期刊论文详细信息
JOURNAL OF ALGEBRA 卷:319
Linear balls and the multiplicity conjecture
Article
Hibi, Takayuki2  Singla, Pooja1 
[1] Univ Duisburg Essen, FB Math, D-45117 Essen, Germany
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 5600043, Japan
关键词: combinatorial commutative algebra;   
DOI  :  10.1016/j.jalgebra.2008.01.022
来源: Elsevier
PDF
【 摘 要 】

A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose Stanley-Reisner ring has a linear resolution. It turns out that the Stanley-Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres arising naturally from commutative algebra whose Stanley-Reisner rings satisfy the multiplicity conjecture will be presented. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2008_01_022.pdf 211KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次