JOURNAL OF ALGEBRA | 卷:462 |
Cuspidal Calogero-Moser and Lusztig families for Coxeter groups | |
Article | |
Bellamy, Gwyn1  Thiel, Ulrich2  | |
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QW, Lanark, Scotland | |
[2] Univ Stuttgart, Fachbereich Math, Inst Algebra & Zahlentheorie, Lehrstuhl Algebra, Pfaffenwaldring 57, D-70569 Stuttgart, Germany | |
关键词: Complex reflection groups; Hecke algebras; Cherednik algebras; Calogero-Moser spaces; Symplectic leaves; | |
DOI : 10.1016/j.jalgebra.2016.06.003 | |
来源: Elsevier | |
【 摘 要 】
The goal of this paper is to compute the cuspidal Calogero-Moser families for all infinite families of finite Coxeter groups, at all parameters. We do this by first computing the symplectic leaves of the associated Calogero-Moser space and then by classifying certain rigid modules. Numerical evidence suggests that there is a very close relationship between Calogero-Moser families and Lusztig families. Our classification shows that, additionally, the cuspidal Calogero-Moser families equal cuspidal Lusztig families for the infinite families of Coxeter groups. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2016_06_003.pdf | 934KB | download |