if J is a nonzero
finitely generated ideal of R, then J = J', and hence each nonzero ideal of R is a t-ideal. This
implies that the d-operation on R is a unique star-operation of finite character on R, so d = b
on R. Now, suppose that D is x-integrally closed; then %, is an e.a.b. star-operation of finite
character on D and Kr(D, *,) is a Bezout domain. Hence the b-operation on Kr(D, %) is the
unique e.a.b. star-operation of finite character on Kr(D, *,). Also, since %, is of finite character,
we have IKr(D, *,) N K = I'*a for all I € F(D) [16, Theorem 32.7(c)] (cf. [13, Corollary 5.2]).

Corollary 3.4. Let D be an integrally closed domain. If b is the b-operation on D[X]y,, then
I* = (ID[X1n,)? NK for each I € F(D).

Proof. First, note that D[X]y, is integrally closed, and so the b-operation ' on D[X]y, is a
well-defined e.a.b. star-operation. Therefore, (I D[X ])b/ NK =(){IW | W is a valuation over-
ring of D[X]n,}NK = ({IW N K | W is a valuation overring of D[X]y,} =({I(WNK) | W
is a valuation overring of D[X]y,} = ({IV | V is a x-linked valuation overring of D} = I'** by
Lemma 3.3. O

Remark 3.5. (1) Recall that * is an e.a.b. star-operation on D if and only if * 7 is an e.a.b. star-
operation on D. Also, if *,, is an e.a.b. star-operation, then %,, = * y by Theorems 2.2 and 2.3.
But, * being e.a.b. does not imply that %, is an e.a.b. star-operation. For example, if D is an
integrally closed domain and not a PuMD, then v, is an e.a.b. star-operation, but w = (v¢)y, 1S
not an e.a.b. star-operation on D by Lemma 3.1 and Theorem 2.3.

(2) As we noted, a x-valuation overring of D is x-linked over D, but a *-linked valuation
overring need not be a x-valuation overring. For example, let F be a field, y, z be indeterminates
over F,and V = F(z)[y] be the power series ring over the field F(z), and D = F + yF (z)[y].
Then D is a quasi-local domain with maximal ideal yF(z)[y] and D is of (Krull) dimension
one. Note that yF (z)[[y] is a 7-ideal, and hence each overring of D is ¢-linked over D [8, Theo-
rem 2.6].

But, let Vi = F[z];F[;]; then V| is a valuation domain with quotient field F(z), and hence
Dy =V, + yF(z)[y] is a valuation domain [16, Exercise 13, p. 203] such that D C D; C V. Let
J=y(F 4+ zF + yF(2)[y]); then J € f(D) and J" = yF(z)[y] (see the proof of [3, Proposi-
tion 1.8(ii)]). But, since J D1 C y(Vi + yF(2)[y]) € yF(z)[y], we have J” € J D;. Thus Dj is
not a ¢-valuation overring of D, and since D is an overring of D, Dy is ¢-linked over D.

However, since the domain D = F + yF(z)[y] is not t-integrally closed [3, Proposi-
tion 1.8(ii)], we may not deduce that %, 7 *,.
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(3) Recall that * (-Max(D) = *.-Max(D) by Lemma 3.1(3), hence the *-linked valuation
overrings of D coincide with the .-valuation overrings of D. Thus (*.), = *.. But we do not
know whether %, = % when * is an e.a.b. star-operation.

Let0+# f, g € K[X] and let m be the degree of g. Then A'J'ZJrl Ay, = A’;ZAfg by the Dedekind-
Mertens Lemma [16, Theorem 28.1]. So if Ay is invertible, then A Ay = Ay,. Conversely,
in [22], Loper and Roitman proved that A s is invertible if AfA, = A, for all 0 # g € K[X].
This cannot be generalized to the v-operation. For example, let D be an integrally closed domain
that is not a v-domain (see [16, Exercise 2, p. 429] for such an integral domain). Then there exists
apolynomial 0 # f € D[X] such that Ay is not v-invertible, but since D is integrally closed, we
have (AfAg)" = (Ay,)" forall 0 # g € D[X] [25, Lemma 1].

Lemma 3.6. For 0 # f € D[X], the following statements are equivalent.

(1) Ay is xy-invertible.

(2) Ay is *p-invertible.

(3) (Ap)*™ =(AfAy)*™ forall 0 # g € D[X].
4) AyD[Xly. = fD[X]w,.

Proof. (1) < (2). This follows because *,,-Max(D) = * p-Max(D) [1, Theorem 2.16].

(1) = (3). Assume that Ay is *,-invertible, and let m be a positive integer such that
A?+1Ag = A"l Afg. Then (Af;ZHAg)*"’ = (Af A o)™, and since Ay is #,-invertible, we have
(Apg)' = (AfpAg)™™.

(3) = (1). Let P be a maximal *,,-ideal of D. For a nonzero polynomial g € Dp[X], let
0 # s € D such that sg € D[X]; then (Afs)™ = (AfrAse)*™ by (3). Note that s(Ape)* =
(5Afg)™ = (Apsg)™ = (ApAge)™ = (ApsAg)™ =s(ApAg)*™. So (AfAg)*™ = (Ayry)™™,
and hence (AyDp)(AgDp) = (AfAg)Dp = (AfAg)**Dp = (Aye)*™ Dp = ApeDp (cf. [1,
Corollary 2.10]). So A ¢ Dp is principal [22, Theorem 4]. Thus A 7 is %, -invertible [20, Proposi-
tion 2.6].

2) & (4). See [20, Lemma 2.11]. O

Next, we give new characterizations of PxMDs, which generalize some of the classical char-
acterizations (in terms of e.a.b. star-operations) of Priifer domains and PuMDs ([4, Theorem 4]
and [5, Theorem 3]).

Theorem 3.7. The following statements are equivalent for an integrally closed domain D.

(1) D isa P+MD.
(2) Kr(D, *.) is a quotient ring of D[X].
(3) DI[Xln, =Kr(D, *c).
(4) *xy = *c.
(5) Kr(D, *.) is a flat D[ X]-module.
(6) Each x-linked overring of D is a PuvMD.
(7) Each prime ideal of D[X]n, is extended from D.
(8) Each principal ideal of D[X]n, is extended from D.
(9) Each ideal of D[X]y, is extended from D.
(10) (AfAg)*™ = (Ayo)*™ forall 0 # f, g € D[X].
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Proof. (1) = (2). Note that D[X]y, is a Bezout domain by Theorem 2.2 and D[X]n, €
Kr(D, *:) € K(X) (cf. Lemma 3.1(3)). Thus Kr(D, *.) is a quotient ring of D[X ]y, [16, Theo-
rem 27.5], and hence of D[X].

2)= 3).Let S={0# f € D[X]| % € Kr(D, *¢)}; then Kr(D, x.) = D[X]s by (2). Note

that f € S & + € Kr(D. %) & D=(1) S (Ap)* €D = (Ap)* = Dis0 (Ap)* =D by

Lemma 3.1(3) or % € D[X]n,. Hence Kr(D, *.) € D[X]y,, and since D[X]n, € Kr(D, *.),
we have D[X]y, = Kr(D, *.).

(3) = (4). Note that, for each I € f(D), we have that I*» = ID[X]y, N K [6, Lemma 2.3]
and IKr(D, *.) N K = I'** [16, Theorem 32.7(c)]. Thus *, = %, by Lemma 2.1 because *,, and
*. are of finite character.

(4) = (1). By (4) and Lemma 3.1(1), *,, is an e.a.b. star-operation on D, and thus D is a
P«MD by Theorem 2.3.

3) = (5). Clear.

(5) = (3). Let Max(B) denote the set of maximal ideals of a ring B, and recall that an over-
ring R of an integral domain D; is a flat Di-module if and only if Ry = (D1)munp, for all
M € Max(R) [26, Theorem 2] and Max(D[X]y,) = {P[X]n, | P € *y-Max(D)} [20, Proposi-
tion 2.1].

Let A be an ideal of D[X] such that AKr(D, *.) = Kr(D, *.). Then there exists a poly-
nomial f € A such that fKr(D, *%.) = Kr(D, *.) (cf. the proof of [16, Theorem 32.7(b)]); so
% € Kr(D, %.),and hence f € AN N, # @ (see the proof of (2) = (3)). Hence, if Py is a maximal
* p-ideal of D, then PoKr(D, *.) C Kr(D, *.), and since Py[X]y, is a maximal ideal of D[X]y,,
there is a maximal ideal Mq of Kr(D, *.) such that My N D[X] = (Mo N D[X]n,) N D[X] =
Po[X]n, N DIX]= Pol[X]. Thus by (5), Kr(D, *c)m, = D[ X]1pyx1 = (DIXIN,) Po[X1w, -

Let My be a maximal ideal of Kr(D, #.), and let P; be a maximal * s-ideal of D such that
M N D[X]n, € Pi[X]n,. By the above paragraph, there is a maximal ideal M> of Kr(D, *.)
such that Kr(D, *c)m, = (D[X]n,) p(x]y, - Note that Kr(D, xc)m, S Kr(D, *c)m,, M) and
M, are maximal ideals, and Kr(D, *.) is a Priifer domain; hence M| = M, (cf. [16, Theo-
rem 17.6(c)]) and Kr(D, xc)m, = (D[X]n,) P, [X]y, - Thus

KrD.x)= () KrDoxou= [ (DIXIN)ppy,. = PIX]w,
MeMax(Kr(D,*.)) Pexp-Max(D)

(1) = (6). Let R be a x-linked overring of D, and let Q be a maximal 7-ideal of R. Then
(QND)*f C D, and hence Dgnp is a valuation domain by Theorem 2.2. Since Dgnp € Ry, it
follows that R is a valuation domain [16, Theorem 17.6]. Thus, again by Theorem 2.2, R is a
PvMD (here * = v and * y = 1). (Or see the proof of [9, Corollary 5.5].)

(6) = (1). Let P be a maximal # -ideal of D. For 0 # u € K, let R = D[u?, u®]p\p. Then
Dp and R are *-linked over D [6, Remark 3.4(7)]; so Dp and R are PuMDs (hence integrally
closed). Hence u € R, and since R = Dp[u?, u?], there exists a polynomial 4 € Dp[X] such that
h(u)=0and A,Dp = Dp. So u or u~lisin Dp [21, Theorem 67]. Hence Dp is a valuation
domain. Thus D is a P+¥MD by Theorem 2.2.

(1) = (8). Let 0 # f € D[X]. Then Ay is *-invertible by (1), and hence fD[X]y, =
A¢D[X]y, by Lemma 3.6.

(8) = (9). Let A be an ideal of D[X]y,; then A = Zf-eA fD[X]n,. For each f € A, there
exists an ideal Iy of D such that fD[X]y, = IfD[X]N*’ by (8). Let [ = ZfeA Iy. Then [ is
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an ideal of D and A = ZfeA (IyD[X]n,) = ID[X]y, (cf. [16, Theorem 4.3(4)] for the second
equality).

9 = (8) and (9) = (7). Clear.

(7) = (1). Let Q be a nonzero prime ideal of D[X] such that Q N D = (0). Then QD[X]n, =
D[X]n, by (7), and hence Q N N, # . Thus D is a PxMD by Theorem 2.2.

(1) < (10). This follows directly from Lemma 3.6. O

The next result gives new characterizations of PuMDs in which some of the statements extend
the result [5, Theorem 3] to arbitrary integrally closed domains. This is the v-operation version
of Theorem 3.7.

Corollary 3.8. The following statements are equivalent for an integrally closed domain D.

(1) D isa PvMD.

(2) Kr(D, v.) is a quotient ring of D[X].

(3) D[X]In, =Kr(D,ve).

4 w=v,.

(5) Kr(D, v.) is a flat D[ X]-module.

(6) Each t-linked overring of D is a PvMD.

(7 (AfAg)" =(Agg)” forall 0 # f, g € D[X].

Let * be a star-operation on an integral domain D. By Theorems 2.2, 2.3 and 3.7, we have
that if D is a PxMD, then %, = %, = %y = %, = w = ¢. In particular, if D is a PuMD, then
Ve = Vg =t = w, and hence Kr(D,v) = Kr(D,t) = Kr(D, w) = D[X]y,. However, *. = %,
does not imply P+xMD. For example, let L be a field, y, z be indeterminates over L, M = (y, 2)
be a maximal ideal of the polynomial ring L[y, z], and D = L[y, z]p. Then d. = d, on D by
Lemma 3.1(6), but it is clear that D is not a PdAMD.

On January 26, 2007, Zafrullah sent me a preprint of his recent paper with Anderson and
Fontana [2] that contains some interesting results on PxMDs. In particular, they also proved that
D is a PxMD if and only if (A yo)*» = (AyAg)*» for all 0 # f, ¢ € K[X] (in the more general
setting of semistar-operations) [2, Corollary 1.2].
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