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need not be pure-injective (Theorem 2.3). Equivalently, a torsion-
free Enochs-cotorsion module over an integral domain is not
necessarily pure-injective (Corollary 2.4). This solves a well-known
open problem in the negative.
In addition, we establish a close relation between flat covers
and weak-injective envelopes of a module (Theorem 3.1). This
yields a method of constructing weak-injective envelopes from
flat covers (and vice versa). Similar relation exists between the
Enochs-cotorsion envelopes and the weak dimension < 1 covers
of modules (Theorem 3.2).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

All modules are over a fixed integral domain R. For unexplained terminology and basic results we

refer to Fuchs and Salce [5], Enochs and Jenda [4], and Gobel and Trlifaj [7].

Weak-injective modules have been introduced by Lee [9] as R-modules M satisfying
Ext}e (W, M) =0 for all R-modules W of weak dimension < 1. The class F; of modules of weak
dimension < 1 and the class W of weak-injective modules form a cotorsion pair € = (F;, W); for
details we refer to Gobel and Trlifaj [7]. In Fuchs and Lee [6] it was shown that € coincides with the
cotorsion pair ® = (P1, D) if and only if R is an almost perfect domain in the sense of Bazzoni and
Salce [3]. Here P; denotes the class of R-modules of projective dimension < 1, while D stands for
the class of divisible modules (see Bazzoni and Herbera [2]).

In [9] it was shown that h-divisible pure-injective R-modules are always weak-injective, but the
converse implication remained an open problem. In view of the Matlis category equivalence, this
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problem turns out to be equivalent to the better known old open problem as to whether or not all
torsion-free Enochs-cotorsion modules are pure-injective. We recall that an R-module M is said to
be cotorsion in the sense of Enochs, or briefly Enochs-cotorsion, if it satisfies Ext}e(F, M) =0 for all flat
R-modules F. The answer to these equivalent problems is in the positive if R happens to be a Priifer
domain, in which case Enochs-cotorsion modules are Warfield-cotorsion and the torsion-free ones are
RD-injective; see e.g. Fuchs and Salce [5, Lemma 8.1, p. 458].

In the first part of this note we solve the two equivalent problems by showing that the answer
is in the negative whenever R is an almost perfect, non-Dedekind domain; see Theorem 2.3 and
Corollary 2.4. Though the cokernels of torsion-free Enochs-cotorsion modules in their injective hulls
need not be pure-injective, over a coherent domain, the cokernel of an arbitrary Enochs-cotorsion
module in its weak-injective envelope is always pure-injective (Proposition 2.6).

The second part of this note is devoted to a study of the weak-injective envelopes of modules,
in particular, their relation to flat covers. Since the class of weak-injective R-modules is closed un-
der extensions and contains all injective R-modules, the cotorsion pair € mentioned above is perfect
(see Gobel and Trlifaj [7, p. 106]), it follows that all R-modules admit weak-injective envelopes, i.e.,
every R-module can be embedded in a minimal weak-injective module with cokernel of weak di-
mension < 1. In Theorem 3.1 we show that there is a close relation between the flat cover (whose
existence is guaranteed by the well-known theorem of Bican, El Bashir and Enochs [1]) and the
weak-injective envelope of any R-module; this relation can be best illustrated by the first diagram
in Section 3.

We also mention a sort of dual to Theorem 3.1. This is Theorem 3.2 that reveals a similar close
connection between the so-called F7-cover and the Enochs-cotorsion envelope of a module.

2. Weak-injective modules and pure-injectivity

Before stating a main result of this note (Theorem 2.3) which gives an answer to the above men-
tioned open problem, we quote two lemmas that are crucial for the proof.

We recall a relevant definition: almost perfect domains were defined by Bazzoni and Salce [3] as
domains all of whose proper quotients are perfect rings in the sense of H. Bass.

Lemma 2.1. (See Fuchs and Lee [6].) A domain R has the property that h-divisibility is equivalent to weak-
injectivity if and only if R is an almost perfect domain.

Lee [8] called a domain semi-Dedekind if all of its h-divisible modules are pure-injective.
Lemma 2.2. (See Salce [11, Corollary 2.5].) Semi-Dedekind domains are Dedekind domains.
We are now able to prove:

Theorem 2.3. Over an almost perfect domain R that is not a Dedekind domain, there exist weak-injective
modules that fail to be pure-injective.

Proof. Since R is not Dedekind, by Lemma 2.2 there is an h-divisible R-module D that is not pure-
injective. The existence of such a D establishes our claim: by virtue of Lemma 2.1, R almost perfect
implies that D is weak-injective. 0O

Recall that there exist several examples of almost perfect domains that are not Dedekind. For
instance, every noetherian domain of Krull dimension 1 is known to be almost perfect (these are
exactly the almost perfect domains that are coherent). For examples of non-noetherian almost perfect
domains we refer to the paper Bazzoni and Salce [3].

Lee [10] proved that the statement that all weak-injective R-modules are pure-injective is equiva-
lent to saying that all torsion-free Enochs-cotorsion modules are pure-injective by showing that over a
domain R, in the Matlis category equivalence, the weak-injective (resp. the h-divisible pure-injective)
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torsion modules D correspond to the Enochs-cotorsion (resp. pure-injective) torsion-free modules M.
(Recall: corresponding modules D and M are connected by the exact sequence 0> M — E— D — 0
where E is torsion-free divisible, the injective hull of M.)

It has been an open question for a while whether or not torsion-free Enochs-cotorsion modules
ought to be pure-injective. In view of the equivalence of this question with the one settled in our
theorem above, we can conclude at once:

Corollary 2.4. Let R be an almost perfect domain that is not Dedekind. Then there exists a torsion-free Enochs-
cotorsion R-module M that is not pure-injective.

Note that in view of the Matlis category equivalence such an M can be obtained from a weak-
injective, not pure-injective R-module D by taking

M =Homg(Q /R, D)

where Q denotes the field of quotients of R. (D can be recaptured from M as D = Q /R ®g M.)
It is worthwhile pointing out that if the domain R is coherent, then we can claim something
positive. In fact, we have the following result:

Proposition 2.5. Over a coherent domain, we have:

(i) an h-divisible module of weak dimension < 1 is weak-injective if and only if it is pure-injective; equiva-
lently,
(ii) a flat module is Enochs-cotorsion if and only if it is pure-injective.

Proof. Claim (ii) is the same as [5, Lemma 6.3, p. 451]: over a coherent domain R, a flat module M
is pure-injective if and only if Ext}e(F, M) =0 for all flat R-modules F. O

Note that the preceding proposition fails to hold if ‘flat’ is replaced by ‘torsion-free’, as is shown by
noetherian domains of Krull dimension 1 that are not Dedekind. Thus the cokernel of a torsion-free
Enochs-cotorsion module in its injective hull need not be pure-injective. However, the following holds
for all Enochs-cotorsion modules over a coherent domain.

Proposition 2.6. Over a coherent domain, the cokernel of an Enochs-cotorsion module in its weak-injective
envelope is pure-injective.

Proof. We refer to Theorem 3.1 and its diagram. If A is an Enochs-cotorsion module, then its flat
cover F is a flat Enochs-cotorsion module, so D is pure-injective. But D is the cokernel of A in its
weak-injective envelope W. 0O

It remains an open problem to characterize the domains over which all torsion-free Enochs-
cotorsion modules are pure-injective.
We still owe an example of a weak-injective module that is not pure-injective.

Example 2.7. Let R denote a non-noetherian almost perfect domain, and Q its field of quotients. Let |
be a countably generated ideal of R, say, generated by the elements r, € R with n < , where we may
assume without loss of generality that the ideals J, = R(rg, ..., ;) (n < w) form a properly ascending
chain with union J. Define ¢, as the natural homomorphism Q — Q/J, (n < w), and let

A=D Q.

n<w
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This is clearly an h-divisible R-module, and hence weak-injective, R being almost perfect. We show
that it is not pure-injective by exhibiting a countable system of linear equations over A that is not
solvable in A, though each of its finite subsystems admits a solution in A (see [5, Chapter XIII, Sec-
tion 3]). x is the single unknown in the system of equations

mx=ap, n<w)

where

an = (¢orn, 110, ..., ' =0, Pnp1m =0,...) € A.

For every n, the subsystem consisting of the first n equations is solvable in A, e.g.

x=(¢ol,¢11,....¢,1,0,0,..)€ A

is a solution. But the entire system cannot have a solution in A, since it would require an element
with infinitely many non-zero coordinates.

The following much simpler example was suggested by the referee.

Example 2.8. Let R be as in the preceding example. As R is not noetherian, there is an infinite set
{E; | i € I} of injective (torsion) R-modules such that their direct sum

D=EPE

iel

is not injective. D is divisible, so weak-injective by Lemma 2.1. On the other hand, D is not pure-
injective: it is a pure submodule of the direct product P = [];.; E;, but it is not a summand in it,
since otherwise it would be injective.

We were unable to find a noetherian example.
3. Weak-injective envelopes

We turn our attention to the weak-injective envelopes of R-modules. As mentioned before, their
existence is ensured by general theorems on perfect cotorsion pairs. However, we do not know of
any method that leads to their construction except for flat modules: if F is a flat module, then its
injective hull E is at the same time its weak-injective envelope (observe that w.d. E/F < 1). However,
in general, the weak-injective envelope is not even contained in the injective hull.

Let A be an R-module and 0 - H - F % A — 0 an exact sequence where (F,«) is the flat
cover of A; by Bican, El Bashir and Enochs [1] flat covers always exist, and the kernels H are reduced
Enochs-cotorsion modules. Let E be the injective hull of F, and define W = E/H. This leads to a
commutative diagram:



1876 L. Fuchs, S.B. Lee / Journal of Algebra 323 (2010) 1872-1878

S

— > +— M &— I —— O

o

with exact rows and columns. Here D is an h-divisible torsion module of weak dimension < 1. Evi-
dently, W is also h-divisible as an epimorphic image of E, so we can write W =V & T where V is
torsion-free and T is torsion. By the Matlis category equivalence, the h-divisible torsion T corresponds
to the R-complete torsion-free module H. As H is Enochs-cotorsion, by Lee [10] T, and hence also W,
is weak-injective. That E is a flat pre-cover of W follows from the exactness of the sequence

0 — Homg (G, H) — Homg (G, E) — Homg(G, W) — Ext}(G, H) =0

for any flat module G (the Ext vanishes, since G is flat and H is Enochs-cotorsion): every map
G — W is a composite of some G — E and B. Since H - being reduced - cannot contain any non-zero
summand of E, it follows that the pre-cover E is a cover.

Analogous argument shows that W is a weak-injective pre-envelope of A, since the cokernel D is
of weak dimension < 1. In order to verify that it is actually the envelope, suppose that W = W & W,
with Imy < Wy. E will have a corresponding decomposition E = E; & E», ie.,, B will carry E; to
W; for i = 1,2 (observe that covers respect direct sums). H decomposes accordingly, H = H{ & H.
8 carries W5 into D isomorphically, thus D = §W1 @ W,. The direct decompositions of E and D imply
that F = F1 @ F, with F; =Ker(E; — §W;). Then BeF, = yaFy; < oA < Wi, and BeF, < BEy = Wy;
consequently, yaF, =0, whence oF, = 0 follows. This shows that F, is a summand of F contained
in H, so F» =0, F being a flat cover of A. Hence E; =0 = W>, and W is the weak-injective envelope
of A.

Conversely, suppose that in the above diagram we start with the bottom exact sequence with
(W, y) as the weak-injective envelope of A; the existence of such an exact sequence is guaranteed
by Lee [9] or Gobel and Trlifaj [7]. Next we take the flat cover (E, ) of W; in view of Lee [10],
flat covers of weak-injectives are torsion-free injectives, so E is torsion-free injective. Let H = Ker f3,
and define o : F — A as the restriction of 8. Since w.d. D < 1, F ought to be flat. H being reduced
Enochs-cotorsion implies that F is a flat pre-cover of A. To show that it is a cover, suppose that
F = F1 ® F, with H = H1 ® F,. There is a corresponding decomposition E = E1 & E; with F; < Ej,
thus W Z E{/H1 ® E/F,. As aF, =0 implies € F, < Ker 8, we conclude that yA < E1/H1, showing
that F, =0, i.e. F is the flat cover of A.

We have thus proved:

Theorem 3.1. Suppose that in the above commutative diagram with exact rows and columns, A is an arbitrary
R-module. Furthermore, let F be a flat module and E the injective hull (= weak-injective envelope) of F. Then
F is the flat cover of A if and only if W is the weak-injective envelope of A.

We thank the referee for pointing out that in the preceding proof the argument showing that
the special pre-envelopes (pre-covers) are actually envelopes (covers) can be replaced by imitating



L. Fuchs, S.B. Lee / Journal of Algebra 323 (2010) 1872-1878 1877

Xu’s argument in [12, Theorem 3.4.8] that the maps involved are minimal. (There Xu proves that if a
module M over a coherent ring has a flat cover, then it also has a cotorsion envelope.) Our diagram
above is similar to Xu’s.

The preceding theorem can be applied to find the weak-injective envelope (W, y) of an arbitrary
R-module A once its flat cover (F, «) is available (and vice versa). The torsion part of W will be the
h-divisible module T corresponding to the torsion-free Enochs cotorsion module Ker« in the Matlis
category equivalence. The torsion-free part of W will be the direct sum of as many copies of Q as
the torsion-free rank of A, since from the diagram it is clear that D torsion implies that the corank
of H in F is the same as its corank in E.

It is worthwhile pointing out that there is an entirely analogous result that might be of indepen-
dent interest. Given an arbitrary R-module A, consider the following commutative diagram with exact
rows and columns:

o
O —— > ¢ Z &—— W &—— O

i
i
-
Z

Theorem 3.2. Assume that in the preceding commutative diagram with exact rows and columns, N has weak
dimension < 1, and M is the Enochs-cotorsion envelope of N (so F is flat). Then N is the F1-cover of A if and
only if C is the Enochs-cotorsion envelope of A.

Proof. The proof is entirely similar to the proof of Theorem 3.1, so the details may be left for the
reader. (It might be helpful to observe that in the implication = one can argue that a summand N’ of
B contained in N will also be a summand of M, since Ext}g(F, N’) =0, N’ being Enochs-cotorsion.) O

Finally, let us point out that the Matlis category equivalence yields a close relation between the
Fi-cover of an h-divisible torsion module D and the flat cover of the corresponding R-complete
torsion-free module M. If 0 - B — A % D — 0 is an exact sequence with (A, &) the Fi-cover of D
(here B is weak-injective), then the induced exact sequence

0 — Homg (K, B) - Homg (K, A) - Homg(K,D)=M — 0

(where K = Q /R with Q the quotient field of R) provides a flat cover of M. In fact, the pre-cover
property of Hompg (K, A) is the consequence of Hompg (K, B) being Enochs-cotorsion and Homg (K, A)
being flat. Since tensoring this sequence with K brings us back to the original exact sequence, the
first Hom cannot contain any non-zero summand of the second Hom, because this holds for A
and B.

In a similar fashion, the weak-injective envelope of an h-divisible torsion module D is related to
the Enochs-cotorsion envelope of the corresponding R-complete torsion-free module M.
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