期刊论文详细信息
JOURNAL OF ALGEBRA 卷:323
On weak-injective modules over integral domains
Article
Fuchs, Laszlo2  Lee, Sang Bum1 
[1] Sangmyung Univ, Dept Math, Seoul 110743, South Korea
[2] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词: Torsion-free;    Flat;    Pure-injective and weak-injective modules;    Enochs-cotorsion modules;    Flat cover;    Weak-injective envelope;    Almost perfect domain;    Weak dimension;   
DOI  :  10.1016/j.jalgebra.2010.02.005
来源: Elsevier
PDF
【 摘 要 】

We show that a weak-injective module over an integral domain need not be pure-injective (Theorem 2.3). Equivalently, a torsion-free Enochs-cotorsion module over an integral domain is not necessarily pure-injective (Corollary 2.4). This solves a well-known open problem in the negative. In addition, we establish a close relation between flat covers and weak-injective envelopes of a module (Theorem 3.1). This yields a method of constructing weak-injective envelopes from flat covers (and vice versa). Similar relation exists between the Enochs-cotorsion envelopes and the weak dimension <= 1 covers of modules (Theorem 3.2). (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2010_02_005.pdf 135KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次