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Abstract

A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose
Stanley—Reisner ring has a linear resolution. It turns out that the Stanley—Reisner ring of the sphere which
is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres
arising naturally from commutative algebra whose Stanley—Reisner rings satisfy the multiplicity conjecture
will be presented.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

The multiplicity conjecture due to Herzog, Huneke and Srinivasan is one of the most attractive
conjectures lying between combinatorics and commutative algebra. First, we recall what the
multiplicity conjecture says.

LetR = Z?io R; be ahomogeneous Cohen—Macaulay algebra over a field Ry = K of dimen-
sion d with embedded dimension n = dimg R; and write R = §/I, where S = K[x1, ..., x,] is
the polynomial ring in n variables over K and [ is a graded ideal of S. Let H(R, i) = dimg R;,
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i =0,1,2,..., denote the Hilbert function of R and F(R, ) = Z?io H(R, i)Ai the Hilbert
series of R. It is known that F (R, A) is a rational function of A of the form

ho+hih+ -+ hoat

F(R, L) = a =

)

with each /; > 0. The multiplicity e(R) of R is
e(R)=ho+hi+---+hy.
Now, we consider the graded minimal free resolution
0O—F,— - —F—85—R—0
of R over S, where F; = @ S(—j)Pii with Bi.j = 0. Let
m; =min{j: B; ; # 0}, M; =max{j: B ; # 0}.
The multiplicity conjecture due to Herzog, Huneke and Srinivasan says that

p P
izt 7 <e(R) < ==L,
p! p!

A nice survey of the multiplicity conjecture and the record of past results in different cases of
the conjecture can be found in [11]. For more recent results one may look into [13-15].

In the present article we discuss the problem of finding a natural class of spheres whose
Stanley—Reisner rings satisfy the multiplicity conjecture.

Let A be a simplicial complex on the vertex set [n] = {1,...,n} of dimension d — 1 and
K[A]=S/IA, where S = K[x1, ..., x,], its Stanley—Reisner ring. Suppose that A is a ball, i.e.,
the geometric realization |A| is a ball. Let d A denote the boundary complex of A and suppose
that each vertex of A belongs to dA. Thus dA is a sphere, i.e., the geometric realization [0 A|
is a sphere, of dimension d — 2 on [n]. Each face of dA is called a boundary face of A and
each face of A \ dA is called an inside face of A. Let m — 1 denote the smallest dimension of a
non-face of A and suppose that 2 < m < [(d + 1)/2]. It turns out (Theorem 1.2) that the sphere
0 A satisfies the multiplicity conjecture with assuming the hypothesis that

(A1) A has a minimal inside face of dimension d — m and has no minimal inside face of dimen-
sion less than m — 1;
(A2) the h-vector of d A is unimodal.

A linear ball is a ball whose Stanley—Reisner ring has a linear resolution. It is shown that the
sphere which is the boundary complex of a linear ball satisfies (A1) and (A2). In particular the
Stanley—Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the
multiplicity conjecture (Corollary 1.4).

A class of shellable spheres satisfying (A1) and (A2) arises from determinantal ideals. Let
X = (Xij)1<igm be an m x n matrix of indeterminates, where m < n. Write t for the lexico-

I<jsn
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graphic order of the polynomial ring K[X] = K[{X;;}i<i<n] induced by the ordering of the
lsi

<<

IJn

variables
XnuzXpz---2Xuz2Xnz2-2Xyu2-2Xn 2 2 Xun.

Let I, denote the ideal of K[X] generated by all (r + 1) x (r + 1) minors of X, where
1 <r <m— 1. In particular [,,_; is the ideal of K[X] generated by all maximal minors of X.
It is known that the initial ideal I* of I, with respect to T is generated by squarefree mono-
mials. Let A, denote the simplicial complex whose Stanley—Reisner ideal coincides with I*.
Theorem 2.4 says that, for each 1 <r < m — 1, the simplicial complex A, is a shellable ball
satisfying (A1) and (A2). Moreover A, is a linear ball if and only if r =m — 1 (Corollary 2.5).

One of the natural classes of shellable linear balls arises from the polarization of a power of the
graded maximal ideal. Let m = (xy, ..., x,) be the graded maximal ideal of § = K[x1, ..., x,].
Each power m’ of m has a linear resolution. Let A be the simplicial complex whose Stanley—
Reisner ideal coincides with the polarization of m’. It is shown (Theorem 3.1) that A is a shellable
linear ball for ¢+ > 0 and hence it satisfies the multiplicity conjecture.

1. The multiplicity conjecture

First, we recall fundamental material on Stanley—Reisner ideals and rings of simplicial com-
plexes. We refer the reader to [1,6,16] for further information. Let [n] = {1, ..., n} be the vertex
set and A a simplicial complex on [n]. Thus A is a collection of subsets of [n] such that

(i) {i}e Aforalli € [n], and
(ii) if F € Aand F' C F, then F' € A.

Each element F € A is called a face of A. The dimension of a face F is |F| — 1. Let d =
max{|F|: F € A} and define the dimension of A to be dimA =d — 1. A non-face of A is a
subset F' of [n] with F ¢ A.

Let f; = fi(A) denote the number of faces of A of dimension i. Thus in particular fo = n.
The sequence f(A) = (fo, f1,---, fa—1) is called the f-vector of A. Letting f_; = 1, we define
the h-vector h(A) = (ho, hi, ..., hg) of A by the formula

d d
S fioae—=DTE=S
i=0 i=0

Let S = K[x1,...,x,] denote the polynomial ring in n variables over a field K with each
deg x; = 1. For each subset F' C [n], we set

XFp = Hxi.

ieF

The Stanley—Reisner ideal of A is the ideal o of S which is generated by those squarefree
monomials xy with F ¢ A. In other words,

[AZ()Cpi F¢A).
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The quotient ring K[A] = S/I, is called the Stanley—Reisner ring of A. It follows that the
Hilbert series of K[A] is

F(K[ALA) = (ho +hih+ -+ har?) /(1 = 2%,

where (hg, hy,...,hq) is the h-vector of A. Thus in particular the multiplicity of K[A] is
S ohi (= fao1).

We say that A is Cohen—Macaulay (respectively Gorenstein) over K if K[A] is Cohen—
Macaulay (respectively Gorenstein). If the geometric realization |A| of A is homeomorphic to a
ball, then A is Cohen—Macaulay over an arbitrary field. If the geometric realization |A| of A is
homeomorphic to a sphere, then A is Gorenstein over an arbitrary field.

Now, let A be a simplicial complex on [n] of dimension d — 1 whose geometric realization
| A| is homeomorphic to a manifold. The boundary complex d A of A consists of those faces F'
of A with the property that there is a (d — 2)-dimensional face F’ of A with F C F’ such that F’
is contained in exactly one (d — 1)-dimensional face of A. Each face of d A is called a boundary
face and each face of A \ dA is called an inside face of A. In particular if A is a ball, i.e., |A] is
homeomorphic to a ball, of dimension d — 1, then d A is a sphere, i.e., |0 A| is homeomorphic to
a sphere, of dimension d — 2.

Theorem 1.1 (Hochster). (See [1, Theorem 5.7.2].) Let A be a Cohen—Macaulay complex over
a field K of dimension d — 1 whose geometric realization |A| is a manifold with a non-empty
boundary complex 0 A, and let wa be the canonical ideal of K[A). Write J for the ideal of
K[A] generated by those monomials xr with F € A\ dA. Then the following conditions are
equivalent:

(@) wa = J as aZ"-graded K[A]-module;
(b) 0A is a Gorenstein complex over K.

If the equivalent conditions hold, then K[0A] = K[A]/wa.

Let A be a simplicial complex on [n] of dimension d — 1 whose geometric realization |A| is
a ball and 0 A its boundary complex. Assume that every vertex of A belongs to d A. Thus A is
a simplicial complex on [r] of dimension d — 2 whose geometric realization |0 A| is a sphere.
Since 0 A is Gorenstein, it follows that

(P1) The h-vector h(dA) = (hy, by, ..., h);_,) of dA is symmetric i.e. h; =h),_,_, foralli =
0,...,d —1;see[l, Theorems 5.4.2, 5.6.2].

(P2) The minimal free resolution of the Stanley—Reisner ring of d A is symmetric [5, Corol-
lary 21.16], i.e. if

O—F,— - —F— Fp— §5/l3n — 0

is the minimal free resolution of the ring S/Iya, where F; = 69/' S(—j)ﬂ'lf', i=0,...,p,
p=n—(d—1)and Fy = S,thenwehave §; j = B, foralli =0, ..., p. Inparticular,
M; =n —mp_; where M; =max{j: B j # 0} and m; =min{j: B; ; #0}.

(P3) The canonical ideal wx of the Stanley—Reisner ring K[A] = S/14 is generated by the
monomials Xxr, F € A\ dA (see Theorem 1.1).
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In addition,

(F1) Let

0—F,_y——F —Fy,— S/Ix—0

be the minimal free resolution of S/I4 with F/ = i S(=j )ﬁl'/~/'. Then the generators of
the canonical module wp of K[A] are of degrees n — j with ,B;l_d’j # 0 (see [1, Corol-
lary 3.3.9)).

(F2) Onehasmy <my < -+ <mpy_g+1.

Now, let m — 1 denote the smallest dimension of the non-faces of A. In other words, m is the
smallest degree of monomials belonging to G(4), the minimal system of monomial generators
of I,. We will assume that 2 < m < [(d + 1)/2]. Our goal is to show that the Stanley—Reisner
ring K[0A] = S/ satisfies the multiplicity conjecture under the following hypothesis (Theo-
rem 1.2):

(A1) A has a minimal (under inclusion) inside face of dimension d — m and has no minimal
inside face of dimension less than m — 1.
(A2) The h-vector of the boundary complex d A is unimodal.

(In general, we say that a finite sequence of real numbers ay, ..., a; is unimodal if
ap<ay < <aj=djp) 2 20

for some 0 < j <¢.)
Now, we wish to understand the minimal and maximal shifts given by m; and M; respectively
of the minimal free resolution

faAZO—)F,l_d_H—>~--—>F1—>S—>S/13A—>O

of S/Iyx where F; = P j S(—j)Pii, to calculate the lower and upper bounds of the multiplicity
of S/ Iy 4. First, we consider the minimal free resolution

Fr:0—F, _,— - —F —8§—S/Iy,—0

of S/Ix where F/ =@ i S(= j)‘g i, Let m} and M; denote the minimal and maximal shifts of
the minimal free resolution F . Since m is the minimum of the degree of generators of /4,
one has m| = m. By the assumption (A1) on A, there exists a minimal inside face of A of
dimension d — m, hence by Theorem 1.1, it follows that the canonical ideal wa of A has a
generator of degree d —m + 1. Therefore /3;,1—d,n—(d—m+1) # 0, by (F1). As we have m’1 =m and
m,_,<m+n—d—1,wegetm,=m+i—1fori=1,...,n—d, by (F2).

We claim that the minimal shifts in the minimal free resolution Fy of S/(I34) are given by
mi=m+i—1fori=1,...,n—d and m,_sz+1 = n. Indeed, by assumption (A1), we have that
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the canonical ideal w4 has no generator of degree less than m. Hence the S-module 34 /14 has
no generator of degree less than m (Theorem 1.1). From the following short exact sequence

0—> Ip—> Iyp —> Iya/Ia —> O,
we get the following long exact sequence
-~ —> Torit1(Ipa/1a, K)
—> Tor;(Ia, K) —> Tor;(Iga, K) —> Tor;(Iga/Ia, K) —> - -+
Now, as Tor; (I, K)iy+ = 0 and Tor;(Iga/Ia, K)iys =0 for t <m — 1 and i =1,...,
n — d, from the above long exact sequence we get Tor;(Iya, K)iyr =0 for t <m — 1 and

i=1,...,n—d. Also as Torjy1(Iya/Ia, K)i+14+m—1 = 0 and Tor;({a, K)j+m # 0, we get
Tor;(Igp, K)i+m # 0,1 =1,...,n — d. From here it follows that m; =m +i — 1 for i =

1,...,n —d. Since S/Iy, is Gorenstein and my = My = 0, we have m,_g+1 = My_q41 =n
by property (P2).
Now, we need to determine the maximal shifts M; for i = 1,...,n — d in the minimal free

resolution Fya of S/Iya. Again, as S/I, is Gorenstein, by property (P2) we have M; =n —
My—d+1—i=n—m+n—d+1—i—-—1)=d—m-+ifori=1,...,n—d.
Hence, we have now

—d+1 —d .
LGl—[ m; znl_[;'zl(m—f—l—l) and
Pl n—d+1)! (n—d+1)!
U_nﬁrl M; n]_[” d(d m+i)
B n—d+1)! (n—d+1)!

i=1

Next, our goal is to estimate the multiplicity e(S/I34) of the ring S/I34. Let hy, ..., k),
denotes the h-vector of the ring S/Iya. As the ring S/I34 is Cohen—-Macaulay, and m is the

minimum of the degree of the generators of Iy4, wehave h =h/, | .= ("" d+1+i 1) = (" ld'”)
fori =0,.. — 1. From assumption (A2) and property (Pl) we have that the h-vector is sym-
metric and unlmodal, therefore we conclude that h; > (" fnt’;’ 1) fori=m,...,d — (m+1).
Hence
d—1 m—1 .
n—d-+i n—d+m-—1
e(S/13A)=21:hi >22£< i >+(d—2m)< o )
1= 1=

Theorem 1.2. Let A be a ball and 9 A be its boundary complex. Suppose that the sphere 0 A
satisfies the assumptions (A1) and (A2). Then the Stanley—Reisner ring S/0 A satisfies the mul-
tiplicity conjecture i.e.

L<e(S/ ) <U

For the proof of the theorem, we need to first define cyclic polytopes. Let C(n,d — 1) denote
the convex hull of any n distinct points in R4~! on the curve {(, 2., td’l) eRI-l e R}.
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The polytope C(n,d — 1) is called the cyclic polytope of dimension d — 1. It is known that
C(n,d —1) is simplicial (i.e., every proper face is a simplex), and so the boundary of C(n,d — 1)
defines a simplicial complex which we denote by dC (n, d — 1) such that |0C (n, d —1)| is a sphere
of dimension d — 2. Let (h, ht, ..., h};_,) denote the h-vector of 9C(n,d — 1). Then

—d+i d—1
h;‘:hj}_l_i=<n i+l> fori:l,...,{TJ

(see [16, Section 3]). Lete(dC(n,d—1)) =>_ hl* denotes the multiplicity of the Stanley—Reisner
ring of the boundary complex dC(n, d — 1). Notice that we have h; < h;", hence

e(S/Iya) <e(dC(n,d — 1)). (1)

In [17], the minimal free resolution of the dC (n, d — 1) is computed. We have the following [17,
Theorem 3.2]: If d — 1 > 2 is even, then the maximal shifts Ml.* in the minimal free resolution of
dC(n,d — 1) are given by

d—1
M;":T—i—i fori=1,....,n—d and M, _,  =n (2)

and if d — 1 > 3 is odd, then the maximal shifts Mi* are as follows:

1

N d—1 . i .
M* = — +i+1 fori=1,...,n—d and M, _, ,=n. 3)

Even though the following Lemma 1.3 follows from [8, Theorem 1.2], we want to give a direct
computational proof.

Lemma 1.3. We have

[ my
C(n,d—1)) < ——+L. 4
e(3Cn ) n—d+1)! @)
l_['-l_d-HM-*
Proof. Let U = W Let first d — 1 > 2 is even. Then

_ GG Hy) g —y)
B (n—d+1)!

U

We have the multiplicity
d—1
e(dC(n.d—1))=> h*
i=0

_[(n-d+0 (n—d)+d/2—3/2
_ZK 0 >+"'+< dj2—3/2 )]

(n—d)y+d/2—1/2
( d/2—-1/2 )
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:2<n—d/2— 1/2>+ (n—d/Z— 1/2)

dj2—3/2 d/2—3/2

_2(n—d/2-1/2)---(d/2—-1/2) n n—d/2—1/2)---(d/2+1/2)
n—d+1)! (n—d)!

_(n—=d/2-1/2)---(d/2+1/2)
N (n—d+1!

d=-1+n—-d+1)
=U.
Now let d — 1 > 3 be odd. Then

A (G —d)
n (n—d+1)!

And the multiplicity is given by

d—1
e(dC(n.d— 1))=Y h*

_2[(n—d+0)+(n—d+1>+“.+<n—d+d/2—1)]
N 0 1 dj2—1

:2<n —d/2>
dj2—1

2(n —d/2)---(d/2+1)(d/2)
- (n—d+1)!

We see that e(0C (n,d — 1)) < U if and only if d < n which is true. O

Proof of Theorem 1.2. Since m < [(d +1)/2], we have M < M; both when d is odd and even.
Hence, by Egs. (1) and (4), we get

=" m;

e(S/Iya) < n—dT D

(&)

It remains to show that e(S/Iy) > L. Since

— —1
e(S/1ys) > 22( fl+’)+<d—zm><” i )

it is enough to show that

m—1 . n—d -
22 n—c.l—i—l = 2m) n—d+m-—1 >n]—1i=1(m+l 1)
i

_ m—1 n—d+ 1)
i=0
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which is to prove

n—d .
2n—d+m d—2m) n—d+m-—1 >n]_[l-:](m+l—l).
1 m—1 (n—d+1)!

‘We need to show

2 —d+m)---m+1D(m)+d-2mn—d+m—1)---m+1)(m)(n—d+1)
>nm)(m+1)---(m+n—d—1)

which further amounts to prove that 2(n — d + m) + (d — 2m)(n — d + 1) > n. Notice that it is
enough to show that 2(n —d +m) + (d —2m) > n whichis trueasn > d. O

Corollary 1.4. Let A be a linear ball. Then the simplicial sphere d A satisfies the multiplicity
conjecture.

Proof. We only need to show that the assumptions (A1) and (A2) are satisfied in this case.
Since S /14 has a linear resolution, the minimal and maximal shifts in the minimal free resolution
of §/1 are givenby m; =M, =m+i —1fori=1,...,n —d. Hence A has inside faces only
of dimensionn — (m +n —d — 1) — 1 =d — m, by fact (F1) and Theorem 1.1. Also, there is
no inside face of dimension less than m — 1 since d —m > m — 1. Hence the assumption (A1) is
satisfied. We now show that the & vector (h),, ..., h;j_l) of S/I4 is unimodal. As the Stanley—
Reisner ideal 74 has linear resolution and S = K[A] = §/1, is Cohen—Macaulay, we get that
the h-vector (ho, ..., hg) of S/1 is given by h; = (""“+9~V) fori =0,...,m — 1 and h; =0
fori >m.
Now the h-vector of S/154 is equal to (see [16, p. 137]):

(ho —ha,ho+h1 —hg —hg—1,....,ho+ -+ +hg—1 —hg—---—hp).

Hence the h-vector of S/1Ij4 is given by

("77“) fori=0,...,m—2;
R = ("ﬂr‘flt"f*l) fori=m—1,...,d —m;

(T fori=d —m+1,....d— 1.
Hence the assumption (A2) also holds. O
2. Determinantal ideals

In this section, we study simplicial complexes arising from determinantal ideals. It is known
that these simplicial complexes are shellable. We prove that the geometric realization of these
simplicial complexes are balls and these balls are linear only in the case of the ideal of max-
imal minors. We show that the boundary complexes of these simplicial complexes satisfy the
multiplicity conjecture.
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Let X =(X;;),i=1,...,m, j=1,...,n,m < n be an m x n matrix of indeterminates. We
denote by [ay, ..., a; | b1, ..., b], the minor det(Xal.;,j) of X where i, j =1,...,r. Further we
define

la,....ay | b1, ....b ] <[d},....a; | b1, ..., b;],

if r >s and a; <aj, by <b, fori =1,...,s. Let A(X) denote the poset of minors of X. For
o=lai,...,ar|b1,...,b] € A(X), we denote by I, the ideal generated by all minors y 2 o.
We call such ideals determinantal ideals. Notice that foro =[1,...,r | 1,...,r],r <m — 1, the
ideal I, is the ideal generated by all (r 4+ 1) x (r + 1) minors of X. Foro =[1,...,r|1,...,7],
r <m — 1, we denote the ideal I, by I,.. Note that the ideal I,,,_; is generated by all maximal
minors of X.

Let the symbol 7 denote the lexicographic term order on the polynomial ring S = K[X] =
K[X;j,i=1,...,m,j=1,...,n] induced by the variable order

XnnzXpzZ2Xmz2Xaz2Xnz2--Z2Xm2Xnuz2Xn>- 2 Xu.

Notice that under the monomial order 7, the initial monomial of any minor of X is the product
of the elements of its main diagonal. Such a monomial order is called diagonal order. In [9],
it is shown that the generators of I, form a Grobner basis and hence I} of I, with respect to
the monomial order 7, is generated by squarefree monomials. In other words, K[X]/I} may

be viewed as a Stanley—Reisner ring of a certain simplicial complex A,. For o =[1,...,7 |
1,...,r],r <m — 1, we denote the simplicial complex A, by A,.
We show in Theorem 2.4 that for any o = [ay,...,a, | by, ..., D] € A(X), the geometric

realization |A4| of the simplicial complex A, is a shellable ball. By Theorem 2.4 and Corol-
lary 2.5 together, it follows that the geometric realization |A,,_1| of A,,_1 is in fact a shellable
linear ball.

According to [9], facets of the simplicial complex A, can be described as follows: its vertex
set is the set of coordinate points V = {(7, j): 1 <i <m, 1 < j < n}. We define a partial order
on V by setting (i, j) < (i’, j/) if i > i’ and j < j’. A maximal chain in V will be called a path.

Theorem 2.1. (See [9, Theorem 3.3].) Let o = [ay, ...,a, | by, ..., b,], and let P; = (a;,n) and
Qi =(m,b;) fori =1,...,r. Then the facets of Ay are the non-intersecting paths from P; to Q;,
that is, subsets C1UCy U ---U C, of V where each C; is a path with end points P; and Q; and
where C; N Cj =0 forall i # j.

We denote the set of facets of Ay by F(As). The complex A, has a natural partial order on
the set of facets which we recall from [9, Theorem 4.9]: Let F; and F> be two facets of A,. We
write F| = U?:l C;and F, = Ule D; as unions of non-intersecting paths with end points P;
and Q;. We say that F» > Fy, if D; is contained in the upper right side of C; foralli =1,...,r,
that is, if for each (x,y) € D; there is some (u,v) € C; such that u < x and v < y, where
i =1,...,r. This is a partial order on the facets of A, and this partial order extended to any
linear order gives us a shelling. We fix a linear order and let X' denotes the corresponding shelling.
From [3, Corollary 5.18], we have dim(S/I}) =r(m+n+1) — ZL] (a; + b;).

Before stating the next theorem, we define the notion of a corner of a path. Let C be a path
in V. A point (i, j) € C will be called a corner of C,if (i — 1, j) and (i, j — 1) belong to C. Let
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F be a facet of A, then we denote by C(F), the set of corners of the paths in F, and we define
c(F)=1C(F)|.
For the proof of Theorem 2.4, we need the following lemma from algebraic topology (see

[18]):

Lemma 2.2. Let E| be a simplicial complex whose geometric realization |E|| is a ball of dimen-
sion d, and let Ey be a simplex of dimension d. Let the intersection EyN\Ey = (G, ..., G,) # 0,
where G1, ..., G, are facets of the boundary complexes 0E; of E;, i = 1,2 and (G, ..., G,) is
a proper subset of d E». Then the geometric realization |E1 U E3| of E1 U E3 is again a ball.

The following lemma follows from the proof of [2, Theorem 2.4].

Lemma 2.3. Let Ay = (F1,..., F;) be the simplicial complex with Stanley—Reisner ideal I,
where Fy, ..., Fy is the shelling order X. Let A; = (F1, ..., F;) and let G = F \ {v} for some
v € Fy, k <i.Then G C Fy for some £ < k if and only if v € C(Fy). If the equivalent conditions
hold then Fy is uniquely determined.

Theorem 2.4. For any 0 = [ay,...,a, | b1, ...,b.] € A(X), the geometric realization |As| of
the simplicial complex Ay is a shellable ball of dimension r(m +n+1) — > i_,(a; + b;) — 1.

Proof. The fact that the dimension of the simplicial complex A, is r(m +n + 1) —
Z?Zl(ai + b;) — 1 follows from [3, Corollary 5.18]. Let A, = (Fy, ..., F;) where F1,..., F;
is the shelling order X'. Let A; = (F1, ..., F;). We prove that |A;| is a ball by induction on i.
Assume that |A;_1| is a ball, we will show that |A;| is a ball. We have A; = A;_{ U (F;),
let A;—1 N ({F;) =(G1,...,G,). Notice that G; are codimension one faces of A;_| as A, is
shellable. By Lemma 2.2, we notice that |A;| is a ball (assuming that |A;_1| is a ball), if the
following two conditions are satisfied:

(1) Each G is a subset of exactly one Fy for k <i — 1, which in turn implies that G; € 04; 1,
(2) Gy,...,G, is a proper subset of the boundary complex 9 (F;) of (F;).

The first condition follows from Lemma 2.3. For the second condition, we define G, = F; \ {v}
where v ¢ C(F;) (notice that such a v exists as not all points in F; are corner points of F;). Then
again from Lemma 2.3, there exists no F;, j <i — 1 such that G, = F; N F;. Hence G, C 9(F;)
and G, #Gjforj=1,...,r. O

An ideal I C S generated in degree d is said to have a linear resolution if in the minimal
free resolution of 7, one has the maximal shifts M; = d + i for all i. It is known that the ideal
I,,—1 generated by the maximal minors of matrix X has a linear resolution. In fact, the Eagon—
Northcott complex gives a minimal free resolution for /,,_1, see [3, Theorem 2.16]. We have the
following:

Corollary 2.5. Let A, be the simplicial complex with the Stanley—Reisner ideal 1. Then |A,| is
a linear ball if and only ifr =m — 1.

Proof. First we show that |A,,_1| is a linear ball i.e. we show that the Stanley—Reisner ideal
I :1—1 has a linear resolution. As stated before, we know that the ideal /,,_; has a linear res-
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olution. Moreover, the ring S/I,—1 is Cohen—-Macaulay, see [3, Theorem 2.8]. Now as A,,_1
is shellable, the ring S/ _, is also Cohen-Macaulay. From here it follows, that the Stanley—
Reisner ideal 1:171 also has a linear resolution. Indeed, note that S/7,,,—; and S/ 1;,"171 have the
same Hilbert function. Let dim S /1,, 1 = dimS/I* _, = d.Lety,...,ygand y{, ...,y be the
maximal regular sequences of linear forms in §/1,,—1 and in S/I* _, respectively. Then S/1,,—1
is zero-dimensional (here  denotes modulo the sequence (y1, ..., y4)) and has a linear resolu-
tion. This is only possible if I,,_| is a power of the maximal ideal of S. Now the zero-dimensional
ring S/1 »_ (here ~ denotes modulo the sequence ( ¥1s---»Yy)) has the same Hilbert function

as S/I,,—1. This is only possible if I* | is the same power of the maximal ideal as I,_;. In
particular, In’i—_l has linear resolution, and therefore / ;:z—l has a linear resolution.

Now we show that I* does not have a linear resolution for » = m — 1. Notice that it is enough
to show that I, does not have linear resolution for r # m — 1, since B;; (1)) > B;;(I;). The a-
invariant of the ring S/, is equal to —nr i.e. the minimum of the degree of generators of the
canonical module of S/I, is given by nr, see [2, Corollary 1.5]. As the projective dimension
of S/I. is given by (m —r)(n — r) [3, Corollary 5.18], we have M,—r)(n—r)(S/1;) = nm —
rn by (F1) in the first section. Hence My—ry(n—r)-1(I;) — (m —r)(n —r) + 1 =nm —rn —
m—-ry(n—r)+1=r(m—r)+1and My(I,) =r + 1. Hence for r #m — 1, the ideal I, does

not have a linear resolution. 0O

The Stanley—Reisner ring S, = K[As] being Cohen—Macaulay, admits a graded canonical
module w,. In [2], the a-invariant of S, which is the negative of the least degree of canonical
module w, is computed. Next, we want to determine the degree of all the generators of w, for
o=[1,...,r|1,...,r],r <m — 1. First we need the following lemma:
Lemma 2.6. Let A, = (F1, ..., Fy) be the simplicial complex with Stanley—Reisner ideal I, and
F1, ..., F; be the shelling order X. Let A; = (Fy, ..., F;). Then the boundary complex of A; is
given by

3(A) ={G € A;: Fx\ G ¢ C(Fy) forall k <i with G C Fi}.
Proof. It is enough to show that the set of facets of 9(A4;) is given by
}"(B(Ai)) = {G €Air Fr\G={v}, v¢ C(Fy) forall k <i with G C Fk}.
Indeed, if we assume the above statement to be true, then the boundary complex is the set:
{H € A;: HCG forsome G € .7-"(8(A,~))},
which is further equal to the set
{H €Ai: HCG,Fi\G={v}, v¢C(Fy) forall k <i with G C Fk}.

The above set is equal to

{H € Ai: Fx \ H ¢ C(Fy) forall k <i with H C F},

as in the statement of the lemma.
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Let S={G € A;: Fx \ G = {v}, v¢C(Fy) forall k <i with G C Fi}. By Lemma 2.3, we
have S C F(3(4;)). Now let G ¢ S be of codimension one. It follows that G is of the form
Fi \ {v} where v € C(Fy) for some k < i. Again by Lemma 2.3, there exists £ < k such that
G C Fy. Hence G = F; N Fy, which implies G ¢ 9(4;). O

In Theorem 2.4, we have shown that the geometric realization | A, | of A, is a ball and there-
fore the geometric realization |d,| of d, is a sphere. It is known that simplicial spheres are
Gorenstein over any field, see [1, Corollary 5.6.5]. Hence we may apply Theorem 1.1 to com-
pute w, . Before stating the next corollary, we define the notion of a non-flippable path. Let D
be a path from a to b. Let v € D such that {v + (1,0), v+ (0, 1)} € D and neither v 4 (1, 0) nor
v+ (0, 1) is a corner point of D. Then v can be flipped to get a path D’ = (D \ {v}) U{v+ (1, 1)}.
We call such an interchange of the point v to v + (1, 1) a flip. Notice that the new path D’ ob-
tained after a flip from D has the following property: C(D) C C(D’). We call a path D to be
a flippable path if D could be flipped to get a new path D’, otherwise we call D to be a non-
flippable path (see Fig. 1). Hence, a non-flippable path D from a to b is a path which has the
following property: for all v € D such that {v + (0, 1), v+ (1,0)} C D, one has either v + (0, 1)
or v + (1, 0) is a corner point of D. Equivalently, one may notice that a path D from a to b is a
non-flippable path if for a path D’ from a to b with C(D’) D C(D), one has D' = D.

D D’

Fig. 1. A flippable path D and a non-flippable path D’ where D' = (D \ {v}) U {v'}.

We call a facet F = [J; C; of the simplicial complex A, a non-flippable facet, if each C;
is a non-flippable path, otherwise we call F a flippable facet. Notice that a facet F of A, is
non-flippable if for each facet F’ of A, with C(F") D C(F), one has F’ = F. We denote the set
of non-flippable facets of A, by N F(A,). Let F, F' be two facets of A, with C(F) C C(F').
Then F’ is obtained from F by finite number of flips. One has:

Lemma 2.7. Let F, F' be two facets of Ay, then the following two conditions are equivalent:

(a) C(F) CC(F"),
(b) F'\C(F")C F\C(F).

For a given subset Z of [m] x [n] we denote by Xz, the monomial H(i,j)ez X;j. We have:

Corollary 2.8. Let w, be the canonical ideal of K[As] and M denote the set {F \ C(F): F €
NF(Ay)}. Then the minimal set of generators of wy is given by G(wy) = {Xg: G € M}.
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Proof. By Theorems 2.4 and 1.1, it is enough to show that M is the set of the minimal inside
faces (under inclusion) of A, .

By Lemma 2.6, we know that the set of inside faces of the simplicial complex A, is given
by S= {F\ Z: F e F(Ay), Z C C(F)}. Therefore each minimal inside face G is of the form
F\C(F), F e F(Ay).

Let F € NF(Ay). Suppose G = F \ C(F) is a not a minimal inside face. Then there exists
G’ C G such that G’ = F’\ C(F') is a minimal inside face. By Lemma 2.7, it follows C(F’) D
C(F), a contradiction.

Now, let G = F \ C(F) be a minimal inside face. Suppose F ¢ N F(A,), then there exists a
facet F’ such that C(F’) D C(F). Again, by Lemma 2.7, it follows then F'\ C(F') C F \ C(F),
a contradiction. O

In general, to give the explicit expressions of multi-degrees of the generators of canonical
ideal w, may not be possible. But we would like to give all possible total degrees of the genera-
tors of the canonical ideal w, foro =[1,...,r|1,...,r],r <m — 1. In this case, I, is the ideal
generated by all » + 1 x r + 1 minors of X. Foro =[1,...,r | 1,...,r], we denote I, by I,, w,
by w, and A, be A,.

From Corollary 2.8, it follows that | F| — ¢(F), F € N F(A.) are the total degrees of the gen-
erators of the canonical ideal w,. We call the corners of the a non-flippable facet F € N F(A,)
the non-flippable corners. In the case of the simplicial complex A, we will show that the num-
ber ¢ of the non-flippable corners could be any integer between r and r(m —r).

Proposition 2.9. Let A, be the simplicial complex with the Stanley—Reisner ideal I*. Then there
exists a non-flippable facet F of the simplicial complex A, with t corners if and only if r <t <
r(m—r).

Proof. We will construct a non-flippable facet for any given number of corners between r and
r(m —r). As any facet F of A, is a disjoint union of r paths C; from (i, n) to (m, i), we notice
that the minimum number of non-flippable corner for any path C; is one and the maximum is
(m — r). Hence minimum and maximum number of possible total non-flippable corners are r
and r(m — r) respectively. As a path C; is determined by its corners, we define the non-flippable
corners for each path. For r corners, we define C; such that C(C;) = (i + 1,7 4+ 1) such that
F =C1U-.-UC, is anon-flippable facet with r corners; see Fig. 2.

Ci G C3

4.4)

3.3)

Fig. 2. A non-flippable facet with » = 3 corners.
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Onecanwriteany r <t <r(m—r)ast=r+pm—r—1)4+qgfor0<p<rand0<qg <
(m —r — 1). For any such ¢, we define the corners of the path C; as follows: ForO <k < p — 1,
the path C,_ has corners at

(r—Gk=D,n—(k+1), (r—G*=2,n—(k+2), ...,
(r—(k—m+r),n—(k+m—r)).
The path C,_,, has corners at
r—pr—p+q, —p+lLr—p+q-01, .... —=p+q,r—p),
and for 1 <i <r — p — 1, the path C; has corner at (i + 1,i + 1). Now F = Uleci is a

non-flippable facet with exactly t =r + p(m —r — 1) + g corners; see Fig. 3. O

Ci C C3

4,6)

5.5)

3.4) 6,4)

4.3)

Fig. 3. A non-flippable facet witht =r + p(m —r — 1) 4 g corners withm =6,n =7, r=3and p=1,g =1.

Corollary 2.10. The canonical ideal w, has a minimal generator of degree t if and only if rn <
t<r(n+m-—r—1).

Proof. We have dimR/I, = |F|=r(m+n) — r2 3, Corollary 5.18]. Now by Corollary 2.8 and
from Proposition 2.9, follows the result. O

Next, we want to consider the boundary complex 9, of the simplicial complex A,. We want
to show that the Stanley—Reisner ring S/, satisfies the multiplicity conjecture. The geometric
realization |9, | of the boundary complex 9, is a sphere of dimension r(m +n) — r2 — 1. Therefore
the Stanley—Reisner ring S/ 15, is a Gorenstein ring, see [1, Corollary 5.6.5]. Hence, the boundary
complex 9, satisfies properties (P1), (P2), (P3) of Section 1 and by Theorem 1.1, we have S/I5, =
KA/ (o).

Theorem 2.11. The Stanley—Reisner ring S/ 15, satisfies the multiplicity conjecture.

Proof. We need to show that assumptions (A1) and (A2) are satisfied, see Theorem 1.2. As the
generators of the canonical ideal w, of A, has degrees t where rn <t <r(m+n—r — 1), there
exists a minimal inside face of dimension r (m +n —r —1) —1 =dim R/Ij, — (r 4 1) and there is
no inside face of dimension less than r 4 1, see Theorem 1.1. Hence assumption (A1) is satisfied.
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For assumption (A2), we need to show that h-vector of S/ is unimodal. Let the k-
vector of the simplicial complex A, be given by (ho, ...,y 4y)—,2), then the h-vector
(hy, ..., h;(m-',-n)—rz—l) of the boundary complex 9, is given by (see [16, p. 137]):

ho — hr(m+n)7r2’ vy hot-o- 4 hr(m+n)7r271 - hr(ern)fr2 — - —hi.

By [2, Theorem 2.4] we have that &; calculates the number of facets F of A, with number of
corners c(F) =i and from Corollary 2.9, we get that the maximal number of corners possible
are r(m — r), hence h; =0 for all r(m — r) + 1 <t <r(m + n) — r2. Then it follows that the
h-vector of S/, is given by

/ _ i . . _ .
o hr(m+n)—r2—l—i_zj=0h] fori =0,...,r(m —r);

1

Z;(zmo_r)hj for j=r(m—r)+1,...,nr = 2.
Hence h-vector of S/Ij, is unimodal. O

In the remaining part of this section, we compare the Stanley—Reisner ideal /¥, of A,
with its (1’7*1_1)V. We will see in Theorem 2.12 that the dual ideal (1, _ I)V is again the initial
ideal of the ideal of the maximal minors of a certain matrix.

Let A be a simplicial complex on the vertex set [n] and I C K[X7, ..., X,] be the corre-
sponding Stanley—Reisner ideal. There is another simplicial complex A" associated to A which
is called the Alexander dual of A. The Alexander dual is defined by the simplicial complex
AY ={[n]\ F: F ¢ A}. It is easy to see that the complement of the minimal non-faces of
the simplicial complex A define the facets of the dual complex AY and vice versa. Hence, the
Stanley—Reisner ideal 14v is equal to the ideal (X;, --- X;,: [n]\ {i1, ..., ix} € F(A)). One may
write I = ﬂFE]_—(A) Pr where Pr = (X;: i ¢ F). Therefore the monomials X p, = HX,'EPF Xi,
F € F(A) form a set of minimal generators of /,v. From here it follows that a monomial g is a
minimal generator of /v if and only if S = {X;: X;|g} is a vertex cover of the set of minimal
generators G (14) of 14. (We call a set of indeterminates S C {X1, ..., X,} to be vertex cover of
a set of monomials {m1, ..., my} if for all m; there exists some X ; € S such that X ;|m;.)

Let X = (X;;) be a matrix of indeterminates of order m x n. We call a matrix ¥ = (¥;;)
of indeterminates of order (n —m + 1) x n a dual of the matrix X if ¥; j4; 1 = X j4;—1 for
i=1,...,n—m+1and j=1,...,m. Notice that if Y is a dual of X, then X is a dual of Y. For

example, if
X1 X2 X3 Xuia
X=Xy X»n X3z Xy
X31 X3 X33 Xm

is a matrix of order 3 x 4 then a dual matrix Y of order 2 x 4 can be defined as follows:

Y:(X“ X»n X33 Y14>
Y2 X2 Xo3 X3

Let again /)y, denote the initial ideal of the ideal of maximal minors of an m x n matrix X =
(X;j) of indeterminates and A, _; be the simplicial complex with Stanley—Reisner ideal 1:171'
We denote the Alexander dual of the simplicial complex A,,_ by A | and the corresponding
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Stanley—Reisner ideal by (]:1—1)v- Let Y = (¥;;) be a dual matrix of X. Let J,_,, denote the
ideal of the maximal minors of the matrix ¥ and the initial ideal of J,_,, be denoted by J;*_,,
(notice J¥_,, does not depend upon the choice of the dual matrix Y). We define a polynomial
ring T = K[X;j, Y 1 <i<m, 1 <k<n—m+1,1<j <n]. Then we have:

Theorem 2.12.
* Vv *
( m—l) Tr= JnfmT'
Proof. First we show that the ideal J* , T is contained in the ideal (I _)VT. Let g =
Y1iY2), - Yuma1,ju_mir» J1 < J2 <+*+ < jn—m+1 be a minimal generator of the ideal I -
As Ylj = ij, Y2j+1 = ij+1, ey Yn—m+l,j+n—m = ij—t—n—m for ] = l, cee,m, the monomial
g is of the form X;, i Xip i1+ Xiy_pyitvipomer+n—m fOr some 1 <iy iz < -+ <ipomy1 <m.

We need to show that the set S given by {X;, i, Xis.ir41, ..., X in_my1+n—m) 1S @ Vertex
cover for G(I_,). Let

in7m+la

h=X114X2246 Xmm+t,, O0<Hi<tr <<ty < —m,

be a minimal generator of /_,. We show that there exists X; ; € S such that X; ;|h. Suppose
the contrary, then X;, ; +«—1) does not divide & for any k =1,...,n —m + 1 which implies
tiy >k —1fork=1,...,n—m+1,in particular t;,_, , > n —m which is a contradiction.

To show that (I* _)VT C J;_, T, we need to show that if S is a minimal vertex cover
of G(I_,), then HX,-,—eS Xij is a generator of J;*_, . Since, the monomials [[/L X; ik, k =
0,...,n — m are minimal generators of G(I;‘l_ 1), we get that the subset of the form S =
{Xi1.ivs Xig,ip+1s -+ +» Xiy i tsin-ms1+n—m) 18 contained in any minimal vertex cover § of
G(I;;_l). Also one may notice that, we must have 1 <ij <ip < -+ <ip—my1 < m. Now, the
generators of J,*_, are exactly of the form ]_[X’_jes, Xij,hence (I} )T CJy ,T. O

Corollary 2.13. The Stanley—Reisner ideal 1), | has linear quotients.

Proof. By above theorem and Theorem 2.4 we get that the simplicial complex A | gives the
triangulation of a shellable linear ball. Now it follows from [10, Theorem 1.4] that I”";_l has
linear quotients. O

3. Polarization of the powers of a maximal ideal

Let S = K[x1,...,x,] be a standard graded polynomial ring over the field K and let m =
(x1,...,xp) C S denote the maximal graded ideal.
Letu=[]/_, xia ' be a monomial in S. Then the squarefree monomial given by

n a;

P
u ZHI—[xijeK[-xlla-"a-xla]a"'axnl"~'7~xnan]

i=1j=1

is called the polarization of u. Let I = m' be the tth power of the maximal ideal. Let G(I) =
{u1, ..., un}, then the squarefree monomial ideal I” = (uf, ..., ul) C K[xi1,.... x1, ..., X1,
..., Xnt] is called the polarization of 1.
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Let I' = {a € N": x% ¢ I} be the multicomplex associated to the ideal /. Detailed information
about multicomplexes can be found in [7]. In our case, I" is a shellable multicomplex, see [7,
Theorem 10.5] and all the elements of I" are its facets. Clearly, I" consists of those a € N"
such that )" a(k) <t — 1. We define a partial order on the facets of I" as follows: Let a, b be
any two facets of I', we say a < b if > ;_,a(k) < Y j_, b(k). This partial order extended to
any total order gives us a shelling. We fix a total order and we call the respective shelling X.
Let F(I') ={ai1,...,an} be the set of the facets of I" in the shelling order X'. Let A be the
simplicial complex with the Stanley—Reisner ideal /” and let F(A) be the set of facets of A.
By [4], it follows that A is shellable. Furthermore by [12, Lemma 3.7] and [7, Proposition 10.3]
together, it follows that there is a bijection between (") and F(A) given by

0:FI) — F(4), apr—— Fy.

Here given the facet ax = (ax(1),...,ar(n)) of I', the facet F, of A is defined to be {x;;,
i=1,....n,j=1,...,t, j #a (i) + 1}. Also, Fg, ..., Fy, is a shelling order of the facets of
the simplicial complex A.

We have the following:

Theorem 3.1. The geometric realization |A| of the simplicial complex A is a shellable linear
ball.

Proof. We already know that A = (F,,, ..., Fg,) is a shellable simplicial complex. Note that
the Stanley—Reisner ideal 7, = I” has a linear resolution because the graded Betti numbers of a
monomial ideal and its polarization are the same, and / = m’ obviously has a linear resolution.
Let Ay = (Fy,, ..., Fg ). We will prove | Ag| is a ball by induction on k as in Theorem 2.4. The
assertion is obvious for k = 1. Assume that | Ax_1| is a ball, we will show that | Ag| is a ball where
the simplicial complex Ay = Ay U(Fy, ). Let Ag—1 N (Fy, ) ={G1,..., G} where Gy, ..., G,
are codimension one faces of F,,. By Lemma 2.2, we notice that |A| is a ball (assuming that
|Ar—1]| is a ball) if the following two conditions are satisfied:

(1) Each Gy is a subset of exactly one Fy, fori < k — 1, which in turn implies that G, € 0 A;_1,
(2) Gi, ..., G, is aproper subset of the boundary complex 9 F,, of Fy,.

Let ax = (s1,...,s,) where > _s; <t — 1. Then
Fakz{xij, i=1,...,n, j=1,...,¢t, jF#s +1}.
Suppose Gy = Fy, \ {x;,j,} where 1 <i; <n and 1 < j¢ <t. Then clearly, G, = F,, N F“M
where ap, = (s1,...,8i—1, je — L, Siy+1,...,8y) and also Gy ¢ Faq forany g <k —1, g # py.
For the second condition, let 1 < ¢ < n be the minimum integer such that s, < — 1.
Let G = Fg \ {xg:}. Suppose G C F,; for some j < k — 1, then it would imply that a; =

(815 .+, 8g—1,t — 1,841, ..., ). Since Zaj(i) >t, we have a; ¢ I', a contradiction. Hence
G ¢{G1,...,G,} and G is a facet of the boundary complex dF,,. O

Now by the above theorem and Corollary 1.4, we have the following:

Corollary 3.2. The simplicial sphere 0 A satisfies the multiplicity conjecture.
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