期刊论文详细信息
JOURNAL OF ALGEBRA 卷:462
Cuspidal Calogero-Moser and Lusztig families for Coxeter groups
Article
Bellamy, Gwyn1  Thiel, Ulrich2 
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Stuttgart, Fachbereich Math, Inst Algebra & Zahlentheorie, Lehrstuhl Algebra, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词: Complex reflection groups;    Hecke algebras;    Cherednik algebras;    Calogero-Moser spaces;    Symplectic leaves;   
DOI  :  10.1016/j.jalgebra.2016.06.003
来源: Elsevier
PDF
【 摘 要 】

The goal of this paper is to compute the cuspidal Calogero-Moser families for all infinite families of finite Coxeter groups, at all parameters. We do this by first computing the symplectic leaves of the associated Calogero-Moser space and then by classifying certain rigid modules. Numerical evidence suggests that there is a very close relationship between Calogero-Moser families and Lusztig families. Our classification shows that, additionally, the cuspidal Calogero-Moser families equal cuspidal Lusztig families for the infinite families of Coxeter groups. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2016_06_003.pdf 934KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次