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Abstract

A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose
Stanley–Reisner ring has a linear resolution. It turns out that the Stanley–Reisner ring of the sphere which
is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres
arising naturally from commutative algebra whose Stanley–Reisner rings satisfy the multiplicity conjecture
will be presented.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

The multiplicity conjecture due to Herzog, Huneke and Srinivasan is one of the most attractive
conjectures lying between combinatorics and commutative algebra. First, we recall what the
multiplicity conjecture says.

Let R = ∑∞
i=0 Ri be a homogeneous Cohen–Macaulay algebra over a field R0 = K of dimen-

sion d with embedded dimension n = dimK R1 and write R = S/I , where S = K[x1, . . . , xn] is
the polynomial ring in n variables over K and I is a graded ideal of S. Let H(R, i) = dimK Ri ,
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i = 0,1,2, . . . , denote the Hilbert function of R and F(R,λ) = ∑∞
i=0 H(R, i)λi the Hilbert

series of R. It is known that F(R,λ) is a rational function of λ of the form

F(R,λ) = h0 + h1λ + · · · + h�λ
�

(1 − λ)d
,

with each hi > 0. The multiplicity e(R) of R is

e(R) = h0 + h1 + · · · + h�.

Now, we consider the graded minimal free resolution

0 −→ Fp −→ · · · −→ F1 −→ S −→ R −→ 0

of R over S, where Fi = ⊕
S(−j)βi,j with βi,j � 0. Let

mi = min{j : βi,j �= 0}, Mi = max{j : βi,j �= 0}.

The multiplicity conjecture due to Herzog, Huneke and Srinivasan says that

∏p

i=1 mi

p! � e(R) �
∏p

i=1 Mi

p! .

A nice survey of the multiplicity conjecture and the record of past results in different cases of
the conjecture can be found in [11]. For more recent results one may look into [13–15].

In the present article we discuss the problem of finding a natural class of spheres whose
Stanley–Reisner rings satisfy the multiplicity conjecture.

Let Δ be a simplicial complex on the vertex set [n] = {1, . . . , n} of dimension d − 1 and
K[Δ] = S/IΔ, where S = K[x1, . . . , xn], its Stanley–Reisner ring. Suppose that Δ is a ball, i.e.,
the geometric realization |Δ| is a ball. Let ∂Δ denote the boundary complex of Δ and suppose
that each vertex of Δ belongs to ∂Δ. Thus ∂Δ is a sphere, i.e., the geometric realization |∂Δ|
is a sphere, of dimension d − 2 on [n]. Each face of ∂Δ is called a boundary face of Δ and
each face of Δ \ ∂Δ is called an inside face of Δ. Let m − 1 denote the smallest dimension of a
non-face of Δ and suppose that 2 � m � [(d + 1)/2]. It turns out (Theorem 1.2) that the sphere
∂Δ satisfies the multiplicity conjecture with assuming the hypothesis that

(A1) Δ has a minimal inside face of dimension d −m and has no minimal inside face of dimen-
sion less than m − 1;

(A2) the h-vector of ∂Δ is unimodal.

A linear ball is a ball whose Stanley–Reisner ring has a linear resolution. It is shown that the
sphere which is the boundary complex of a linear ball satisfies (A1) and (A2). In particular the
Stanley–Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the
multiplicity conjecture (Corollary 1.4).

A class of shellable spheres satisfying (A1) and (A2) arises from determinantal ideals. Let
X = (Xij ) 1�i�m be an m × n matrix of indeterminates, where m � n. Write τ for the lexico-
1�j�n
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graphic order of the polynomial ring K[X] = K[{Xij } 1�i�m
1�j�n

] induced by the ordering of the

variables

X11 � X12 � · · · � X1n � X21 � · · · � X2n � · · · � Xm1 � · · · � Xmn.

Let Ir denote the ideal of K[X] generated by all (r + 1) × (r + 1) minors of X, where
1 � r � m − 1. In particular Im−1 is the ideal of K[X] generated by all maximal minors of X.
It is known that the initial ideal I ∗

r of Ir with respect to τ is generated by squarefree mono-
mials. Let Δr denote the simplicial complex whose Stanley–Reisner ideal coincides with I ∗

r .
Theorem 2.4 says that, for each 1 � r � m − 1, the simplicial complex Δr is a shellable ball
satisfying (A1) and (A2). Moreover Δr is a linear ball if and only if r = m − 1 (Corollary 2.5).

One of the natural classes of shellable linear balls arises from the polarization of a power of the
graded maximal ideal. Let m = (x1, . . . , xn) be the graded maximal ideal of S = K[x1, . . . , xn].
Each power mt of m has a linear resolution. Let Δ be the simplicial complex whose Stanley–
Reisner ideal coincides with the polarization of mt . It is shown (Theorem 3.1) that Δ is a shellable
linear ball for t � 0 and hence it satisfies the multiplicity conjecture.

1. The multiplicity conjecture

First, we recall fundamental material on Stanley–Reisner ideals and rings of simplicial com-
plexes. We refer the reader to [1,6,16] for further information. Let [n] = {1, . . . , n} be the vertex
set and Δ a simplicial complex on [n]. Thus Δ is a collection of subsets of [n] such that

(i) {i} ∈ Δ for all i ∈ [n], and
(ii) if F ∈ Δ and F ′ ⊂ F , then F ′ ∈ Δ.

Each element F ∈ Δ is called a face of Δ. The dimension of a face F is |F | − 1. Let d =
max{|F |: F ∈ Δ} and define the dimension of Δ to be dimΔ = d − 1. A non-face of Δ is a
subset F of [n] with F /∈ Δ.

Let fi = fi(Δ) denote the number of faces of Δ of dimension i. Thus in particular f0 = n.
The sequence f (Δ) = (f0, f1, . . . , fd−1) is called the f -vector of Δ. Letting f−1 = 1, we define
the h-vector h(Δ) = (h0, h1, . . . , hd) of Δ by the formula

d∑
i=0

fi−1(t − 1)d−i =
d∑

i=0

hit
d−i .

Let S = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K with each
degxi = 1. For each subset F ⊂ [n], we set

xF =
∏
i∈F

xi.

The Stanley–Reisner ideal of Δ is the ideal IΔ of S which is generated by those squarefree
monomials xF with F /∈ Δ. In other words,

IΔ = (xF : F /∈ Δ).
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The quotient ring K[Δ] = S/IΔ is called the Stanley–Reisner ring of Δ. It follows that the
Hilbert series of K[Δ] is

F
(
K[Δ], λ) = (

h0 + h1λ + · · · + hdλd
)
/(1 − λ)d,

where (h0, h1, . . . , hd) is the h-vector of Δ. Thus in particular the multiplicity of K[Δ] is∑d
i=0 hi (= fd−1).
We say that Δ is Cohen–Macaulay (respectively Gorenstein) over K if K[Δ] is Cohen–

Macaulay (respectively Gorenstein). If the geometric realization |Δ| of Δ is homeomorphic to a
ball, then Δ is Cohen–Macaulay over an arbitrary field. If the geometric realization |Δ| of Δ is
homeomorphic to a sphere, then Δ is Gorenstein over an arbitrary field.

Now, let Δ be a simplicial complex on [n] of dimension d − 1 whose geometric realization
|Δ| is homeomorphic to a manifold. The boundary complex ∂Δ of Δ consists of those faces F

of Δ with the property that there is a (d − 2)-dimensional face F ′ of Δ with F ⊂ F ′ such that F ′
is contained in exactly one (d − 1)-dimensional face of Δ. Each face of ∂Δ is called a boundary
face and each face of Δ \ ∂Δ is called an inside face of Δ. In particular if Δ is a ball, i.e., |Δ| is
homeomorphic to a ball, of dimension d − 1, then ∂Δ is a sphere, i.e., |∂Δ| is homeomorphic to
a sphere, of dimension d − 2.

Theorem 1.1 (Hochster). (See [1, Theorem 5.7.2].) Let Δ be a Cohen–Macaulay complex over
a field K of dimension d − 1 whose geometric realization |Δ| is a manifold with a non-empty
boundary complex ∂Δ, and let ωΔ be the canonical ideal of K[Δ]. Write J for the ideal of
K[Δ] generated by those monomials xF with F ∈ Δ \ ∂Δ. Then the following conditions are
equivalent:

(a) ωΔ
∼= J as a Z

n-graded K[Δ]-module;
(b) ∂Δ is a Gorenstein complex over K .

If the equivalent conditions hold, then K[∂Δ] ∼= K[Δ]/ωΔ.

Let Δ be a simplicial complex on [n] of dimension d − 1 whose geometric realization |Δ| is
a ball and ∂Δ its boundary complex. Assume that every vertex of Δ belongs to ∂Δ. Thus ∂Δ is
a simplicial complex on [n] of dimension d − 2 whose geometric realization |∂Δ| is a sphere.
Since ∂Δ is Gorenstein, it follows that

(P1) The h-vector h(∂Δ) = (h′
0, h

′
1, . . . , h

′
d−1) of ∂Δ is symmetric i.e. h′

i = h′
d−1−i for all i =

0, . . . , d − 1; see [1, Theorems 5.4.2, 5.6.2].
(P2) The minimal free resolution of the Stanley–Reisner ring of ∂Δ is symmetric [5, Corol-

lary 21.16], i.e. if

0 −→ Fp −→ · · · −→ F1 −→ F0 −→ S/I∂Δ −→ 0

is the minimal free resolution of the ring S/I∂Δ, where Fi = ⊕
j S(−j)βi,j , i = 0, . . . , p,

p = n−(d −1) and F0 = S, then we have βi,j = βp−i,n−j for all i = 0, . . . , p. In particular,
Mi = n − mp−i where Mi = max{j : βi,j �= 0} and mi = min{j : βi,j �= 0}.

(P3) The canonical ideal ωΔ of the Stanley–Reisner ring K[Δ] = S/IΔ is generated by the
monomials xF , F ∈ Δ \ ∂Δ (see Theorem 1.1).
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In addition,

(F1) Let

0 −→ F ′
n−d −→ · · · −→ F ′

1 −→ F ′
0 −→ S/IΔ −→ 0

be the minimal free resolution of S/IΔ with F ′
i = ⊕

j S(−j)
β ′

i,j . Then the generators of
the canonical module ωΔ of K[Δ] are of degrees n − j with β ′

n−d,j �= 0 (see [1, Corol-
lary 3.3.9]).

(F2) One has m1 < m2 < · · · < mn−d+1.

Now, let m − 1 denote the smallest dimension of the non-faces of Δ. In other words, m is the
smallest degree of monomials belonging to G(IΔ), the minimal system of monomial generators
of IΔ. We will assume that 2 � m � [(d + 1)/2]. Our goal is to show that the Stanley–Reisner
ring K[∂Δ] = S/I∂Δ satisfies the multiplicity conjecture under the following hypothesis (Theo-
rem 1.2):

(A1) Δ has a minimal (under inclusion) inside face of dimension d − m and has no minimal
inside face of dimension less than m − 1.

(A2) The h-vector of the boundary complex ∂Δ is unimodal.

(In general, we say that a finite sequence of real numbers a0, . . . , at is unimodal if

a0 � a1 � · · · � aj � aj+1 � · · · � at

for some 0 � j � t .)
Now, we wish to understand the minimal and maximal shifts given by mi and Mi respectively

of the minimal free resolution

F∂Δ : 0 −→ Fn−d+1 −→ · · · −→ F1 −→ S −→ S/I∂Δ −→ 0

of S/I∂Δ where Fi = ⊕
j S(−j)βi,j , to calculate the lower and upper bounds of the multiplicity

of S/I∂Δ. First, we consider the minimal free resolution

FΔ : 0 −→ F ′
n−d −→ · · · −→ F ′

1 −→ S −→ S/IΔ −→ 0

of S/IΔ where F ′
i = ⊕

j S(−j)
β ′

i,j . Let m′
i and M ′

i denote the minimal and maximal shifts of
the minimal free resolution FΔ. Since m is the minimum of the degree of generators of IΔ,
one has m′

1 = m. By the assumption (A1) on Δ, there exists a minimal inside face of Δ of
dimension d − m, hence by Theorem 1.1, it follows that the canonical ideal ωΔ of Δ has a
generator of degree d −m+ 1. Therefore β ′

n−d,n−(d−m+1) �= 0, by (F1). As we have m′
1 = m and

m′
n−d � m + n − d − 1, we get m′

i = m + i − 1 for i = 1, . . . , n − d , by (F2).
We claim that the minimal shifts in the minimal free resolution F∂Δ of S/(I∂Δ) are given by

mi = m + i − 1 for i = 1, . . . , n − d and mn−d+1 = n. Indeed, by assumption (A1), we have that
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the canonical ideal ωΔ has no generator of degree less than m. Hence the S-module I∂Δ/IΔ has
no generator of degree less than m (Theorem 1.1). From the following short exact sequence

0 −→ IΔ −→ I∂Δ −→ I∂Δ/IΔ −→ 0,

we get the following long exact sequence

· · · −→ Tori+1(I∂Δ/IΔ,K)

−→ Tori (IΔ,K) −→ Tori (I∂Δ,K) −→ Tori (I∂Δ/IΔ,K) −→ · · · .

Now, as Tori (IΔ,K)i+t = 0 and Tori (I∂Δ/IΔ,K)i+t = 0 for t � m − 1 and i = 1, . . . ,

n − d , from the above long exact sequence we get Tori (I∂Δ,K)i+t = 0 for t � m − 1 and
i = 1, . . . , n − d . Also as Tori+1(I∂Δ/IΔ,K)i+1+m−1 = 0 and Tori (IΔ,K)i+m �= 0, we get
Tori (I∂Δ,K)i+m �= 0, i = 1, . . . , n − d . From here it follows that mi = m + i − 1 for i =
1, . . . , n − d . Since S/I∂Δ is Gorenstein and m0 = M0 = 0, we have mn−d+1 = Mn−d+1 = n

by property (P2).
Now, we need to determine the maximal shifts Mi for i = 1, . . . , n − d in the minimal free

resolution F∂Δ of S/I∂Δ. Again, as S/I∂Δ is Gorenstein, by property (P2) we have Mi = n −
mn−d+1−i = n − (m + n − d + 1 − i − 1) = d − m + i for i = 1, . . . , n − d .

Hence, we have now

L =
n−d+1∏

i=1

mi

(n − d + 1)! = n
∏n−d

i=1 (m + i − 1)

(n − d + 1)! and

U =
n−d+1∏

i=1

Mi

(n − d + 1)! = n
∏n−d

i=1 (d − m + i)

(n − d + 1)! .

Next, our goal is to estimate the multiplicity e(S/I∂Δ) of the ring S/I∂Δ. Let h′
0, . . . , h

′
d−1

denotes the h-vector of the ring S/I∂Δ. As the ring S/I∂Δ is Cohen–Macaulay, and m is the
minimum of the degree of the generators of I∂Δ, we have h′

i = h′
d−1−i = (

n−d+1+i−1
i

) = (
n−d+i

i

)
for i = 0, . . . ,m − 1. From assumption (A2) and property (P1) we have that the h-vector is sym-

metric and unimodal, therefore we conclude that h′
i �

(
n−d+m−1

m−1

)
for i = m, . . . , d − (m + 1).

Hence

e(S/I∂Δ) =
d−1∑
i=1

hi � 2
m−1∑
i=0

(
n − d + i

i

)
+ (d − 2m)

(
n − d + m − 1

m − 1

)
.

Theorem 1.2. Let Δ be a ball and ∂Δ be its boundary complex. Suppose that the sphere ∂Δ

satisfies the assumptions (A1) and (A2). Then the Stanley–Reisner ring S/∂Δ satisfies the mul-
tiplicity conjecture i.e.

L � e(S/I∂Δ) � U.

For the proof of the theorem, we need to first define cyclic polytopes. Let C(n,d − 1) denote
the convex hull of any n distinct points in R

d−1 on the curve {(t, t2, . . . , td−1) ∈ R
d−1, t ∈ R}.
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The polytope C(n,d − 1) is called the cyclic polytope of dimension d − 1. It is known that
C(n,d −1) is simplicial (i.e., every proper face is a simplex), and so the boundary of C(n,d −1)

defines a simplicial complex which we denote by ∂C(n, d−1) such that |∂C(n, d−1)| is a sphere
of dimension d − 2. Let (h∗

0, h
∗
1, . . . , h

∗
d−1) denote the h-vector of ∂C(n, d − 1). Then

h∗
i = h∗

d−1−i =
(

n − d + i

i

)
for i = 1, . . . ,

⌊
d − 1

2

⌋

(see [16, Section 3]). Let e(∂C(n, d −1)) = ∑
h∗

i denotes the multiplicity of the Stanley–Reisner
ring of the boundary complex ∂C(n, d − 1). Notice that we have h′

i � h∗
i , hence

e(S/I∂Δ) � e
(
∂C(n, d − 1)

)
. (1)

In [17], the minimal free resolution of the ∂C(n, d − 1) is computed. We have the following [17,
Theorem 3.2]: If d − 1 � 2 is even, then the maximal shifts M∗

i in the minimal free resolution of
∂C(n, d − 1) are given by

M∗
i = d − 1

2
+ i for i = 1, . . . , n − d and M∗

n−d+1 = n (2)

and if d − 1 � 3 is odd, then the maximal shifts M∗
i are as follows:

M∗
i =

⌊
d − 1

2

⌋
+ i + 1 for i = 1, . . . , n − d and M∗

n−d+1 = n. (3)

Even though the following Lemma 1.3 follows from [8, Theorem 1.2], we want to give a direct
computational proof.

Lemma 1.3. We have

e
(
∂C(n, d − 1)

)
�

∏n−d+1
i=1 M∗

i

(n − d + 1)! . (4)

Proof. Let U =
∏n−d+1

i=1 M∗
i

(n−d+1)! . Let first d − 1 � 2 is even. Then

U = n(d
2 + 1

2 )( d
2 + 3

2 ) · · · (n − d
2 − 1

2 )

(n − d + 1)! .

We have the multiplicity

e
(
∂C(n, d − 1)

) =
d−1∑
i=0

h∗

= 2

[(
n − d + 0

0

)
+ · · · +

(
(n − d) + d/2 − 3/2

d/2 − 3/2

)]

+
(

(n − d) + d/2 − 1/2
)

d/2 − 1/2
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= 2

(
n − d/2 − 1/2

d/2 − 3/2

)
+

(
n − d/2 − 1/2

d/2 − 3/2

)

= 2(n − d/2 − 1/2) · · · (d/2 − 1/2)

(n − d + 1)! + (n − d/2 − 1/2) · · · (d/2 + 1/2)

(n − d)!
= (n − d/2 − 1/2) · · · (d/2 + 1/2)

(n − d + 1)! (d − 1 + n − d + 1)

= U.

Now let d − 1 � 3 be odd. Then

U = n(d
2 + 1) · · · ( d

2 + (n − d))

(n − d + 1)! .

And the multiplicity is given by

e
(
∂C(n, d − 1)

) =
d−1∑
i=0

h∗

= 2

[(
n − d + 0

0

)
+

(
n − d + 1

1

)
+ · · · +

(
n − d + d/2 − 1

d/2 − 1

)]

= 2

(
n − d/2

d/2 − 1

)

= 2
(n − d/2) · · · (d/2 + 1)(d/2)

(n − d + 1)! .

We see that e(∂C(n, d − 1)) � U if and only if d � n which is true. �
Proof of Theorem 1.2. Since m � [(d + 1)/2], we have M∗

i � Mi both when d is odd and even.
Hence, by Eqs. (1) and (4), we get

e(S/I∂Δ) �
∏n−d+1

i=1 Mi

(n − d + 1)! . (5)

It remains to show that e(S/I∂Δ) � L. Since

e(S/I∂Δ) � 2
m−1∑
i=0

(
n − d + i

i

)
+ (d − 2m)

(
n − d + m − 1

m − 1

)
,

it is enough to show that

2
m−1∑ (

n − d + i

i

)
+ (d − 2m)

(
n − d + m − 1

m − 1

)
� n

∏n−d
i=1 (m + i − 1)

(n − d + 1)!

i=0
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which is to prove

2

(
n − d + m

m − 1

)
+ (d − 2m)

(
n − d + m − 1

m − 1

)
� n

∏n−d
i=1 (m + i − 1)

(n − d + 1)! .

We need to show

2(n − d + m) · · · (m + 1)(m) + (d − 2m)(n − d + m − 1) · · · (m + 1)(m)(n − d + 1)

� n(m)(m + 1) · · · (m + n − d − 1)

which further amounts to prove that 2(n − d + m) + (d − 2m)(n − d + 1) � n. Notice that it is
enough to show that 2(n − d + m) + (d − 2m) � n which is true as n > d. �
Corollary 1.4. Let Δ be a linear ball. Then the simplicial sphere ∂Δ satisfies the multiplicity
conjecture.

Proof. We only need to show that the assumptions (A1) and (A2) are satisfied in this case.
Since S/IΔ has a linear resolution, the minimal and maximal shifts in the minimal free resolution
of S/IΔ are given by m′

i = M ′
i = m + i − 1 for i = 1, . . . , n − d . Hence Δ has inside faces only

of dimension n − (m + n − d − 1) − 1 = d − m, by fact (F1) and Theorem 1.1. Also, there is
no inside face of dimension less than m − 1 since d − m � m − 1. Hence the assumption (A1) is
satisfied. We now show that the h vector (h′

0, . . . , h
′
d−1) of S/I∂Δ is unimodal. As the Stanley–

Reisner ideal IΔ has linear resolution and S = K[Δ] = S/IΔ is Cohen–Macaulay, we get that

the h-vector (h0, . . . , hd) of S/IΔ is given by hi = (
n−d+(i−1)

i

)
for i = 0, . . . ,m − 1 and hi = 0

for i � m.
Now the h-vector of S/I∂Δ is equal to (see [16, p. 137]):

(h0 − hd,h0 + h1 − hd − hd−1, . . . , h0 + · · · + hd−1 − hd − · · · − h1).

Hence the h-vector of S/I∂Δ is given by

h′
i =

⎧⎪⎪⎨
⎪⎪⎩

(
n−d+i

i

)
for i = 0, . . . ,m − 2;(

n−d+m−1
m−1

)
for i = m − 1, . . . , d − m;(

n−d+(d−1−i)
d−1−i

)
for i = d − m + 1, . . . , d − 1.

Hence the assumption (A2) also holds. �
2. Determinantal ideals

In this section, we study simplicial complexes arising from determinantal ideals. It is known
that these simplicial complexes are shellable. We prove that the geometric realization of these
simplicial complexes are balls and these balls are linear only in the case of the ideal of max-
imal minors. We show that the boundary complexes of these simplicial complexes satisfy the
multiplicity conjecture.
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Let X = (Xij ), i = 1, . . . ,m, j = 1, . . . , n, m � n be an m × n matrix of indeterminates. We
denote by [a1, . . . , ar | b1, . . . , br ], the minor det(Xaibj

) of X where i, j = 1, . . . , r . Further we
define

[a1, . . . , ar | b1, . . . , br ] �
[
a′

1, . . . , a
′
s

∣∣ b1
′, . . . , b′

s

]
,

if r � s and ai � a′
i , bi � b′

i for i = 1, . . . , s. Let Δ(X) denote the poset of minors of X. For
σ = [a1, . . . , ar | b1, . . . , br ] ∈ Δ(X), we denote by Iσ the ideal generated by all minors γ �� σ .
We call such ideals determinantal ideals. Notice that for σ = [1, . . . , r | 1, . . . , r], r � m − 1, the
ideal Iσ is the ideal generated by all (r + 1) × (r + 1) minors of X. For σ = [1, . . . , r | 1, . . . , r],
r � m − 1, we denote the ideal Iσ by Ir . Note that the ideal Im−1 is generated by all maximal
minors of X.

Let the symbol τ denote the lexicographic term order on the polynomial ring S = K[X] =
K[Xij , i = 1, . . . ,m, j = 1, . . . , n] induced by the variable order

X11 � X12 � · · · � X1m � X21 � X22 � · · · � X2m � Xn1 � Xn2 � · · · � Xmn.

Notice that under the monomial order τ , the initial monomial of any minor of X is the product
of the elements of its main diagonal. Such a monomial order is called diagonal order. In [9],
it is shown that the generators of Iσ form a Gröbner basis and hence I ∗

σ of Iσ with respect to
the monomial order τ , is generated by squarefree monomials. In other words, K[X]/I ∗

σ may
be viewed as a Stanley–Reisner ring of a certain simplicial complex Δσ . For σ = [1, . . . , r |
1, . . . , r], r � m − 1, we denote the simplicial complex Δσ by Δr .

We show in Theorem 2.4 that for any σ = [a1, . . . , ar | b1, . . . , br ] ∈ Δ(X), the geometric
realization |Δσ | of the simplicial complex Δσ is a shellable ball. By Theorem 2.4 and Corol-
lary 2.5 together, it follows that the geometric realization |Δm−1| of Δm−1 is in fact a shellable
linear ball.

According to [9], facets of the simplicial complex Δσ can be described as follows: its vertex
set is the set of coordinate points V = {(i, j): 1 � i � m,1 � j � n}. We define a partial order
on V by setting (i, j) � (i′, j ′) if i � i′ and j � j ′. A maximal chain in V will be called a path.

Theorem 2.1. (See [9, Theorem 3.3].) Let σ = [a1, . . . , ar | b1, . . . , br ], and let Pi = (ai, n) and
Qi = (m,bi) for i = 1, . . . , r . Then the facets of Δσ are the non-intersecting paths from Pi to Qi ,
that is, subsets C1 ∪ C2 ∪ · · · ∪ Cr of V where each Ci is a path with end points Pi and Qi and
where Ci ∩ Cj = ∅ for all i �= j .

We denote the set of facets of Δσ by F(Δσ ). The complex Δσ has a natural partial order on
the set of facets which we recall from [9, Theorem 4.9]: Let F1 and F2 be two facets of Δσ . We
write F1 = ⋃r

i=1 Ci and F2 = ⋃r
i=1 Di as unions of non-intersecting paths with end points Pi

and Qi . We say that F2 � F1, if Di is contained in the upper right side of Ci for all i = 1, . . . , r ,
that is, if for each (x, y) ∈ Di there is some (u, v) ∈ Ci such that u � x and v � y, where
i = 1, . . . , r . This is a partial order on the facets of Δσ , and this partial order extended to any
linear order gives us a shelling. We fix a linear order and let Σ denotes the corresponding shelling.
From [3, Corollary 5.18], we have dim(S/I ∗

σ ) = r(m + n + 1) − ∑r
i=1(ai + bi).

Before stating the next theorem, we define the notion of a corner of a path. Let C be a path
in V . A point (i, j) ∈ C will be called a corner of C, if (i − 1, j) and (i, j − 1) belong to C. Let
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F be a facet of Δσ , then we denote by C(F ), the set of corners of the paths in F , and we define
c(F ) = |C(F )|.

For the proof of Theorem 2.4, we need the following lemma from algebraic topology (see
[18]):

Lemma 2.2. Let E1 be a simplicial complex whose geometric realization |E1| is a ball of dimen-
sion d , and let E2 be a simplex of dimension d . Let the intersection E1 ∩E2 = 〈G1, . . . ,Gr 〉 �= ∅,
where G1, . . . ,Gr are facets of the boundary complexes ∂Ei of Ei , i = 1,2 and 〈G1, . . . ,Gr 〉 is
a proper subset of ∂E2. Then the geometric realization |E1 ∪ E2| of E1 ∪ E2 is again a ball.

The following lemma follows from the proof of [2, Theorem 2.4].

Lemma 2.3. Let Δσ = 〈F1, . . . ,Ft 〉 be the simplicial complex with Stanley–Reisner ideal Iσ

where F1, . . . ,Ft is the shelling order Σ . Let Δi = 〈F1, . . . ,Fi〉 and let G = Fk \ {v} for some
v ∈ Fk , k � i. Then G ⊂ F� for some � < k if and only if v ∈ C(Fk). If the equivalent conditions
hold then F� is uniquely determined.

Theorem 2.4. For any σ = [a1, . . . , ar | b1, . . . , br ] ∈ Δ(X), the geometric realization |Δσ | of
the simplicial complex Δσ is a shellable ball of dimension r(m + n + 1) − ∑r

i=1(ai + bi) − 1.

Proof. The fact that the dimension of the simplicial complex Δσ is r(m + n + 1) −∑r
i=1(ai + bi) − 1 follows from [3, Corollary 5.18]. Let Δσ = 〈F1, . . . ,Ft 〉 where F1, . . . ,Ft

is the shelling order Σ . Let Δi = 〈F1, . . . ,Fi〉. We prove that |Δi | is a ball by induction on i.
Assume that |Δi−1| is a ball, we will show that |Δi | is a ball. We have Δi = Δi−1 ∪ 〈Fi〉,
let Δi−1 ∩ 〈Fi〉 = 〈G1, . . . ,Gr 〉. Notice that Gj are codimension one faces of Δi−1 as Δσ is
shellable. By Lemma 2.2, we notice that |Δi | is a ball (assuming that |Δi−1| is a ball), if the
following two conditions are satisfied:

(1) Each Gj is a subset of exactly one Fk for k � i − 1, which in turn implies that Gj ∈ ∂Δi−1,
(2) G1, . . . ,Gr is a proper subset of the boundary complex ∂〈Fi〉 of 〈Fi〉.

The first condition follows from Lemma 2.3. For the second condition, we define Gv = Fi \{v}
where v /∈ C(Fi) (notice that such a v exists as not all points in Fi are corner points of Fi ). Then
again from Lemma 2.3, there exists no Fj , j � i − 1 such that Gv = Fj ∩Fi . Hence Gv ⊂ ∂〈Fi〉
and Gv �= Gj for j = 1, . . . , r . �

An ideal I ⊂ S generated in degree d is said to have a linear resolution if in the minimal
free resolution of I , one has the maximal shifts Mi = d + i for all i. It is known that the ideal
Im−1 generated by the maximal minors of matrix X has a linear resolution. In fact, the Eagon–
Northcott complex gives a minimal free resolution for Im−1, see [3, Theorem 2.16]. We have the
following:

Corollary 2.5. Let Δr be the simplicial complex with the Stanley–Reisner ideal I ∗
r . Then |Δr | is

a linear ball if and only if r = m − 1.

Proof. First we show that |Δm−1| is a linear ball i.e. we show that the Stanley–Reisner ideal
I ∗ has a linear resolution. As stated before, we know that the ideal Im−1 has a linear res-
m−1
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olution. Moreover, the ring S/Im−1 is Cohen–Macaulay, see [3, Theorem 2.8]. Now as Δm−1
is shellable, the ring S/I ∗

m−1 is also Cohen–Macaulay. From here it follows, that the Stanley–
Reisner ideal I ∗

m−1 also has a linear resolution. Indeed, note that S/Im−1 and S/I ∗
m−1 have the

same Hilbert function. Let dimS/Im−1 = dimS/I ∗
m−1 = d . Let y1, . . . , yd and y′

1, . . . , y
′
d be the

maximal regular sequences of linear forms in S/Im−1 and in S/I ∗
m−1, respectively. Then S/Im−1

is zero-dimensional (here denotes modulo the sequence (y1, . . . , yd)) and has a linear resolu-
tion. This is only possible if Im−1 is a power of the maximal ideal of S. Now the zero-dimensional
ring S/I ∗

m−1 (here denotes modulo the sequence (y′
1, . . . , y

′
d)) has the same Hilbert function

as S/Im−1. This is only possible if I ∗
m−1 is the same power of the maximal ideal as Im−1. In

particular, I ∗
m−1 has linear resolution, and therefore I ∗

m−1 has a linear resolution.
Now we show that I ∗

r does not have a linear resolution for r �= m − 1. Notice that it is enough
to show that Ir does not have linear resolution for r �= m − 1, since βij (I

∗
r ) � βij (Ir ). The a-

invariant of the ring S/Ir is equal to −nr i.e. the minimum of the degree of generators of the
canonical module of S/Ir is given by nr , see [2, Corollary 1.5]. As the projective dimension
of S/Ir is given by (m − r)(n − r) [3, Corollary 5.18], we have M(m−r)(n−r)(S/Ir ) = nm −
rn by (F1) in the first section. Hence M(m−r)(n−r)−1(Ir ) − (m − r)(n − r) + 1 = nm − rn −
(m − r)(n − r) + 1 = r(m − r) + 1 and M0(Ir ) = r + 1. Hence for r �= m − 1, the ideal Ir does
not have a linear resolution. �

The Stanley–Reisner ring Sσ = K[Δσ ] being Cohen–Macaulay, admits a graded canonical
module ωσ . In [2], the a-invariant of Sσ which is the negative of the least degree of canonical
module ωσ is computed. Next, we want to determine the degree of all the generators of ωσ for
σ = [1, . . . , r | 1, . . . , r], r � m − 1. First we need the following lemma:

Lemma 2.6. Let Δσ = 〈F1, . . . ,Ft 〉 be the simplicial complex with Stanley–Reisner ideal Iσ and
F1, . . . ,Ft be the shelling order Σ . Let Δi = 〈F1, . . . ,Fi〉. Then the boundary complex of Δi is
given by

∂(Δi) = {
G ∈ Δi : Fk \ G �⊂ C(Fk) for all k � i with G ⊂ Fk

}
.

Proof. It is enough to show that the set of facets of ∂(Δi) is given by

F
(
∂(Δi)

) = {
G ∈ Δi : Fk \ G = {v}, v /∈ C(Fk) for all k � i with G ⊂ Fk

}
.

Indeed, if we assume the above statement to be true, then the boundary complex is the set:{
H ∈ Δi : H ⊂ G for some G ∈ F

(
∂(Δi)

)}
,

which is further equal to the set{
H ∈ Δi : H ⊂ G,Fk \ G = {v}, v /∈ C(Fk) for all k � i with G ⊂ Fk

}
.

The above set is equal to{
H ∈ Δi : Fk \ H �⊂ C(Fk) for all k � i with H ⊂ Fk

}
,

as in the statement of the lemma.
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Let S = {G ∈ Δi : Fk \ G = {v}, v /∈ C(Fk) for all k � i with G ⊂ Fk}. By Lemma 2.3, we
have S ⊂ F(∂(Δi)). Now let G /∈ S be of codimension one. It follows that G is of the form
Fk \ {v} where v ∈ C(Fk) for some k � i. Again by Lemma 2.3, there exists � < k such that
G ⊂ F�. Hence G = F� ∩ Fk , which implies G /∈ ∂(Δi). �

In Theorem 2.4, we have shown that the geometric realization |Δσ | of Δσ is a ball and there-
fore the geometric realization |∂σ | of ∂σ is a sphere. It is known that simplicial spheres are
Gorenstein over any field, see [1, Corollary 5.6.5]. Hence we may apply Theorem 1.1 to com-
pute ωσ . Before stating the next corollary, we define the notion of a non-flippable path. Let D

be a path from a to b. Let v ∈ D such that {v + (1,0), v + (0,1)} ∈ D and neither v + (1,0) nor
v + (0,1) is a corner point of D. Then v can be flipped to get a path D′ = (D \ {v})∪{v + (1,1)}.
We call such an interchange of the point v to v + (1,1) a flip. Notice that the new path D′ ob-
tained after a flip from D has the following property: C(D) ⊂ C(D′). We call a path D to be
a flippable path if D could be flipped to get a new path D′, otherwise we call D to be a non-
flippable path (see Fig. 1). Hence, a non-flippable path D from a to b is a path which has the
following property: for all v ∈ D such that {v + (0,1), v + (1,0)} ⊂ D, one has either v + (0,1)

or v + (1,0) is a corner point of D. Equivalently, one may notice that a path D from a to b is a
non-flippable path if for a path D′ from a to b with C(D′) ⊃ C(D), one has D′ = D.

v

D

v′

D′

Fig. 1. A flippable path D and a non-flippable path D′ where D′ = (D \ {v}) ∪ {v′}.
We call a facet F = ⋃

i Ci of the simplicial complex Δσ a non-flippable facet, if each Ci

is a non-flippable path, otherwise we call F a flippable facet. Notice that a facet F of Δσ is
non-flippable if for each facet F ′ of Δσ with C(F ′) ⊃ C(F ), one has F ′ = F . We denote the set
of non-flippable facets of Δσ by NF(Δσ ). Let F,F ′ be two facets of Δσ with C(F ) ⊂ C(F ′).
Then F ′ is obtained from F by finite number of flips. One has:

Lemma 2.7. Let F,F ′ be two facets of Δσ , then the following two conditions are equivalent:

(a) C(F ) ⊂ C(F ′),
(b) F ′ \ C(F ′) ⊂ F \ C(F ).

For a given subset Z of [m] × [n] we denote by XZ , the monomial
∏

(i,j)∈Z Xij . We have:

Corollary 2.8. Let ωσ be the canonical ideal of K[Δσ ] and M denote the set {F \ C(F ): F ∈
NF(Δσ )}. Then the minimal set of generators of ωσ is given by G(ωσ ) = {XG: G ∈M}.
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Proof. By Theorems 2.4 and 1.1, it is enough to show that M is the set of the minimal inside
faces (under inclusion) of Δσ .

By Lemma 2.6, we know that the set of inside faces of the simplicial complex Δσ is given
by S = {F \ Z: F ∈ F(Δσ ),Z ⊂ C(F )}. Therefore each minimal inside face G is of the form
F \ C(F ), F ∈ F(Δσ ).

Let F ∈ NF(Δσ ). Suppose G = F \ C(F ) is a not a minimal inside face. Then there exists
G′ ⊂ G such that G′ = F ′ \ C(F ′) is a minimal inside face. By Lemma 2.7, it follows C(F ′) ⊃
C(F ), a contradiction.

Now, let G = F \ C(F ) be a minimal inside face. Suppose F /∈ NF(Δσ ), then there exists a
facet F ′ such that C(F ′) ⊃ C(F ). Again, by Lemma 2.7, it follows then F ′ \ C(F ′) ⊂ F \ C(F ),
a contradiction. �

In general, to give the explicit expressions of multi-degrees of the generators of canonical
ideal ωσ may not be possible. But we would like to give all possible total degrees of the genera-
tors of the canonical ideal ωσ for σ = [1, . . . , r | 1, . . . , r], r � m− 1. In this case, Iσ is the ideal
generated by all r + 1 × r + 1 minors of X. For σ = [1, . . . , r | 1, . . . , r], we denote Iσ by Ir , ωσ

by ωr and Δσ be Δr .
From Corollary 2.8, it follows that |F |− c(F ), F ∈NF(Δσ ) are the total degrees of the gen-

erators of the canonical ideal ωσ . We call the corners of the a non-flippable facet F ∈ NF(Δσ )

the non-flippable corners. In the case of the simplicial complex Δr , we will show that the num-
ber t of the non-flippable corners could be any integer between r and r(m − r).

Proposition 2.9. Let Δr be the simplicial complex with the Stanley–Reisner ideal I ∗
r . Then there

exists a non-flippable facet F of the simplicial complex Δr with t corners if and only if r � t �
r(m − r).

Proof. We will construct a non-flippable facet for any given number of corners between r and
r(m − r). As any facet F of Δσ is a disjoint union of r paths Ci from (i, n) to (m, i), we notice
that the minimum number of non-flippable corner for any path Ci is one and the maximum is
(m − r). Hence minimum and maximum number of possible total non-flippable corners are r

and r(m − r) respectively. As a path Ci is determined by its corners, we define the non-flippable
corners for each path. For r corners, we define Ci such that C(Ci) = (i + 1, i + 1) such that
F = C1 ∪ · · · ∪ Cr is a non-flippable facet with r corners; see Fig. 2.

(2,2)

(3,3)

(4,4)

C1 C2 C3

Fig. 2. A non-flippable facet with r = 3 corners.
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One can write any r � t � r(m − r) as t = r + p(m − r − 1) + q for 0 � p � r and 0 � q <

(m − r − 1). For any such t , we define the corners of the path Ci as follows: For 0 � k � p − 1,
the path Cr−k has corners at

(
r − (k − 1), n − (k + 1)

)
,

(
r − (k − 2), n − (k + 2)

)
, . . . ,(

r − (k − m + r), n − (k + m − r)
)
.

The path Cr−p has corners at

(r − p, r − p + q), (r − p + 1, r − p + q − 1), . . . , (r − p + q, r − p),

and for 1 � i � r − p − 1, the path Ci has corner at (i + 1, i + 1). Now F = ⋃r
i=1 Ci is a

non-flippable facet with exactly t = r + p(m − r − 1) + q corners; see Fig. 3. �

(2,2)

(3,4)

(4,3)

(4,6)

(5,5)

(6,4)

C1 C2 C3

Fig. 3. A non-flippable facet with t = r + p(m − r − 1) + q corners with m = 6, n = 7, r = 3 and p = 1, q = 1.

Corollary 2.10. The canonical ideal ωr has a minimal generator of degree t if and only if rn �
t � r(n + m − r − 1).

Proof. We have dimR/Ir = |F | = r(m+n)− r2 [3, Corollary 5.18]. Now by Corollary 2.8 and
from Proposition 2.9, follows the result. �

Next, we want to consider the boundary complex ∂r of the simplicial complex Δr . We want
to show that the Stanley–Reisner ring S/I∂r satisfies the multiplicity conjecture. The geometric
realization |∂r | of the boundary complex ∂r is a sphere of dimension r(m+n)−r2 −1. Therefore
the Stanley–Reisner ring S/I∂r is a Gorenstein ring, see [1, Corollary 5.6.5]. Hence, the boundary
complex ∂r satisfies properties (P1), (P2), (P3) of Section 1 and by Theorem 1.1, we have S/I∂r =
K[Δr ]/(ωr).

Theorem 2.11. The Stanley–Reisner ring S/I∂r satisfies the multiplicity conjecture.

Proof. We need to show that assumptions (A1) and (A2) are satisfied, see Theorem 1.2. As the
generators of the canonical ideal ωr of Δr has degrees t where rn � t � r(m + n − r − 1), there
exists a minimal inside face of dimension r(m+n− r −1)−1 = dimR/I∂r − (r +1) and there is
no inside face of dimension less than r +1, see Theorem 1.1. Hence assumption (A1) is satisfied.
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For assumption (A2), we need to show that h-vector of S/I∂r is unimodal. Let the h-
vector of the simplicial complex Δr be given by (h0, . . . , hr(m+n)−r2), then the h-vector
(h′

0, . . . , h
′
r(m+n)−r2−1

) of the boundary complex ∂r is given by (see [16, p. 137]):

h0 − hr(m+n)−r2, . . . , h0 + · · · + hr(m+n)−r2−1 − hr(m+n)−r2 − · · · − h1.

By [2, Theorem 2.4] we have that hi calculates the number of facets F of Δr with number of
corners c(F ) = i and from Corollary 2.9, we get that the maximal number of corners possible
are r(m − r), hence ht = 0 for all r(m − r) + 1 � t � r(m + n) − r2. Then it follows that the
h-vector of S/I∂r is given by

h′
i =

⎧⎨
⎩

h′
r(m+n)−r2−1−i

= ∑i
j=0 hj for i = 0, . . . , r(m − r);∑r(m−r)

j=0 hj for j = r(m − r) + 1, . . . , nr − 2.

Hence h-vector of S/I∂r is unimodal. �
In the remaining part of this section, we compare the Stanley–Reisner ideal I ∗

m−1 of Δm−1
with its (I ∗

m−1)
∨. We will see in Theorem 2.12 that the dual ideal (I ∗

m−1)
∨ is again the initial

ideal of the ideal of the maximal minors of a certain matrix.
Let Δ be a simplicial complex on the vertex set [n] and IΔ ⊂ K[X1, . . . ,Xn] be the corre-

sponding Stanley–Reisner ideal. There is another simplicial complex Δ∨ associated to Δ which
is called the Alexander dual of Δ. The Alexander dual is defined by the simplicial complex
Δ∨ = {[n] \ F : F /∈ Δ}. It is easy to see that the complement of the minimal non-faces of
the simplicial complex Δ define the facets of the dual complex Δ∨ and vice versa. Hence, the
Stanley–Reisner ideal IΔ∨ is equal to the ideal (Xi1 · · ·Xik : [n] \ {i1, . . . , ik} ∈ F(Δ)). One may
write IΔ = ⋂

F∈F(Δ) PF where PF = (Xi : i /∈ F). Therefore the monomials XPF
= ∏

Xi∈PF
Xi ,

F ∈ F(Δ) form a set of minimal generators of IΔ∨ . From here it follows that a monomial g is a
minimal generator of IΔ∨ if and only if S = {Xi : Xi |g} is a vertex cover of the set of minimal
generators G(IΔ) of IΔ. (We call a set of indeterminates S ⊂ {X1, . . . ,Xn} to be vertex cover of
a set of monomials {m1, . . . ,mk} if for all mi there exists some Xj ∈ S such that Xj |mi .)

Let X = (Xij ) be a matrix of indeterminates of order m × n. We call a matrix Y = (Yij )

of indeterminates of order (n − m + 1) × n a dual of the matrix X if Yi,j+i−1 = Xj,j+i−1 for
i = 1, . . . , n−m+ 1 and j = 1, . . . ,m. Notice that if Y is a dual of X, then X is a dual of Y . For
example, if

X =
(

X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34

)

is a matrix of order 3 × 4 then a dual matrix Y of order 2 × 4 can be defined as follows:

Y =
(

X11 X22 X33 Y14
Y21 X12 X23 X34

)
.

Let again I ∗
m−1 denote the initial ideal of the ideal of maximal minors of an m×n matrix X =

(Xij ) of indeterminates and Δm−1 be the simplicial complex with Stanley–Reisner ideal I ∗
m−1.

We denote the Alexander dual of the simplicial complex Δm−1 by Δ∨ and the corresponding
m−1
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Stanley–Reisner ideal by (I ∗
m−1)

∨. Let Y = (Yij ) be a dual matrix of X. Let Jn−m denote the
ideal of the maximal minors of the matrix Y and the initial ideal of Jn−m be denoted by J ∗

n−m

(notice J ∗
n−m does not depend upon the choice of the dual matrix Y ). We define a polynomial

ring T = K[Xij ,Ykj : 1 � i � m,1 � k � n − m + 1,1 � j � n]. Then we have:

Theorem 2.12.

(
I ∗
m−1

)∨
T = J ∗

n−mT .

Proof. First we show that the ideal J ∗
n−mT is contained in the ideal (I ∗

m−1)
∨T . Let g =

Y1j1Y2j2 · · ·Yn−m+1,jn−m+1 , j1 < j2 < · · · < jn−m+1 be a minimal generator of the ideal J ∗
n−m.

As Y1j = Xjj ,Y2j+1 = Xjj+1, . . . , Yn−m+1,j+n−m = Xjj+n−m for j = 1, . . . ,m, the monomial
g is of the form Xi1,i1Xi2,i2+1 · · ·Xin−m+1,in−m+1+n−m for some 1 � i1 � i2 � · · · � in−m+1 � m.

We need to show that the set S given by {Xi1,i1,Xi2,i2+1, . . . ,Xin−m+1,in−m+1+n−m} is a vertex
cover for G(I ∗

m−1). Let

h = X1,1+t1X2,2+t2 · · ·Xm,m+tm, 0 � t1 � t2 � · · · � tm � n − m,

be a minimal generator of I ∗
m−1. We show that there exists Xi,j ∈ S such that Xi,j |h. Suppose

the contrary, then Xik,ik+(k−1) does not divide h for any k = 1, . . . , n − m + 1 which implies
tik > k − 1 for k = 1, . . . , n − m + 1, in particular tin−m+1 > n − m which is a contradiction.

To show that (I ∗
m−1)

∨T ⊂ J ∗
n−mT , we need to show that if S is a minimal vertex cover

of G(I ∗
m−1), then

∏
Xij ∈S Xij is a generator of J ∗

n−m. Since, the monomials
∏m

i=1 Xi,i+k, k =
0, . . . , n − m are minimal generators of G(I ∗

m−1), we get that the subset of the form S′ =
{Xi1,i1,Xi2,i2+1, . . . ,Xin−m+1,in−m+1+n−m} is contained in any minimal vertex cover S of
G(I ∗

m−1). Also one may notice that, we must have 1 � i1 � i2 � · · · � in−m+1 � m. Now, the
generators of J ∗

n−m are exactly of the form
∏

Xij ∈S′ Xij , hence (I ∗
m−1)

∨T ⊂ J ∗
n−mT . �

Corollary 2.13. The Stanley–Reisner ideal I ∗
m−1 has linear quotients.

Proof. By above theorem and Theorem 2.4 we get that the simplicial complex Δ∨
m−1 gives the

triangulation of a shellable linear ball. Now it follows from [10, Theorem 1.4] that I ∗
m−1 has

linear quotients. �
3. Polarization of the powers of a maximal ideal

Let S = K[x1, . . . , xn] be a standard graded polynomial ring over the field K and let m =
(x1, . . . , xn) ⊂ S denote the maximal graded ideal.

Let u = ∏n
i=1 x

ai

i be a monomial in S. Then the squarefree monomial given by

uP =
n∏

i=1

ai∏
j=1

xij ∈ K[x11, . . . , x1a1 , . . . , xn1, . . . , xnan ]

is called the polarization of u. Let I = mt be the t th power of the maximal ideal. Let G(I) =
{u1, . . . , um}, then the squarefree monomial ideal IP = (uP

1 , . . . , uP
m) ⊂ K[x11, . . . , x1t , . . . , xn1,

. . . , xnt ] is called the polarization of I .
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Let Γ = {a ∈ N
n: xa /∈ I } be the multicomplex associated to the ideal I . Detailed information

about multicomplexes can be found in [7]. In our case, Γ is a shellable multicomplex, see [7,
Theorem 10.5] and all the elements of Γ are its facets. Clearly, Γ consists of those a ∈ N

n

such that
∑

a(k) � t − 1. We define a partial order on the facets of Γ as follows: Let a, b be
any two facets of Γ , we say a < b if

∑n
k=1 a(k) �

∑n
k=1 b(k). This partial order extended to

any total order gives us a shelling. We fix a total order and we call the respective shelling Σ .
Let F(Γ ) = {a1, . . . , am} be the set of the facets of Γ in the shelling order Σ . Let Δ be the
simplicial complex with the Stanley–Reisner ideal IP and let F(Δ) be the set of facets of Δ.
By [4], it follows that Δ is shellable. Furthermore by [12, Lemma 3.7] and [7, Proposition 10.3]
together, it follows that there is a bijection between F(Γ ) and F(Δ) given by

θ : F(Γ ) −→ F(Δ), ak �−→ Fak
.

Here given the facet ak = (ak(1), . . . , ak(n)) of Γ , the facet Fak
of Δ is defined to be {xij ,

i = 1, . . . , n, j = 1, . . . , t , j �= ak(i) + 1}. Also, Fa1, . . . ,Fam is a shelling order of the facets of
the simplicial complex Δ.

We have the following:

Theorem 3.1. The geometric realization |Δ| of the simplicial complex Δ is a shellable linear
ball.

Proof. We already know that Δ = 〈Fa1, . . . ,Fam〉 is a shellable simplicial complex. Note that
the Stanley–Reisner ideal IΔ = IP has a linear resolution because the graded Betti numbers of a
monomial ideal and its polarization are the same, and I = mt obviously has a linear resolution.
Let Δk = 〈Fa1 , . . . ,Fak

〉. We will prove |Δk| is a ball by induction on k as in Theorem 2.4. The
assertion is obvious for k = 1. Assume that |Δk−1| is a ball, we will show that |Δk| is a ball where
the simplicial complex Δk = Δk−1 ∪〈Fak

〉. Let Δk−1 ∩〈Fak
〉 = {G1, . . . ,Gr} where G1, . . . ,Gr

are codimension one faces of Fak
. By Lemma 2.2, we notice that |Δk| is a ball (assuming that

|Δk−1| is a ball) if the following two conditions are satisfied:

(1) Each G� is a subset of exactly one Fai
for i � k − 1, which in turn implies that G� ∈ ∂Δk−1,

(2) G1, . . . ,Gr is a proper subset of the boundary complex ∂Fak
of Fak

.

Let ak = (s1, . . . , sn) where
∑

si � t − 1. Then

Fak
= {xij , i = 1, . . . , n, j = 1, . . . , t, j �= si + 1}.

Suppose G� = Fak
\ {xi�j�

} where 1 � i� � n and 1 � j� � t . Then clearly, G� = Fak
∩ Fap�

where ap�
= (s1, . . . , si�−1, j� − 1, si�+1, . . . , sn) and also G� �⊂ Faq for any q � k − 1, q �= p�.

For the second condition, let 1 � q � n be the minimum integer such that sq < t − 1.
Let G = Fak

\ {xqt }. Suppose G ⊂ Faj
for some j � k − 1, then it would imply that aj =

(s1, . . . , sq−1, t − 1, sq+1, . . . , sn). Since
∑

aj (i) � t , we have aj /∈ Γ , a contradiction. Hence
G /∈ {G1, . . . ,Gr} and G is a facet of the boundary complex ∂Fak

. �
Now by the above theorem and Corollary 1.4, we have the following:

Corollary 3.2. The simplicial sphere ∂Δ satisfies the multiplicity conjecture.
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