JOURNAL OF ALGEBRA | 卷:471 |
The relative modular object and Frobenius extensions of finite Hopf algebras | |
Article | |
Shimizu, Kenichi1  | |
[1] Shibaura Inst Technol, Dept Math Sci, Minuma Ku, 307 Fukasaku, Saitama, Saitama 3378570, Japan | |
关键词: Hopf algebras; Frobenius extensions; Tensor categories; Frobenius functors; | |
DOI : 10.1016/j.jalgebra.2016.09.017 | |
来源: Elsevier | |
【 摘 要 】
For a certain kind of tensor functor F : C -> D we define the relative modular object XF is an element of D as the difference between a left adjoint and a right adjoint of F. Our main result claims that, if C and V are finite tensor categories, then XF can be written in terms of a categorical analogue of the modular function on a Hopf algebra. Applying this result to the restriction functor associated to an extension A/B of finite-dimensional Hopf algebras, we recover the result of Fischman, Montgomery and Schneider on the Frobenius type property of A/B. We also apply our results to obtain a braided version and a bosonization version of the result of Fischman et al. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2016_09_017.pdf | 810KB | download |