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For a certain kind of tensor functor F : C → D, we define 
the relative modular object χF ∈ D as the “difference” 
between a left adjoint and a right adjoint of F . Our main 
result claims that, if C and D are finite tensor categories, 
then χF can be written in terms of a categorical analogue 
of the modular function on a Hopf algebra. Applying this 
result to the restriction functor associated to an extension 
A/B of finite-dimensional Hopf algebras, we recover the result 
of Fischman, Montgomery and Schneider on the Frobenius 
type property of A/B. We also apply our results to obtain a 
“braided” version and a “bosonization” version of the result 
of Fischman et al.
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1. Introduction

Frobenius-type properties of extensions of Hopf algebras and of related algebras have 
been studied extensively; see, e.g., [27,7,15,16,19,20]. Fischman, Montgomery and Schnei-
der [15] showed that the Frobenius property of an extension of finite-dimensional Hopf 
algebras is controlled by their modular functions. The aim of this paper is to formulate 
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and prove a generalization of their result in the setting of finite tensor categories, a class 
of tensor categories including the representation category of a finite-dimensional Hopf 
algebra.

To explain our results in more detail, we briefly recall the above-mentioned result of 
Fischman et al. Recall that, for a finite-dimensional Hopf algebra H over a field k, the 
(right) modular function αH : H → k (also called the distinguished grouplike element in 
literature) is defined by

h · Λ = αH(h)Λ (h ∈ H), (1.1)

where Λ ∈ H is a non-zero right integral. For an extension A/B of finite-dimensional 
Hopf algebras over k (meaning that A is such a Hopf algebra and B is a Hopf subalgebra 
of A), the relative modular function χ = χA/B and the relative Nakayama automorphism
β = βA/B of A/B are defined respectively by

χ(b) = αA(b(1))αB(S(b(2))) and β(b) = χ(b(1))b(2) (1.2)

for b ∈ B, where S is the antipode of B and Δ(b) = b(1) ⊗ b(2) is the comultipli-
cation of b in the Sweedler notation [15, Definition 1.6]. They showed that A/B is a 
β-Frobenius extension, i.e., A is finitely-generated and projective as a right B-module 
(by the Nichols–Zoeller theorem) and there is an isomorphism

BAA
∼= βHomB(AB , BB) (1.3)

of B-A-bimodules [15, Theorem 1.7], where β(−) means the left B-module obtained by 
twisting the action of B by β.

To formulate this result in a category-theoretical setting, we consider the restriction 
functor resAB : mod-A → mod-B between the categories of right modules. By the standard 
argument and the Nichols–Zoeller theorem, the functors

L := (−) ⊗B A and R := HomB(A,−) ∼= (−) ⊗B HomB(A,B) (1.4)

are a left adjoint and a right adjoint of resAB , respectively. Hence (1.3) says that the 
relative modular function measures the “difference” between L and R. Here we remark 
that resAB is in fact a tensor functor. Thus, we are led to the problem of studying the 
“difference” between a left adjoint and a right adjoint of a tensor functor.

Based on this observation, we consider a tensor functor F : C → D having a left 
adjoint L and a right adjoint R. It turns out that, under certain assumptions, there 
exists a unique (up to isomorphism) object χF ∈ D such that L ∼= R(χF ⊗−). Our main 
result is that if C and D are finite tensor categories, then the object χF is expressed in 
terms of the category-theoretical analogue of the modular function introduced by Etingof, 
Nikshych and Ostrik [13]. Applying this result to resAB , we recover the above-mentioned 
result of Fischman et al. We also apply our results to obtain some variants of their result.
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Now we explain the organization of this paper. Throughout, we denote the base field 
by k. In Section 2, we collect from [22,24–26,14,12] basic results on tensor categories and 
their module categories. We note that, unlike [14], the base field k is arbitrary and the 
unit object of a finite tensor category is not assumed to be simple; see Definition 2.4 for 
our setting.

In Section 3, we introduce the modular object αC ∈ C of a finite tensor category C
and study its properties. After a brief discussion on ends, coends and the Deligne tensor 
product, we introduce an algebra A in C � Crev. If M and N are finite left C-module 
categories (in the sense of Definition 2.5), then C�Crev acts on the category Rex(M, N )
of k-linear right exact functors from M to N , and hence the category of A-modules 
in Rex(M, N ) is defined. A key observation is that an A-module in Rex(M, N ) is 
precisely a C-module functor. Based on this observation, we define the modular object 
αC ∈ C in an abstract way (Definition 3.10). It turns out that αC is isomorphic to the dual 
of the distinguished invertible object D ∈ C introduced in [13] whenever the definition 
of D makes sense (Proposition 3.11). Hence, if C = mod-H for some finite-dimensional 
Hopf algebra H, then αC is the H-module corresponding to the modular function αH

defined by (1.1). We also prove a category-theoretical analogue of Radford’s formula for 
the fourth power of the antipode of a finite-dimensional Hopf algebra, which has been 
proved in [13] under certain mild assumptions.

In Section 4, we consider a tensor functor F : C → D between tensor categories (in the 
sense of §4.1) having a left adjoint L and a right adjoint R. We show that L has a left 
adjoint, if and only if R has a right adjoint, if and only if there is an object χF ∈ D such 
that R ∼= L(− ⊗ χF ). It turns out that such an object χF is unique up to isomorphism. 
Thus we call χF the relative modular object of F . We prove that χF is invertible and 
there are also natural isomorphisms

R ∼= L(χF ⊗−) and R(χ∗
F ⊗−) ∼= L ∼= R(−⊗ χ∗

F ).

We shall remark that these results may be an instance of a quite general principle in 
the theory of monoidal categories. Indeed, similar results are obtained in some different 
settings in [1,3]. In any case, the above results are not sufficient as a generalization of 
the result of Fischman et al.; their result describes the relation between L and R by the 
relative modular function χA/B, while ours do not give any information about χF . Our 
main result in Section 4 is, in fact, the following formula for the relative modular object:

Theorem (Theorem 4.8). Let F : C → D be a tensor functor between finite tensor 
categories admitting the relative modular object. Then we have

F (αC) ⊗ α∗
D
∼= χF

∼= α∗
D ⊗ F (αC).

From this theorem, we see that if F is the restriction functor resAB as above, then χF

is the one-dimensional H-module corresponding to the relative modular function χA/B. 
We will explain in detail how to derive [15, Theorem 1.7] from our results; see §4.3.
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To apply the above theorem in concrete cases, we need an explicit expression of the 
modular object. Thus, in Section 5, we determine the modular object of the category 
VH of right modules over a Hopf algebra H in a braided finite tensor category V. The 
modular function αH : H → 1 is defined by a similar formula as (1.1), however, the right 
H-module corresponding to αH is not the modular object of VH in general. We express 
the modular object of VH by the modular function of H, the modular object of V and 
the “object of integrals” Int(H) ∈ V in the sense of [4] (Theorem 5.2). As an application, 
we obtain the following “braided” version of [15, Corollary 1.8]:

Theorem (Theorem 5.5). Let V be a braided finite tensor category, and let A/B be an 
extension of Hopf algebras in V. Then the following assertions are equivalent:

(1) The restriction functor resAB : VA → VB is a Frobenius functor.
(2) Int(A) ∼= Int(B) and αA ◦ i = αB, where i : B → A is the inclusion.

In Section 6, we study the modular object of the tensor category arising from a Hopf 
algebra in the monoidal center. Given a Hopf algebra B in the monoidal center Z(C)
of a finite tensor category C, we obtain the finite tensor category BC of the category of 
B-modules in C. This category is a category-theoretical counterpart of the Radford–Majid 
bosonization. By using the results of Section 5, we give a formula for the modular object 
of BC (Theorem 6.1). This formula yields another generalization of the result of Fischman 
et al., which tells when the restriction functor resAB : AC → BC associated to an extension 
A/B of Hopf algebras in Z(C) is Frobenius (Corollary 6.3).

2. Preliminaries

2.1. Monoidal categories

A monoidal category [22, VII.1] is a category C endowed with a functor ⊗ : C ×
C → C (called the tensor product), an object 1 ∈ C (called the unit object) and natural 
isomorphisms

(X ⊗ Y ) ⊗ Z ∼= X ⊗ (Y ⊗ Z) and 1 ⊗X ∼= X ∼= X ⊗ 1

obeying the pentagon and the triangle axiom. If these natural isomorphisms are the 
identity, then C is said to be strict. By the Mac Lane coherence theorem, we may assume 
that all monoidal categories are strict. Given a monoidal category C, we denote by Crev

the same category but with the reversed tensor product given by X ⊗rev Y = Y ⊗X.
Our convention for dual objects follows Kassel’s book [17]: Let L and R be objects 

of C, and let ε : L ⊗R → 1 and δ : 1 → R⊗ L be morphisms in C. We say that (L, ε, η)
is a left dual object of R and (R, ε, η) is a right dual object of L if ε and η satisfy the 
zig-zag equations. We say that C is rigid if every object of C has a left dual object and 
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a right dual object. If this is the case, we denote by (V ∗, ev, coev) the (fixed) left dual 
object of V ∈ C. The assignment V �→ V ∗ extends to an equivalence (−)∗ : C → Cop,rev

of monoidal categories, which we call the left duality functor. A quasi-inverse of (−)∗, 
denoted by ∗(−), is given by taking a right dual object. For simplicity, we assume that 
(−)∗ and ∗(−) are strict monoidal and mutually inverse to each other.

2.2. Modules over a monoidal category

Let C be a monoidal category. A left C-module category is a category M endowed with 
a functor � : C ×M → M (called the action) and natural isomorphisms

aX,Y,M : (X ⊗ Y ) � M → X � (Y � M) and �M : 1 � M → M

obeying certain axioms similar to those for a monoidal category. If M and N are left 
C-module categories, then a (left) lax C-module functor from M to N is a functor F :
M → N endowed with a natural transformation

ξFX,M : X � F (M) → F (X � M) (X ∈ C,M ∈ M)

satisfying certain coherent conditions. If the natural transformation ξF is invertible, then 
F is said to be a strong C-module functor. Note that Mop is naturally a left Cop-module 
category. A colax C-module functor from M to N can be defined to be a lax Cop-module 
functor from Mop to N op. See [23,10,12] for the precise definitions of these and related 
notions. For reader’s convenience, we note the following two well-known lemmas:

Lemma 2.1 ([10, Lemma 2.10]). If C is rigid, then every lax C-module functor is strong.

Lemma 2.2 ([10, Lemma 2.11]). Let F : M → N be a functor between left C-module 
categories, and suppose that F has a right adjoint G : N → M. Then there is a one-
to-one correspondence between colax C-module functor structures on F and lax C-module 
functor structures on G.

If C is rigid, then lax C-module functors and strong C-module functors are simply 
called C-module functors in view of Lemma 2.1. Lemma 2.2 says that, if C is rigid, then 
the class of C-module functors is closed under taking adjoints.

2.3. The centralizer of a monoidal functor

Let F : C → D be a monoidal functor between monoidal categories C and D with 
structure morphisms

F0 : 1 → F (1) and F2(X,Y ) : F (X) ⊗ F (Y ) → F (X ⊗ Y ) (X,Y ∈ C).
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The centralizer of F , originally introduced by Majid [21] under the name “the dual 
category of the functored category”, is a category Z(F ) defined as follows: An object of 
Z(F ) is a pair (V, σ) consisting of an object V ∈ D and a natural isomorphism

σ(X) : V ⊗ F (X) → F (X) ⊗ V (X ∈ C)

such that the equations σ(1) ◦ (idV ⊗ F0) = F0 ⊗ idV and

σ(X ⊗ Y ) ◦ (idV ⊗ F2(X,Y )) = (F2(X,Y ) ⊗ idV ) ◦ (idX ⊗ σ(Y )) ◦ (σ(X) ⊗ idY )

hold for all X, Y ∈ C. A morphism from (V, σ) to (W, τ) in Z(F ) is a morphism f : V →
W in D such that

(idF (X) ⊗ f) ◦ σ(X) = τ(X) ◦ (f ⊗ idF (X))

holds for all X ∈ C. The centralizer of idC is called the (monoidal) center of C and 
denoted by Z(C). The category Z(F ) is in fact a monoidal category and Z(C) is moreover 
a braided monoidal category.

2.4. Modules over an algebra

Let C be a monoidal category. An algebra in C is a synonym for a monoid in C [22, 
VII.3]. Given algebras A and B in C, we denote by AC, CB and ACB the categories of 
left A-modules, right B-modules and A-B-bimodules in C, respectively. For our purpose, 
it is convenient to extend the notion of modules over an algebra in the following way 
(see [25]).

Definition 2.3. Given an algebra A in C, we denote by AM the Eilenberg–Moore category 
of the monad A � (−) on M. An object of the category AM will be referred to as a left 
A-module in M. A right A-module in a right C-module category and an A-B-bimodule 
in a C-bimodule category are also defined analogously.

Note that C is a C-bimodule category by the tensor product. The notation and the 
terminology given in Definition 2.3 are consistent with those introduced at the beginning 
of this subsection.

2.5. Closed module categories

Let C be a monoidal category, and let M be a left C-module category. We say that M
is closed if, for every object M ∈ M, the functor C → M defined by X �→ X � M has 
a right adjoint (cf. the definition of closed monoidal categories). If this is the case, then 
we denote by HomM(M, −) a right adjoint of the functor (−) � M . By the parameter 
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theorem for adjunctions, the assignment (M, N) �→ HomM(M, N) extends to a functor 
from Mop ×M to C such that there is a natural isomorphism

HomM(X � M,M ′) ∼= HomC(X,HomM(M,M ′)) (2.1)

for M, M ′ ∈ M and X ∈ C. The functor HomM is called the internal Hom functor for 
M and makes M a C-enriched category. For simplicity, we often write HomM as Hom
if M is obvious from the context.

2.6. Finite tensor categories

Given an algebra A over k (= an associative unital algebra over k), we denote by 
mod-A the category of finite-dimensional right A-modules. A k-linear category is said 
to be finite if it is k-linearly equivalent to mod-A for some finite-dimensional algebra A
over k.

Definition 2.4. A finite tensor category over k is a rigid monoidal category C such that C
is a finite abelian category over k and the tensor product of C is k-linear in each variable.

Unlike [14] (and like [9,10]), we do not assume that the unit object of a finite tensor 
category is a simple object (thus our finite tensor category is in fact a finite multi-tensor 
category in the sense of [14]).

2.7. Finite module categories

Let C be a finite tensor category over k. In this paper, we mainly deal with the 
following class of left C-module categories:

Definition 2.5. A finite left C-module category is a left C-module category M such that 
M is a finite abelian category and the action � : C×M → M is k-linear in each variable 
and right exact in the first variable. Finite right module categories and finite bimodule 
categories are defined analogously.

Let M be a finite left C-module category. Then the action � : C ×M → M is exact 
in the second variable. Indeed, X∗

� (−) and ∗X � (−) are a left adjoint and a right 
adjoint of the functor X � (−), respectively.

It is well-known that a k-linear functor between finite abelian categories over k is left 
(right) exact if and only if it has a left (right) adjoint (a detailed proof is found in [10, 
§1.2]). Thus a finite module category is a closed module category.

Example 2.6. Every finite abelian category M over k is naturally a finite module category 
over V := mod-k by the action • defined by

HomM(V •M,M ′) ∼= Homk(V,HomM(M,M ′)) (V ∈ V,M,M ′ ∈ M).
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Example 2.7. If A is an algebra in C, then the category CA of right A-modules is naturally 
a finite left C-module category.

Now let M be a finite left C-module category. We fix M ∈ M and consider the functor 
YM := HomM(M, −) from M to C. The object M is said to be C-projective if YM is 
exact, and is called a C-generator if YM is faithful. Following [10], M is C-projective if 
and only if P � M ∈ M is projective for every projective object P ∈ C. Thus an exact 
C-module category [14, Definition 3.1] is precisely a finite C-module category whose every 
object is C-projective.

The object A := Hom(M, M) is an algebra in C and acts on every object of the form 
Hom(M, M ′) from the left. Hence the functor YM induces a functor

KM : M → CA, M ′ �→ Hom(M,M ′) (M ∈ C).

The functor KM is in fact the comparison functor of (2.1). Moreover, it is endowed 
with a structure of a left C-module functor inherited from YM . Applying the Barr–Beck 
theorem [22, VI.7], we see that KM is an equivalence of C-module categories if and only 
if M is a C-projective C-generator [12, Theorem 7.10.1]. As a consequence, every finite 
C-module category is of the form CA for some algebra A in C (see also [12]).

For finite C-module categories M and N , we denote by RexC(M, N ) the category 
of k-linear right exact C-module functors from M to N . The following variant of the 
Eilenberg–Watts theorem is important when we deal with finite module categories (see 
Pareigis [24–26] for a proof under a more general setting; see also [10]).

Lemma 2.8. For algebras A and B in C, there is an equivalence

ACB ≈−−−−−→ RexC(CA, CB), M �→ M ⊗A (−).

3. Modular object

3.1. Ends and coends

The aim of this section is to introduce a categorical analogue of the modular function 
on a Hopf algebra, which we call the modular object. As preliminaries, we recall from 
[22] the notion of ends and coends. Let C and V be categories, and let S, T : Cop ×C → V
be functors. A dinatural transformation ξ : S ..−−→ T is a family

ξ = {ξX : S(X,X) → T (X,X)}X∈C

of morphisms in V such that the equation

T (idX , f) ◦ ξX ◦ S(f, idX) = T (f, idY ) ◦ ξY ◦ S(idY , f)
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holds for all morphism f : X → Y in C. We regard an object X ∈ V as the constant 
functor from Cop × C to V sending all objects to X. Then an end of S is a pair (E, p)
consisting of an object E ∈ V and a dinatural transformation p : E ..−−→ S satisfying a 
certain universal property. Dually, a coend of T is a pair (C, i) consisting of an object 
C ∈ V and a universal dinatural transformation i : T ..−−→ C. The end of S and the 
coend of T are expressed as

E =
∫

X∈C

S(X,X) and C =
X∈C∫

T (X,X),

respectively; see [22] for more details.
We now suppose that a coend (C, i) of T : Cop ×C → V exists. If C has an equivalence 

(−)∗ : C → Cop of categories (e.g., when C is a rigid monoidal category), then the pair 
(T, i′), where i′X = iX∗ , is a coend of (X, Y ) �→ T (Y ∗, X∗). This result can be expressed 
symbolically as follows:

X∈C∫
T (X,X) =

X∈C∫
T (X∗, X∗). (3.1)

If V has an equivalence (−)∗ : V → Vop, then the pair (C∗, p), where pX = (iX)∗, is an 
end of the functor (X, Y ) �→ T (Y, X)∗. Symbolically, we have

( X∈C∫
T (X,X)

)∗
=

∫
X∈C

T (X,X)∗. (3.2)

3.2. The Deligne tensor product of abelian categories

In what follows, we consider functors between categories whose objects are functors. 
To avoid confusion, we adopt the following convention:

Notation 3.1. For a functor Ψ whose source is a category consisting of functors and an 
object F of the source category, we usually write Ψ[F ] instead of Ψ(F ).

For k-linear abelian categories M and N , their Deligne tensor product [6, §5] is a 
k-linear abelian category M � N endowed with a functor � : M × N → M � N that 
is k-linear and right exact in each variable and is universal among such functors out of 
M ×N . If A and B are finite-dimensional algebras over k, then

(mod-A) � (mod-B) = mod-(A⊗k B) (3.3)

with M � N = M ⊗k N . Thus, if M and N are finite abelian categories, then their 
Deligne tensor product exists and the functor � : M × N → M � N is exact in each 
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variable. Moreover, we have a natural isomorphism

HomM�N (M � M ′, N � N ′) ∼= HomM(M,M ′) ⊗k HomN (N,N ′) (3.4)

for M, M ′ ∈ M and N, N ′ ∈ N .
For k-linear abelian categories M and N , we denote by Rex(M, N ) the category of 

k-linear right exact functors from M to N . We also note the following property of the 
Deligne tensor product.

Lemma 3.2. For finite abelian categories M and N over k, the following functor Φ is an 
equivalence of k-linear categories:

Φ : Mop � N → Rex(M,N ), M � N �→ HomM(−,M)∗ •N,

where • is given in Example 2.6. A quasi-inverse Φ of Φ is given by

Φ : Rex(M,N ) → Mop � N , F �→
∫

X∈M

X � F (X). (3.5)

Proof. We may assume that M = mod-A and N = mod-B for some finite-dimensional 
algebras A and B over k. Then, by the above-mentioned realization of the Deligne tensor 
product, the following functor is an equivalence:

Mop � N ≈−−−−−→ A-mod-B, M � N �→ M∗ ⊗k N,

where A-mod-B is the category of finite-dimensional A-B-bimodules. Since both A and 
B are finite-dimensional, we also have an equivalence

A-mod-B ≈−−−−−→ Rex(M,N ), X �→ (−) ⊗A X.

The functor Φ is an equivalence as the composition of these two equivalences. Now let 
Φ be a quasi-inverse of Φ. Then we have natural isomorphisms

HomMop�N (M � N,Φ[F ]) ∼= Nat(Φ(M � N), F )
∼=

∫
X∈M HomN (HomM(X,M)∗ •N,F (X))

∼=
∫
X∈M Homk(HomM(X,M)∗,HomN (N,F (X)))

∼=
∫
X∈M HomM(X,M) ⊗ HomN (N,F (X))

∼=
∫
X∈M HomMop�N (M � N,X � F (X))

for M ∈ M, N ∈ N and F ∈ Rex(M, N ). Since every object of Mop � N is a finite 
colimit of objects of the form M�N , the above computation implies that Φ[F ] represents 
the functor
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(Mop � N )op → Vec, L �→
∫

X∈M

HomMop�N (L,X � F (X)),

where Vec is the category of all vector spaces over k. Hence the end in (3.5) indeed 
exists and is isomorphic to Φ[F ]. �
3.3. Tensor product of module categories

Let C and D be finite tensor categories over a field k. Then E := C�Drev is a monoidal 
category with the component-wise tensor product. The monoidal category E is not rigid 
in general. We note that E is rigid (and therefore a finite tensor category) if, for example, 
the base field k is perfect [6, §5].

By a finite C-D-bimodule category, we mean a C-D-bimodule category that is finite 
both as a left C- and a right D-module category. Although E is not a finite tensor category 
in general, we abuse terminology and say that an E-module category M is finite if it is 
a finite abelian category and the action of E on M is k-linear and right exact in each 
variable. By the universal property of the Deligne tensor product, a finite C-D-bimodule 
category can be identified with a finite E-module category.

Now let M and N be finite module categories over D and C, respectively. Then 
Mop � N is a finite C-D-bimodule category by the action determined by

X � (M � N) � Y = (∗Y � M) � (X � N) (3.6)

for X ∈ C, Y ∈ D, M ∈ M and N ∈ N . Rex(M, N ) is also a finite C-D-bimodule 
category by the action determined by

(X � F � Y )(M) = X � F (Y � M) (3.7)

for X ∈ C, Y ∈ D, M ∈ M and F ∈ Rex(M, N ). The proof of the following lemma is 
straightforward.

Lemma 3.3. The equivalence Φ : Mop � N → Rex(M, N ) given in Lemma 3.2 is an 
equivalence of C-D-bimodule categories.

The following technical lemma will be used in Section 5.

Lemma 3.4. Let G : M2 → M1 and E : N1 → N2 be k-linear right exact module functors 
between finite module categories over D and C, respectively. Then

Rex(G,E) : Rex(M1,N1) → Rex(M2,N2), F �→ E ◦ F ◦G

is a k-linear right exact strong E-module functor.
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Proof. Let R : M1 → M2 be a right adjoint functor of G. Since R is k-linear and left
exact as a right adjoint, the functor Rop : Mop

1 → Mop
2 induced by R is k-linear and 

right exact. Hence we have a k-linear right exact functor

H := Rop � E : Mop
1 � N1 → Mop

2 � N2.

The functor H is obviously a strong E-module functor. Now we compute(
Rex(G,E)

[
Φ(M1 � N1)

])
(M2) ∼= HomM1(G(M2),M1)∗ • E(N1)

∼= HomM2(M2, R(M1))∗ • E(N1)

= Φ(H(M1 � N1))(M2)

for M1 ∈ Mop
1 , M2 ∈ M2 and N1 ∈ N1, where Φ’s are the equivalences given in 

Lemma 3.2. Thus Rex(G, E) ∼= Φ ◦ H ◦ Φ. The functor Rex(G, E) has the desired 
properties since H does. �
3.4. Monadic description of module functors

Let C be a finite tensor category over k, and set Cenv = C � Crev. We define A ∈ Cenv

by

A =
X∈C∫

X∗ � X

(see [18, §5] or [29] for the existence of this coend). Let iX : X∗�X → A be the universal 
dinatural transformation for the coend. By the Fubini theorem for coends, A ⊗ A is a 
coend of (X1, X2, Y1, Y2) �→ (X∗

1 �Y1) ⊗ (X∗
2 �Y2). Thus there exists a unique morphism 

m such that the diagram

(X∗ � X) ⊗ (Y ∗ � Y )
iX⊗iY

A⊗A

m

(Y ⊗X)∗ � (Y ⊗X)
iY ⊗X

A

commutes for all X, Y ∈ C. We also define u : 1 � 1 → A by u = i1. The proof of the 
following lemma is straightforward:

Lemma 3.5. The triple (A, m, u) is an algebra in Cenv.

Let M and N be finite left C-module categories. As we have seen, Rex(M, N ) is a 
left Cenv-module category by the action given by (3.7). We now consider the category of 
left A-modules in Rex(M, N ) in the sense of Definition 2.3.
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Lemma 3.6. ARex(M, N ) ∼= RexC(M, N ).

Proof. Day and Street [8] showed that the functor Z(V ) =
∫X∈C

X∗ ⊗ V ⊗X (V ∈ C) 
has a structure of a monad such that the category of Z-modules can be identified with 
the monoidal center of C. The proof is essentially same as their proof of this fact: For 
F ∈ Rex(M, N ), we have

Nat(A � F, F ) ∼=
∫
M∈M,X∈C HomN (X∗

� F (X � M), F (M))

∼=
∫
M∈M,X∈C HomN (F (X � M), X � F (M))

by the standard properties of ends and coends. Hence a morphism μ : A � F → F in 
Rex(M, N ) is the same thing as a natural transformation

ξM,X : F (X � M) → X � F (M) (M ∈ M, X ∈ C).

The morphism μ makes F an A-module in Rex(M, N ) if and only if the corresponding 
natural transformation ξ makes F a colax C-module functor. Hence, by Lemma 2.1, 
we obtain a bijection between the objects of the two categories, which gives rise to an 
isomorphism of the two categories. �

We write Rex(C, C) as Rex(C) for short. Lemma 3.2 yields an equivalence

ΦC : Cenv → Rex(C), V � W �→ HomC(−, ∗W )∗ • V (V,W ∈ C) (3.8)

of left Cenv-module categories with quasi-inverse

ΦC : Rex(C) → Cenv, F �→
∫

X∈C

F (X) � X∗. (3.9)

Lemma 3.7. The following functor is an equivalence of categories:

HC : A(Cenv) → C, M �→ ΦC(M)(1). (3.10)

Proof. ΦC induces an equivalence between the categories of A-modules in Cenv and those 
in Rex(C). The functor HC is an equivalence, since it is the composition

A(Cenv) ≈−−−−−−→
ΦC

ARex(C)
∼=−−−−−−−−−−−→

Lemma 3.6
RexC(C) ≈−−−−→ C,

where the last arrow refers to the functor F �→ F (1). �
Remark 3.8. A similar equivalence can be obtained by using left exact functors instead of 
right exact ones. The Deligne tensor product of finite abelian categories A and B over k
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also has the universal property for functors out of A ×B that is k-linear and left exact in 
each variable [6, §5]. Using this universal property, we define a k-linear left exact functor

Φ′
C : Cenv → Lex(C), V � W �→ HomC(W ∗,−) • V, (3.11)

where Lex(C) is the category of k-linear left exact endofunctors on C. As explained in 
[29], the functor Φ′

C is in fact an equivalence with quasi-inverse

Φ′
C : Lex(C) → Cenv, F �→

X∈C∫
F (X∗) � X. (3.12)

The monoidal category Cenv acts on Lex(C) from the left in such a way that Φ′
C is an 

equivalence of left Cenv-module categories. By the same argument as Lemma 3.6, we can 
identify ALex(C) with the category LexC(C) of k-linear left exact left C-module functors 
on C. The functor

H′
C : A(Cenv) → C, M �→ Φ′

C(M)(1) (3.13)

is an equivalence of categories since it is obtained as the composition

A(Cenv) Φ′
C−−−−−−→ ALex(C)

∼=−−−−−→ LexC(C) ≈−−−−−→ C. (3.14)

By (3.12) and (3.14), a quasi-inverse of H′
C is given by

H′
C : C → A(Cenv), V �→ A⊗ (V � 1). (3.15)

Remark 3.9. Suppose that Cenv is rigid. Then Cenv is a finite tensor category acting on 
C from the left by (X � Y ) � V = X ⊗ V ⊗ Y . Let Hom denote the associated internal 
Hom functor. As shown in [29], the algebra Hom(1, 1) is canonically isomorphic to the 
algebra A of Lemma 3.5. Hence, by the result recalled in §2.7, we obtain an equivalence

K : C → (Cenv)A, V �→ Hom(1, V ) ∼= (V � 1) ⊗A (3.16)

of left Cenv-module categories [13, Proposition 2.3]. The equivalences K, as well as HC
and H′

C , can be thought of as category-theoretical variants of the fundamental theorem 
for Hopf bimodules. There is the following relation:

HC(V ) ∼= ∗K(V ∗) (V ∈ C), (3.17)

where HC is a quasi-inverse of HC . Indeed, by (3.2) and (3.9), we have

∗A⊗ (V � 1) ∼=
∫
X

∗(X∗ � X) ⊗ (V � 1) ∼=
∫
X

(X ⊗ V ) � X∗ ∼= ΦC
[
(−) ⊗ V

]
.

Hence HC(∗K(V ∗)) ∼= HC(∗A ⊗ (V � 1)) ∼= 1 ⊗ V = V for all V ∈ C.
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3.5. The modular object

Let C be a finite tensor category over k. We consider the (right) Cayley functor defined 
by

ΥC : C → Rex(C), X �→ (−) ⊗X (X ∈ C). (3.18)

If we identify C with RexC(C), then ΥC corresponds to the forgetful functor from RexC(C)
and thus it has a left adjoint, say Υ∗

C (see also (3.21) below).

Definition 3.10. The modular object αC ∈ C is defined to be the image of

JC := HomC(−,1)∗ • 1 ∈ Rex(C) (3.19)

under a left adjoint of the Cayley functor. Namely,

αC := Υ∗
C [JC ]. (3.20)

If C is the representation category of a finite-dimensional Hopf algebra H, then the 
functor JC is given by tensoring the trivial H-bimodule. The functor Υ∗

C can be described 
by the fundamental theorem for Hopf bimodules. Consequently, the modular object cor-
responds to the modular function on H. The detail will be discussed in Section 5 in a 
more general setting.

To study the properties of the modular object, we clarify relations between the Cayley 
functor and other functors appeared in the previous subsection. Let ΦC be the equivalence 
given by (3.8). Then the diagram

A(Cenv)
ΦC

ARex(C)
∼=

Lemma 3.6
RexC(C) ≈ C

ΥC

Cenv ΦC
Rex(C) Rex(C) Rex(C)

(3.21)

commutes up to isomorphisms, where A is the algebra introduced in Lemma 3.5 and 
the unlabeled vertical arrows are the forgetful functors. By considering left adjoints of 
functors in this diagram, we have

Υ∗
C [F ] = (A � F )(1) =

X∈C∫
X∗ ⊗ F (X) (3.1)=

X∈C∫
X ⊗ F (∗X) (3.22)

for F ∈ Rex(C). Since the composition along the top row of the diagram is the equiva-
lence HC given in Lemma 3.7, we also have

Υ∗
C
[
ΦC(M)

] ∼= HC(A⊗M) (M ∈ Cenv). (3.23)



90 K. Shimizu / Journal of Algebra 471 (2017) 75–112
Hence, in particular,

αC = Υ∗
C
[
JC

]
= Υ∗

C
[
ΦC(1 � 1)

] ∼= HC(A). (3.24)

For a while, we suppose that Cenv is rigid. Let K : C → (Cenv)A be the equivalence 
given by (3.16). Then the distinguished invertible object [13] is defined as the unique (up 
to isomorphism) object D ∈ C such that K(D) ∼= A∗.

Proposition 3.11. Under the above assumption, the modular object of C is isomorphic to 
the dual of the distinguished invertible object of C.

Proof. By (3.17) and (3.24), we compute ∗D ∼= HC(∗K(D)) ∼= HC(A) ∼= αC . �
As its name suggests, the distinguished invertible object D ∈ C is an invertible object; 

see [13] and [29]. We remark that the rigidity of Cenv is essentially used in these papers. 
On the other hand, Definition 3.10 makes sense even in the case where Cenv is not rigid.

We now go back to the general situation and prove the invertibility of αC without 
assuming the rigidity of Cenv. Our proof uses not only HC but also the equivalence H′

C
given in Remark 3.8. As before, we denote its quasi-inverse by H′

C .

Proposition 3.12. The modular object αC is an invertible object.

Proof. By (3.22) and (3.23), we compute

HCH
′
C(V ) = HC(A⊗ (V � 1)) ∼= Υ∗

C
[
ΦC(V � 1)

] ∼= αC ⊗ V

for all V ∈ C. Thus the functor V �→ αC ⊗ V is an equivalence as the composition of 
equivalences. This means that αC is an invertible object. �

We also note the following formula for the modular object:

Proposition 3.13. αC =
X∈C∫

HomC(1, X)∗ •X.

This formula directly follows from (3.22) and the definition of αC. Since it does not 
involve any information about the tensor product of C, we have:

Corollary 3.14. Let F : C → D be a k-linear functor between finite tensor categories C
and D over k that is an equivalence between underlying categories and satisfies F (1) ∼= 1. 
Then we have F (αC) ∼= αD.

This corollary may be useful to find the modular object. For example:
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Corollary 3.15. For a finite tensor category C over k, we have

αCrev ∼= αC and αCop ∼= α∗
C .

Proof. Apply Corollary 3.14 to idC : C → Crev and (−)∗ : C → Cop. �
3.6. The Radford S4-formula

Let C be a finite tensor category over k. Here we prove the following analogue of Rad-
ford’s formula of the fourth power of the antipode of a finite-dimensional Hopf algebra:

Theorem 3.16. There is an isomorphism of monoidal functors

∗∗X ∼= αC ⊗X∗∗ ⊗ α∗
C (X ∈ C). (3.25)

We call (3.25) the Radford S4-formula. This theorem is first established by Etingof, 
Nikshych and Ostrik [13] under the assumption that the base field k is algebraically 
closed and EndC(1) ∼= k. Other existing proofs [9,29] work under milder assumptions 
but seem to heavily rely on the rigidity of Cenv. We give a proof of (3.25) that works 
without any assumptions.

A key observation for proving (3.25) is that Cenv acts on Rex(C) not only from the 
left but also from the right by the action determined by

F � (X � Y ) = F (−⊗ ∗∗Y ) ⊗X (F ∈ Rex(C), X, Y ∈ C). (3.26)

One can check that the equivalence ΦC : Cenv → Rex(C) given by (3.8) is in fact an 
equivalence of Cenv-bimodule categories. Hence Cenv also acts on ARex(C) from the right 
by (3.26).

We consider the category Rex(C)A of right A-modules in Rex(C). To describe this 
category, we introduce the following notation: Given a right C-module category M and a 
strong monoidal functor T : C → C, we denote by M〈T 〉 the category M with the action 
twisted by T .

Lemma 3.17. Rex(C)A is isomorphic to the category of k-linear right C-module functors 
from C〈S−2〉 to C〈S2〉, where S = (−)∗ is the left duality functor on C.

Proof. The proof of this lemma is almost the same as Lemma 3.6 (and thus it is essen-
tially same as the argument due to Day and Street). We first note that a k-linear right 
C-module functor C〈S−2〉 → C〈S2〉 is automatically exact. Indeed, if F is such a functor, 
then

F (X) = F (1 ⊗ ∗∗X∗∗) = F (1 � X∗∗) ∼= F (1) � X∗∗ = F (1) ⊗X∗∗∗∗
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for all X ∈ C. Now let F ∈ Rex(C). Then we have

Nat(F � A,F ) ∼=
∫
V,X∈C HomC(F (V ⊗ ∗∗X) ⊗X∗, F (V ))

∼=
∫
V,X∈C HomC(F (V ⊗ ∗∗X), F (V ) ⊗X∗∗).

Thus a morphism μ : F � A → F is the same thing as a natural transformation

ξV,X : F (V ⊗ ∗∗X) → F (V ) ⊗X∗∗ (X,V ∈ C).

The morphism μ makes F a right A-module in Rex(C) if and only if ξ makes F a colax 
C-module functor from C〈S−2〉 to C〈S2〉. This correspondence gives rise to an isomorphism 
of the two categories. �
Proof of Theorem 3.16. Set G = (−) ⊗αC . By (3.24) and the definition of the equivalence 
HC , we have G ∼= (−) ⊗HC(A) ∼= ΦC(A). Since A is a right A-module in Cenv, G is in fact a 
right A-module in Rex(C). Thus, by the previous lemma, there is a natural isomorphism

ξV,X : G(V ⊗ ∗∗X) → G(V ) ⊗X∗∗ (V,X ∈ C)

such that (G, ξ) is a right C-module functor from C〈S−2〉 to C〈S2〉. Since αC is an invertible 
object, the composition

∗∗X
id⊗coev−−−−−−−−−→ ∗∗X ⊗ αC ⊗ α∗

C
ξ1,X⊗id−−−−−−−−−→ αC ⊗X∗∗ ⊗ α∗

C (3.27)

is an isomorphism for all X ∈ C. The definition of module functors implies that (3.27)
is indeed a morphism of monoidal functors. �
4. The relative modular object

4.1. Tensor functors

By a tensor category, we mean a k-linear abelian category endowed with a rigid 
monoidal structure such that the tensor product is bilinear (thus a finite tensor category 
is precisely a tensor category whose underlying category is a finite abelian category). For 
a k-linear functor T : C → D between tensor categories C and D, we define

T !(X) = ∗T (X∗) and !T (X) = T (∗X)∗ (X ∈ C).

Now let F : C → D and G : D → C be k-linear functors. The following easy lemma will 
be used frequently:

Lemma 4.1. F � G implies G! � F ! and !G � !F .
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By a tensor functor, we mean a k-linear strong monoidal functor between tensor 
categories. We note that a tensor functor F : C → D preserves the duality. Thus, we 
have F ! ∼= F ∼= !F . If F has a right adjoint R, then R! � F ! ∼= F and !R � F by the 
above lemma. Similarly, if L � F , then F � L! and F � !L. Summarizing, we have the 
following result [5, Lemma 3.5]:

Lemma 4.2. A tensor functor F has a left adjoint if and only if it has a right adjoint. If 
L � F � R, then !R ∼= L ∼= R! and !L ∼= R ∼= L!.

4.2. The relative modular object

Now we introduce the notion of the relative modular object for a tensor functor with 
nice properties. We first prove the following lemma:

Lemma 4.3. Let F : C → D be a tensor functor between tensor categories C and D, and 
suppose that it has a left adjoint L and a right adjoint R. Then the following assertions 
are equivalent:

(1) L has a left adjoint.
(2) R has a right adjoint.
(3) There exists an object χF ∈ D such that R ∼= L(− ⊗ χF ).

Such an object χF ∈ D is unique up to isomorphism if it exists. More precisely, if the 
above conditions hold, then we have isomorphisms

E(1) ∼= χF
∼= ∗G(1), where E � L � F � R � G. (4.1)

If, moreover, C and D are finite tensor categories, then the above three conditions are 
equivalent to each of the following three conditions:

(4) L is exact.
(5) R is exact.
(6) F (P ) is projective for every projective object P ∈ C.

Proof. The equivalence (1) ⇔ (2) follows from Lemmas 4.1 and 4.2. In more detail, if 
L has a left adjoint E, then E! is right adjoint to R ∼= L!. Similarly, if R has a right 
adjoint G, then G! is left adjoint to L ∼= R!.

To show (2) ⇔ (3), we note that D is a left C-module category by the action given 
by X � V = F (X) ⊗ V (X ∈ C, V ∈ D). Suppose that R has a right adjoint G, and set 
χ = ∗G(1). Since F : C → D is a C-module functor, so is R by Lemmas 2.1 and 2.2, and 
thus so is G. Hence, for X ∈ C, we have

G(X) = G(X ⊗ 1) ∼= X � G(1) = F (X) ⊗ χ∗. (4.2)
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By definition, R is left adjoint to G. On the other hand, by (4.2), we have

HomD(V,G(X)) ∼= HomD(V ⊗ χ, F (X)) ∼= HomC(L(V ⊗ χ), X)

for V ∈ D and X ∈ C. Thus R ∼= L(− ⊗ χ). Conversely, if such an object χ exists, then 
we see that F (−) ⊗ χ∗ is right adjoint to R by a similar computation. Hence we have 
proved (2) ⇔ (3).

Now we suppose that (1), (2) and (3) hold, and let E and G be a left adjoint and 
a right adjoint of L and R, respectively. Then, as we have seen at the beginning of the 
proof, we have G! ∼= E. The second isomorphism in (4.1) has been proved in the above 
argument. The first one follows from the second one as follows:

χF
∼= ∗G(1) = ∗G(1∗) = G!(1) ∼= E(1).

Finally, we assume that C and D are finite. Then (1) ⇔ (4) and (2) ⇔ (5) follow from 
Lemma 2.8. To show that (5) and (6) are equivalent, we make the category D a finite 
left C-module category by F in the same way as above. For V, W ∈ D and X ∈ C, there 
is a natural isomorphism

HomD(X � V,W ) ∼= HomC(X,R(W ⊗ V ∗)). (4.3)

Namely, Hom(V, W ) := R(W ⊗ V ∗) is the internal Hom functor for the C-module cate-
gory D. By the basic results recalled in §2.7, we see that each of (5) and (6) is equivalent 
to that D is an exact C-module category. �
Definition 4.4. We call χF of Lemma 4.3 the relative modular object of F .

As we explain the detail in Remark 4.9, this object generalizes the relative modular 
function of an extension of finite-dimensional Hopf algebras. The following result is also 
a motivation of our definition.

Example 4.5. Let C be a finite tensor category such that Cenv is rigid.1 The main result 
of [29] can be rephrased as follows: The forgetful functor U : Z(C) → C satisfies the 
equivalent conditions of Lemma 4.3, and the relative modular object of U is given by 
χU = α∗

C .

Till the end of this subsection, let F : C → D be a tensor functor between tensor 
categories C and D satisfying the equivalent conditions of Lemma 4.3, and let L and R

1 If this assumption is dropped, then U : Z(C) → C may not satisfy the equivalent conditions of Lemma 4.3. 
For example, suppose that k is imperfect and set V = (mod-k, ⊗k, k). Let � be a finite inseparable field 
extension of k. Then C = (�-mod-�, ⊗�, �) is a finite tensor category over k such that Cenv is not rigid. By 
Schauenburg [28], there are equivalences Z(C) ≈ Z(V) ≈ V of braided monoidal categories. If we identify 
Z(C) with V, then the functor U corresponds to the unique (up to isomorphism) tensor functor V → C
sending k ∈ V to � ∈ C. Thus its right adjoint corresponds to Hom�⊗k�op (�, −), which is not exact since � is 
inseparable over k.
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be a left adjoint and a right adjoint of F . We first give the following characterizations of 
the relative modular object:

Proposition 4.6. If χ = χF , then there are natural isomorphisms

L(V ⊗ χ) ∼= R(V ) ∼= L(χ⊗ V ) and R(χ∗ ⊗ V ) ∼= L(V ) ∼= R(V ⊗ χ∗) (4.4)

for V ∈ D. Each of these natural isomorphisms characterizes the relative modular object: 
Namely, if χ ∈ D is an object such that one of the isomorphisms in (4.4) exists, then 
χ ∼= χF .

Proof. Let E be a left adjoint of L, and let G be a right adjoint of R. Taking adjoints, 
we see that (4.4) is equivalent to

F (−) ⊗ χ∗ ∼= G ∼= ∗χ⊗ F (−) and χ∗∗ ⊗ F (−) ∼= E ∼= F (−) ⊗ χ. (4.5)

We now set χ = χF . To prove (4.5), we first remark χ∗∗ ∼= χ. Indeed, by Lemma 4.1, we 
see that !G is left adjoint to L ∼= !R. Hence, by (4.1), we have

χ ∼= E(1) ∼= !G(1) ∼= G(1)∗ ∼= ∗G(1)∗∗ ∼= χ∗∗. (4.6)

The category D is a C-bimodule category via F . Since F is a C-bimodule functor, so is R, 
and hence so is G. Thus we have natural isomorphisms

F (X) ⊗G(1) = X � G(1) ∼= G(X) ∼= G(1) � X = G(1) ⊗ F (X) (4.7)

for X ∈ C. Now the first two isomorphisms in (4.5) follow from (4.1), (4.6) and (4.7). 
The latter two isomorphisms are proved in a similar way by using the fact that E is a 
C-bimodule functor.

To see that each of the isomorphisms in (4.4) characterizes the relative modular object, 
consider adjoints of them and then use (4.1). For example, if μ ∈ D is an object such 
that L ∼= R(− ⊗ μ∗), then we have E ∼= F (−) ⊗ μ∗ by taking left adjoints of both sides. 
Hence μ ∼= χF by (4.1). The other cases are proved analogously. �
Proposition 4.7. The object χF has the following properties:

(1) χF
∼= 1 if and only if F is Frobenius.

(2) χF is an invertible object.
(3) χF belongs to the centralizer of F .

Proof. Write χ = χF . Part (1) is obvious from the definition. By (4.4), we have

L(χ∗ ⊗ V ⊗ χ) ∼= R(χ∗ ⊗ V ) ∼= L(V )
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for V ∈ D. Taking right adjoints, we have a natural isomorphism

χ⊗ F (X) ⊗ χ∗ ∼= F (X)

for X ∈ C. Part (2) is proved by letting X = 1 (since D is a multi-ring category in the 
sense of [12], an object μ of D is invertible if and only if μ ⊗ μ∗ ∼= 1; see [12, §4.3]). To 
prove Part (3), let E be a left adjoint of L. In view of (4.1), we may assume χ = E(1). 
As we have seen in the proof of Proposition 4.6, E is a C-bimodule functor if we view D
as a C-bimodule category via F . Thus,

σV : χ⊗ F (V ) = E(1) � V ∼= E(V ) ∼= V � E(1) = F (V ) ⊗ χ (V ∈ C)

is a natural transformation such that (χ, σ) ∈ Z(F ). �
4.3. A formula for the relative modular object

Balan [1] proved a similar result as Lemma 4.3 from the viewpoint of the theory of 
Hopf monads. Moreover, Balmer, Dell’Ambrogio and Sanders [3] showed similar results 
in a quite general (but symmetric) setting of tensor-triangulated categories. Mentioning 
these results, we wonder that the results of the previous subsection are only an instance 
of a very general principal in the monoidal category theory.

In any case, our results are not sufficient as a generalization of the theorem of Fis-
chman, Montgomery and Schneider mentioned in Introduction: Their result can be 
thought of as an explicit formula for the relative modular object of resAB in terms of 
the modular function (see Remark 4.9 below), while our results do not give any infor-
mation about the relative modular object. The second main result of this section is the 
following formula for the relative modular object:

Theorem 4.8. Let F : C → D be an exact tensor functor between finite tensor categories 
satisfying the equivalent conditions in Lemma 4.3. Then

α∗
D ⊗ F (αC) ∼= χF

∼= F (αC) ⊗ α∗
D.

Proof. Let L and R be a left and a right adjoint of F , respectively. As before, we make 
D a left C-module category by F . By Lemmas 2.1 and 2.2, the functor R is a C-module 
functor. This means that there is a natural isomorphism R(F (X) ⊗ V ) ∼= X ⊗R(V ) for 
X ∈ C and V ∈ D. In other words, there is an isomorphism

ΥC ◦R ∼= Rex(F,R) ◦ ΥD, (4.8)

where ΥC and ΥD are the Cayley functors introduced in §3.5.
We consider left adjoints of both sides of (4.8). As before, we denote by Υ∗

� a left 
adjoint of Υ� (� = C, D). It is trivial that a left adjoint of R is F . To get a left adjoint 
of Rex(F, R), we note that there are natural isomorphisms
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Nat(F ◦ T1, T2) ∼= Nat(T1, R ◦ T2) and Nat(T3 ◦R, T4) ∼= Nat(T3, T4 ◦ F )

for T1 : C → C, T2 : D → C, T3 : C → D and T4 : D → D (see [22, X.5 and X.7] for these 
natural isomorphisms). Hence we have

Nat(T,R ◦ T ′ ◦ F ) ∼= Nat(F ◦ T, T ′ ◦ F ) ∼= Nat(F ◦ T ◦R,F )

for T : C → C and T ′ : D → D. This means Rex(R, F ) � Rex(F, R). Thus, taking left 
adjoints of both sides of (4.8), we get

F ◦ Υ∗
C
∼= Υ∗

D ◦ Rex(R,F ). (4.9)

We now compute the image of JC ∈ Rex(C) under (4.9). By the definition of the 
modular object, we have F (Υ∗

C[JC ]) = F (αC). On the other hand,

(Rex(R,F )[JC ])(V ) ∼= F (HomC(R(V ),1)∗ • 1)
∼= HomC(L(V ⊗ χF ),1)∗ • F (1)
∼= HomD(V ⊗ χF , F (1))∗ • 1

∼= JD(V ⊗ χF )

for V ∈ C. If we define an action of D on Rex(D) by X � T = T (− ⊗X) for X ∈ D and 
T ∈ Rex(D), then the above result reads:

Rex(R,F )[JC ] ∼= χF � JD.

Since ΥD : D → Rex(D) is a left D-module functor, so is Υ∗
D. Thus,

Υ∗
D

[
Rex(R,F )[JC ]

]
∼= Υ∗

D[χF � JD] ∼= χF ⊗ Υ∗
D[JD] = χF ⊗ αD.

Hence χF ⊗ αD ∼= F (αC). Since αD is invertible, we obtain the first isomorphism of the 
statement of this theorem. The second isomorphism follows from the first one and the 
Radford S4-formula. �
Remark 4.9. We shall explain how this theorem implies a result of Fischman, Montgomery 
and Schneider [15]. Let A/B be an extension of finite-dimensional Hopf algebras over k, 
and let F := resAB : mod-A → mod-B be the restriction functor. As we have mentioned 
in Introduction, the functors

L := (−) ⊗B A and R := (−) ⊗B HomB(AB , BB)

are a left adjoint and a right adjoint of F , respectively. Recall that we have used the 
Nichols–Zoeller theorem to obtain the above expression of R. The theorem allows us to 
apply our results to F . Consequently, we obtain
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L(χF ⊗k X) ∼= R(X) (X ∈ mod-B), (4.10)

where χF is the right B-module corresponding to the relative modular function given 
by (1.2). The relative Nakayama automorphism β = βA/B corresponds to the functor 
χF ⊗ (−). Since

L(χF ⊗k X) ∼= L(Xβ) ∼= (Xβ) ⊗B A ∼= X ⊗B (β−1A),

we get an isomorphism β−1AA
∼= HomA(AB , B) of B-A-bimodules from (4.10). In other 

words, the extension A/B is β-Frobenius [15, Theorem 1.7].

Remark 4.10. We have used the Nichols–Zoeller theorem to apply Theorem 4.8 in the 
above. Like this, some non-trivial results will be needed to apply our results. Here we 
note the following criteria: An exact tensor functor F : C → D between finite tensor 
categories satisfies the equivalent conditions of Lemma 4.3 if it is faithful and surjective
in the sense that every object of D is a quotient of F (X) for some X ∈ C [14, Theorem 2.5 
and Section 3] (notice that our terminology slight differs from theirs).

5. Braided Hopf algebras

5.1. Main result of this section

In this section, we give a description of the modular object of the category of right 
modules over a Hopf algebra in a braided finite tensor category (often called a braided 
Hopf algebra). To state our result, we first fix some notations related to Hopf algebras 
in a braided monoidal category.

Let V be a braided monoidal category with braiding σ, and let H be a Hopf algebra 
with multiplication m, unit u, comultiplication Δ, counit ε and antipode S. For M, N ∈
VH , their tensor product M ⊗N ∈ V is a right H-module by

�M⊗N = (�M ⊗ �N ) ◦ (idM ⊗ σN,H ⊗ idH) ◦ (idM ⊗ idN ⊗ Δ), (5.1)

where �M and �N are the actions of H on M and N , respectively. The category VH is 
a monoidal category with this operation. In a similar way, the category HV is also a 
monoidal category. We note that VH and HV are rigid if V is rigid and S is invertible.

We recall basic results on integrals of a braided Hopf algebra: Suppose that V is rigid 
and admits equalizers. Then the antipode of H is invertible. An (X-based) right integral 
in H is a morphism t : X → H in V such that m ◦ (t ⊗ H) = t ⊗ ε. The category of 
right integrals in H (defined as the full subcategory of the category of objects over H
[22, II.6]) has a terminal object. We write it as Λ : Int(H) → H and call Int(H) ∈ V the 
object of integrals in H. It is known that Int(H) is an invertible object. See [30] and [4]
for the above results.
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Definition 5.1. The (right) modular function on H is a morphism αH : H → 1 of algebras 
in V determined by the following equation:

αH ⊗ idInt(H) = m ◦ (idH ⊗ Λ). (5.2)

We regard an object V ∈ V as a right H-module by defining the action of H by the 
counit of H. We also identify an algebra morphism γ : H → 1 with the right H-module 
whose underlying object is 1 ∈ V and whose action is given by γ. With the above 
notation, the main result of this section is stated as follows:

Theorem 5.2. Let V be a braided finite tensor category over k, and let H be a Hopf algebra 
in V. The modular object of C = VH is given by

αC = Int(H)∗ ⊗ αV ⊗ αH .

The order of the tensorands in the right-hand side of the above equation is arbitrary, 
since they commute with each other up to isomorphism.

Since the antipode S : H → H is an anti-algebra isomorphism, VH and HV are 
equivalent. This equivalence is not monoidal in general, but preserves the unit object. 
Thus, by Corollary 3.14 and the above theorem, we have the following description of the 
modular object of the category of left H-modules:

Corollary 5.3. The modular object of C = HV is given by

αC = Int(H)∗ ⊗ αV ⊗ αH ,

where αH is the left modular function given by αH = αH ◦ S.

By Theorem 5.2 and Corollary 5.3, we obtain:

Corollary 5.4. For a Hopf algebra H in V, the following are equivalent:

(1) The category of left H-modules in V is unimodular.
(2) The category of right H-modules in V is unimodular.
(3) Int(H) ∼= αV and αH = ε.

By an extension A/B of Hopf algebras in a braided monoidal category V, we mean a 
morphism iA/B : B → A of Hopf algebras in V being monic as a morphism in V. As in 
the ordinary case, the functor VA → VB induced by iA/B is called the restriction functor. 
As an application of Theorems 4.8 and 5.2, we will show the following theorem:

Theorem 5.5. Let V be a braided finite tensor category over k. For an extension A/B of 
Hopf algebras in V, the following assertions are equivalent:
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Fig. 1. The axioms of a braided Hopf algebra.

(1) The restriction functor VA → VB is a Frobenius functor.
(2) Int(A) ∼= Int(B) and αA ◦ iA/B = αB.

The rest of this section is devoted to the proofs of Theorems 5.2 and 5.5.

5.2. Nakayama automorphism

Let V be a braided rigid monoidal category with braiding σ, and suppose that it admits 
equalizers. We use the graphical techniques to express morphisms in V. Our convention 
is that a morphism goes from the top of the diagram to the bottom (cf. [30]). Following, 
the braiding σ, its inverse, the evaluation ev : X∗ ⊗ X → 1 and the coevaluation 
coev : 1 → X ⊗X∗ are expressed as follows:

σX,Y = σ−1
X,Y = ev = coev =

The axioms for Hopf algebras in V are expressed as in Fig. 1. Here, for a Hopf algebra 
H in V, we depict its structure morphisms as follows:

m = u = Δ = ε = S = S−1 =

As in the previous subsection, we fix a terminal object Λ : Int(H) → H of the category 
of right integrals in H. By definition, we have

m ◦ (Λ ⊗ idH) = Λ ⊗ ε. (5.3)
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It is known that there exists a unique morphism λ : H → Int(H) such that

(λ⊗ idH) ◦ Δ = λ⊗ u and λ ◦ Λ = idInt(H). (5.4)

The paring λ ◦m : H ⊗H → Int(H) is non-degenerate in the sense that

φH : H H⊗coev−−−−−−−−−→ H ⊗H ⊗H∗ (λ◦m)⊗H∗

−−−−−−−−−−−→ Int(H) ⊗H∗ (5.5)

is invertible (see [30] and [4] for these results).

Definition 5.6 (Doi–Takeuchi [11]). The Nakayama automorphism of H is the unique 
morphism N : H → H in V such that

λ ◦m ◦ σH,H = λ ◦m ◦ (idH ⊗N ). (5.6)

Let K ∈ V be an invertible object. The monodromy around K is the natural transfor-
mation Ω(K) : idV → idV defined by

idK ⊗ Ω(K)V = σV,K ◦ σK,V (5.7)

for V ∈ V. The definition of a braiding implies

Ω(1) = id, Ω(K ⊗K ′) = Ω(K) ◦ Ω(K ′) and Ω(K∗) = Ω(K)−1 (5.8)

for invertible objects K and K ′.

Lemma 5.7. The Nakayama automorphism of H is given by

N = S−2 ◦ (αH ⊗ idH) ◦ Δ ◦ Ω(Int(H))H . (5.9)

This formula has been given by Doi and Takeuchi under the assumption that V is, in a 
sense, built on the category of vector spaces [11, Proposition 13.1]. Since their argument 
cannot be applied to our general setting, we give a proof.

Proof. Set I = Int(H), α = αH and ω = Ω(I)H . Then (5.9) is equivalent to

S2 ◦ N = (α⊗ idH) ◦ Δ ◦ ω. (5.10)

To prove this equation, we first prove

(m⊗ idH) ◦ (idH ⊗ σH,H) ◦ (Δ ⊗ idH) = (idH ⊗m) ◦ (Δm⊗ S) ◦ (idH ⊗ Δ) (5.11)

as in Fig. 2 (this equation reads “a(1)b ⊗a(2) = (ab(1))(1)⊗(ab(1))(2)S(b(2))” in an ordinary 
Hopf algebra in the Sweedler notation). Using (5.3), (5.4) and (5.11), we obtain three 
formulas depicted in Fig. 3. Now (5.10) is proved as in Fig. 4. �
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Fig. 2. Graphical proof of Equation (5.11).

Fig. 3. Formulas involving integrals.

Fig. 4. Graphical proof of Equation (5.10).

5.3. The fundamental theorem for Hopf bimodules

Let V and H be as in the previous subsection. For an H-bimodule M ∈ HVH , we 
express the left action �M and the right action �M of H on M respectively as follows:

�M = and �M =

Given M, N ∈ HVH , we define M ⊗̃N to be the H-bimodule with the underlying object 
M ⊗N and with actions
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�M⊗̃N = and �M⊗̃N = (5.12)

The category HVH is a rigid monoidal category with respect to ⊗̃. Note that the left 
dual object of M ∈ HVH (with respect to ⊗̃), denoted by M∨, is the H-bimodule with 
underlying object M∗ and with actions

�M∨ = and �M∨ = (5.13)

The object H ∈ V is an H-bimodule by m. Moreover, the coalgebra (H, Δ, ε) in V is 
in fact a coalgebra in (HVH , ⊗̃, 1). We denote by HHVH the category of left H-comodules 
in HVH and refer to an object of this category as a Hopf H-bimodule. By definition, 
an object of HHVH is an H-bimodule M in V endowed with a left H-comodule structure 
δM : M → H ⊗M in V such that

and (5.14)

(here, the coaction δM is expressed by the picture of �M turned upside down). Thus a 
Hopf H-bimodule defined here is the same thing as a two-fold Hopf bimodule of Bespalov 
and Drabant [2, Definition 3.6.1].

For M ∈ H
HVH , we set πM := �M ◦ (S ⊗ idM ) ◦ δM : M → M . The coinvariant of M , 

denoted by M coH , is defined to be the equalizer of πM and idM . It is also an equalizer 
of δM and u ⊗ idM . Thus, symbolically, we have

M coH = Eq(πM , idM ) = Eq(δM , u⊗ idM ). (5.15)

Let Mad be the right H-module with underlying object M and with action

�ad
M = �M ◦ (S ⊗ �M ) ◦ (σM,H ⊗ idH) ◦ (idM ⊗ Δ). (5.16)

We call �ad
M the adjoint action and express it by the same diagram as a right action but 

with labeled ‘ad’ (as in the first diagram in Fig. 5). The morphism πM is in fact an 
H-linear idempotent on the right H-module Mad. Hence M coH is a right H-module as 
a submodule of Mad.

An object of the form H ⊗̃ M , M ∈ HVH , is a Hopf H-bimodule as a free left 
H-comodule in HVH . We regard a right H-module as an H-bimodule by defining the 
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Fig. 5. The computation of the adjoint action.

left action by ε. The fundamental theorem for Hopf bimodules (Bespalov and Drabant 
[2, Proposition 3.6.3]) states that the functor

H ⊗̃ (−) : VH → H
HVH , V �→ H ⊗̃ V (V ∈ VH) (5.17)

is an equivalence of categories with a quasi-inverse (−)coH .
The left dual object of a right H-comodule in HVH is a left H-comodule in a natural 

way. We are interested in the Hopf bimodule H∨ ∈ H
HVH (where H is regarded as a right 

H-comodule in HVH by the comultiplication). In view of the fundamental theorem, it is 
essential to determine its coinvariant.

Lemma 5.8. (H∨)coH ∼= Int(H)∗ ⊗ αH as right H-modules.

Proof. As remarked in [4, §3.1], λ is a coequalizer of

f := idH ⊗ ∗u and g := (idH ⊗ ev) ◦ (Δ ⊗ id∗H).

Note that g∗ is the coaction of H on H∨ ∈ H
HVH . By (5.15), λ∗ : Int(H)∗ → H∗ is the 

coinvariant of H∨. Hence the claim of this lemma is equivalent to

�ad
H∨ ◦ (λ∗ ⊗ idH) = λ∗ ⊗ αH . (5.18)

For simplicity, we set I = Int(H), α = αH and ω = Ω(I)−1
H . The adjoint action is 

computed as in Fig. 5. The equation equivalent to (5.18) via

HomV(I∗ ⊗H,H∗) ∼= HomV(H ⊗H, I)

is proved as in Fig. 6. �
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Fig. 6. The computation of the action of H on (H∨)coH .

5.4. Proof of Theorem 5.2

We now prove Theorem 5.2. We recall the assumptions: V is a braided finite tensor 
category over k with braiding σ, and H is a Hopf algebra in V. We regard V as a full 
subcategory of C := VH by regarding an object of V as a right H-module by the counit 
of H. There are forgetful functors

RexC(C) ΘC−−−→ Rex(C) and RexC(C)
ΘC/V−−−−−→ RexV(C) ΘV−−−→ Rex(C)

such that ΘC = ΘC/V ◦ ΘV . Since the Cayley functor ΥC corresponds to ΘC under the 
identification RexC(C) ≈ C, the composition

Θ∗
C : Rex(C) Υ∗

C−−−−−−→ C ≈−−−−−→ RexC(C)
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is left adjoint to ΘC . Now we set JC = HomC(−, 1)∗ • 1 ∈ Rex(C). By the definition of 
the modular object, we have:

Lemma 5.9. Θ∗
C [JC ] ∼= (−) ⊗ αC in RexC(C).

Our main idea of the proof of Theorem 5.2 is to compute Θ∗
C [JC ] in terms of left 

adjoints of ΘV and ΘC/V . We first prove:

Lemma 5.10. The functor ΘV has a left adjoint, say Θ∗
V . We have

Θ∗
V [JC ] ∼= (−) ⊗H αV ,

where αV ∈ V is regarded as an H-bimodule by the counit of H.

Proof. That ΘV has a left adjoint follows from Lemma 3.6. To prove the claim, we note 
that the inclusion functor i : V → C has a left adjoint

t : C → V, X �→ X ⊗H 1.

Since i and t are k-linear right exact V-module functors, by Lemma 3.4, they induce a 
k-linear right exact strong Venv-module functor

Ω := Rex(t, i) : Rex(V) → Rex(C), F �→ i ◦ F ◦ t.

Now let A =
∫X∈V

X � X∗ be the algebra in Venv considered in Lemma 3.5. Since 
Ω is a strong Venv-module functor, it induces a functor (also denoted by Ω) between 
the categories of A-modules in such a way that the following diagram commutes up to 
isomorphism:

Rex(V)

Ω

A�(−)
ARex(V)

Ω

Lemma 3.6
∼=

RexV(V)

Ω

Rex(C)
A�(−)

ARex(C) Lemma 3.6
∼=

RexV(C)

Now we chase JV := HomV(1, −)∗ • 1 ∈ Rex(V) around this diagram. Since the compo-
sition along the bottom row is Θ∗

V , we have

Θ∗
VΩ[JV ] ∼= Ω

[
A � JV

]
in RexV(C) ∼= ARex(C). Since t is left adjoint to i, we have

Ω[JV ] = HomV(t(−),1)∗ • 1 ∼= HomC(−,1)∗ • 1 = JC .
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Since F �→ A � F is left adjoint to the forgetful functor ARex(V) → Rex(V), we have 
A � JV ∼= (−) ⊗ αV by the definition of the modular object. Hence we have

Ω
[
A � JV

] ∼= Ω
[
(−) � αV

] ∼= t(−) ⊗ αV ∼= (−) ⊗H αV

in RexV(C). Therefore Θ∗
V [JC ] ∼= (−) ⊗H αV . �

We now consider the forgetful functor ΘC/V : RexC(C) → RexV(C).

Lemma 5.11. ΘC/V has a left adjoint, say Θ∗
C/V . For M ∈ HVH , we have

Θ∗
C/V

[
(−) ⊗H M

]
∼= (−) ⊗ (H∨ ⊗̃M)coH .

Proof. We consider the following diagram:

RexC(C)
ΘC/V

≈

RexV(C)

≈

VH

H⊗̃(−)
H
HVH

F
HVH ,

where the vertical arrows are the equivalences given by Lemma 2.8 and F is the functor 
forgetting the comodule structure. Since there is an isomorphism

X ⊗H (H ⊗̃ V ) ∼= X ⊗ V (X,V ∈ C),

the diagram commutes up to isomorphisms. The functors in the diagram are equivalences 
except F and ΘC/V , and the functor tensoring H∨ is left adjoint to F . Thus ΘC/V has a 
left adjoint as the composition of functors having left adjoints. Hence we get the following 
diagram commuting up to isomorphism:

RexC(C)
Θ∗

C/V

≈

RexV(C)

≈

VH

(−)coH
H
HVH

H∨⊗̃(−)
HVH .

Now the claim is obtained by chasing M ∈ HVH around this diagram. �
Proof of Theorem 5.2. Since ΘC = ΘV ◦ ΘC/V , we have

Θ∗
C [JC ] = (Θ∗

C/V ◦ Θ∗
V)[JC ]. (5.19)
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The left-hand side is (−) ⊗ αC by Lemma 5.9. Set I = Int(H). The right-hand side is 
computed as follows:

(Θ∗
C/V ◦ Θ∗

V)[JC ] ∼= Θ∗
C/V

[
(−) ⊗H αV

]
(by Lemma 5.10)

∼= (−) ⊗ (H∨ ⊗̃ αV)coH (by Lemma 5.11)
∼= (−) ⊗ (H ⊗̃ (I∗ ⊗ αH ⊗ αV))coH (by Lemma 5.8)
∼= (−) ⊗ I∗ ⊗ αH ⊗ αV .

Now the result is obtained by evaluating the both sides of (5.19) at 1. �
5.5. Proof of Theorem 5.5

We now prove Theorem 5.5. The assumption is that V is a braided finite tensor 
category over k and iA/B : B → A is an extension of Hopf algebras in V.

Proof of Theorem 5.5. Let F : VA → VB be the restriction functor. It is sufficient to 
show that Theorem 4.8 is applicable to F . For M ∈ VB , we denote its underlying object 
by M0 for clarity. As before, we regard V ⊂ VB (and thus M0 ∈ VB). For X ∈ VB , we 
consider the morphism

X0 ⊗ I0 ⊗ (BA)∗
idX⊗idI⊗i∗A/B−−−−−−−−−−−→ X0 ⊗ I0 ⊗ (BB)∗

idX⊗φ−1
B−−−−−−−→ X0 ⊗B

�X−−−→ X,

where I = Int(B) and φB is the isomorphism given by (5.5) with H = B. This is 
an epimorphism of right B-modules. Obviously, X0 ⊗ I0 ⊗ (BA)∗ is a restriction of an 
A-module. Thus, by Remark 4.10, we can apply Theorem 4.8 to F . �
6. Radford–Majid bosonization

6.1. Main results of this section

Given a Hopf algebra H over k and a Hopf algebra B in the Yetter–Drinfeld category 
H
HYD, one can construct an ordinary Hopf algebra B#H, called the Radford–Majid 
bosonization. This construction is important in the Hopf algebra theory, especially in 
the classification program of pointed Hopf algebras.

There is a category-theoretical counterpart of the Radford–Majid bosonization: Let C
be a monoidal category, and let B = (B, τ) be a Hopf algebra in Z(C). Since Z(C) acts 
on C via the forgetful functor, the category BC of left B-modules in C is defined. The 
tensor product of M, N ∈ BC is a left B-module in C by

�M⊗N = (�M ⊗ �N ) ◦ (idB ⊗ τM ⊗ idN ) ◦ (Δ ⊗ idM ⊗ idN ),
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where �M and �N are the actions of B on M and N , respectively. The category BC is 
a monoidal category with respect to this operation. It is well-known that, if C is the 
category of left H-modules, then Z(C) can be identified with HHYD, and the category BC
is canonically isomorphic to the category of left B#H-modules as a monoidal category.

We now consider the case where C is a finite tensor category. Then BC is also a finite 
tensor category. In view of applications to generalizations of the bosonization construc-
tion, we are interested in determining the modular object of BC. With the notation used 
in Section 5, our main result is now stated as follows:

Theorem 6.1. If the forgetful functor U : Z(C) → C satisfies the equivalent conditions of 
Lemma 4.3, then the modular object of A = BC is given by

αA = U(Int(B))∗ ⊗ αC ⊗ U(αB).

We note that the assumption on U is satisfied if, for example, the base field k is perfect 
(see Example 4.5). This result resembles Corollary 5.3. However, the techniques we have 
used in Section 5 do not seem to be applicable. Thus we rather derive this theorem by 
using Corollary 5.3 and some fundamental properties of the relative modular object.

Before we give a proof of this theorem, we give some applications. Let C and B be 
as in the above theorem. The first one reduces to a result on the unimodularity of a 
finite-dimensional Hopf algebra obtained by the bosonization.

Corollary 6.2. BC is unimodular if and only if αC ∼= U(Int(B)) and αB = ε.

The second corollary below closely relates to [15, Theorem 5.6] that describes the 
Frobenius property of an extension of Hopf algebras obtained by the bosonization.

Corollary 6.3. For an extension i : B → A of Hopf algebras in Z(C), the following 
assertions are equivalent:

(1) The restriction functor resAB : AC → BC is a Frobenius functor.
(2) U(Int(A)) ∼= U(Int(B)) and αA ◦ i = αB.

Proof. One can check that resAB satisfies the equivalent conditions of Lemma 4.3 in the 
same way as Theorem 5.5. The claim follows from Theorems 4.8 and 6.1. �
6.2. Proof of Theorem 6.1

For a monoidal category V, we denote by V-Mod the 2-category of essentially small 
left V-module categories, lax V-module functors and morphisms between them. Let A
be an algebra in V. In this paper, we have repeatedly used the fact that a lax V-module 
functor F : M → N induces a functor AF : AM → AN between the categories of 
A-modules. This fact is a part of the general fact that there is a 2-functor
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A(−) : V-Mod → (the 2-category of categories), M �→ AM

given by taking the category of left A-modules. An important consequence is that an 
adjunction F � G in V-Mod yields an ordinary adjunction AF � AG.

Now let C be a finite tensor category over a field k. To clarify our argument, we consider 
a more general setting than Theorem 6.1. Let V be a braided finite tensor category, and 
let F : V → C be a tensor functor satisfying the equivalent conditions of Lemma 4.3 so 
that it admits the relative modular object. We moreover assume that F is central in the 
sense that there is a braided monoidal functor F̃ : V → Z(C) such that U ◦ F̃ = F . Let 
H be a Hopf algebra in V. Since V acts on C via F , the category HC of H-modules in 
C is defined. By the assumption that F is central, HC is in fact a finite tensor category 
and the functor HF : HV → HC induced by F is a tensor functor.

As in Section 5, we regard C as a full subcategory of HC by endowing an object of C
with the trivial action of H. For simplicity, we set A = HC and B = HV. Then there is 
the following relation between the modular object of A and B.

Lemma 6.4. χF ⊗ αA ∼= HF (αB).

Proof. Let E be a double-left adjoint (= a left adjoint of a left adjoint) of F . By the 
proof of Lemma 4.3, E ∼= F (−) ⊗χF as left V-module functors. By the argument at the 
beginning of this subsection, HE is a double-left adjoint of HF . Thus, by Lemma 4.3, 
the relative modular object of HF is HE(1), that is the object χF ∈ C endowed with 
the trivial H-action. Now the claim is proved by applying Theorem 4.8 to the tensor 
functor HF . �
Proof of Theorem 6.1. The assumption is that C is a finite tensor category such that 
the forgetful functor U : Z(C) → C admits the relative modular object and B is a Hopf 
algebra in Z(C). For simplicity, we set A = BC, B = BZ(C), and I = Int(B) and write 

BU simply as U . Then we have

αA ∼= χ∗
U ⊗ U(αB) (by Lemma 6.4 with F = U)

∼= χ∗
U ⊗ U(I∗ ⊗ αZ(C) ⊗ αB) (by Corollary 5.3)

= χ∗
U ⊗ U(I)∗ ⊗ U(αZ(C)) ⊗ U(αB)

∼= U(I)∗ ⊗ χ∗
U ⊗ U(αZ(C)) ⊗ U(αB) (since I ∈ Z(C))

∼= U(I)∗ ⊗ αC ⊗ U(αB) (by Theorem 4.8). �
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