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Introduction

Based on the relationship between Dunkl operators, the Knizhnik–Zamolodchikov 
connection, and Hecke algebras, it became apparent very soon after the introduction 
of rational Cherednik algebras by Etingof and Ginzburg [16] that there is a very close 
connection between these algebras and cyclotomic Hecke algebras [11]. This connection 
is encoded in the Knizhnik–Zamolodchikov functor, introduced in [24], and is a key tool 
in the representation theory of rational Cherednik algebras at t �= 0.

In the quasi-classical limit t = 0 the Knizhnik–Zamolodchikov functor no longer exists 
and no functorial connection to Hecke algebras is currently known. Astonishingly, as first 
noticed by Gordon and Martino [26], it seems that there is still, none the less, a close 
relationship between rational Cherednik algebras in t = 0 and Hecke algebras, suggesting 
that there may be an asymptotic Knizhnik–Zamolodchikov functor in the quasi-classical 
limit. The aim of this article is to add weight to this expectation by comparing cuspidal 
Calogero–Moser families with cuspidal Lusztig families.

Families

Etingof and Ginzburg [16] defined, for any finite reflection group (h, W ) and a func-
tion c : Ref(W ) → C from the set of reflections of W to the complex numbers which 
is invariant under W -conjugation, the rational Cherednik algebra Hc(W ) at t = 0. The 
spectrum of the centre of this algebra is an affine Poisson deformation Xc(W ) of the 
symplectic singularity (h × h∗)/W , called the Calogero–Moser space. This theory exists 
in particular for finite Coxeter groups W . In this case, one can also attach to W the 
Hecke algebra HL(W ) depending on a weight function L : W → R. The space of weight 
functions L and the space of real valued c-functions is the same so that one can re-
late invariants coming from Hecke algebras with those coming from rational Cherednik 
algebras.

Gordon [25] has defined the notion of Calogero–Moser c-families of Irr(W ), which 
on the geometric side correspond to the C∗-fixed points of the Calogero–Moser space 
Xc(W ). Work of several people, in particular Gordon and Martino, has shown that:

Fact. If W is a Coxeter group of type A, B, D, I2(m) or H3, then the Lusztig c-families 
equal the Calogero–Moser c-families for all c : Ref(W ) → R.

We refer to §2.4 for more details. It is conjectured by Gordon–Martino [26] that this 
is indeed true for all finite Coxeter groups; see also Bonnafé–Rouquier [9]. There is so 
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far no conceptual explanation for this connection. Bonnafé and Rouquier [9] furthermore 
constructed analogs of constructible characters and cells on the Calogero–Moser side, and 
collected evidence supporting their conjecture that these notions coincide with Lusztig’s 
notions; see also [8].

Cuspidal families

The key to defining constructible representations and Lusztig families for Hecke alge-
bras is Lusztig’s truncated induction, also called j-induction. This leads to the concept 
of cuspidal Lusztig families, which are those that cannot be described as being j-induced 
from a family for a proper parabolic subgroup. Cuspidal families play a key role in de-
scribing certain unipotent representations for the corresponding finite groups of Lie type. 
In [2] the first author also introduced the notion of cuspidal Calogero–Moser families. 
This time the definition is geometric: a family is cuspidal if the support of every module 
in the family is a zero-dimensional symplectic leaf of the Calogero–Moser space. In this 
article we determine the cuspidal Calogero–Moser families for the Coxeter groups of type 
A, B, D and I2(m). Our main result states (see §3):

Theorem A. If W is of type A, B, D or I2(m), then the cuspidal Lusztig c-families equal 
the cuspidal Calogero–Moser c-families for all c : Ref(W ) → R.

The proof follows from a case-by-case analysis in sections §5 to §8 using theoreti-
cal methods we develop in section §4. Based on this theorem we make the following 
conjecture.

Conjecture B. For any finite Coxeter group the cuspidal Lusztig c-families equal the 
cuspidal Calogero–Moser c-families for all real parameters c.

Because of Theorem A this conjecture remains open only for the six exceptional 
Coxeter groups H3, H4, F4, E6, E7, E8.

Rigid representations

The main ingredient for calculating the cuspidal Calogero–Moser families, and hence 
confirming Theorem A, is the notion of a rigid module: a Hc(W )-module is said to 
be rigid if it is irreducible as a W -module. These have already played a role in the 
representation theory of rational Cherednik algebras at t �= 0, see e.g. [6] or [17], and 
at t = 0 they were studied by the second author in [41]. The terminology comes from 
the theory of module varieties. Namely, for any d < |W |, we show in Lemma 4.9 that 
the set X of rigid modules in Repd(Hc(W )), the variety parameterizing representations 
of dimension d, is open. Therefore, though these modules often appear in families with 
respect to the parameter c, the module structure (for fixed parameter c) on a rigid 
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module cannot be deformed to a continuous family. This is the first clue that there is a 
strong connection between rigid representations and zero-dimensional leaves of Xc(W )
(and hence to cuspidal Calogero–Moser families).

In this article we classify the rigid modules for all non-exceptional Coxeter groups and 
all parameters. The importance of these modules is explained by our second main result 
which we prove in §4:

Theorem C. Let W be an arbitrary finite complex reflection group. If the simple module 
Lc(λ), where λ ∈ Irr(W ), is a rigid Hc(W )-module, then the Calogero–Moser c-family to 
which it belongs is cuspidal.

Rigid modules are easily computed, and using Theorem C this allows us to identify 
certain cuspidal families. Remarkably, for the non-exceptional Coxeter groups we can 
show that the cuspidal Calogero–Moser families are precisely those containing the rigid 
modules. The cuspidal Lusztig families are similarly characterized.

Remark. While this paper was in preparation, the preprint [14] appeared, where rigid 
modules also play a key role (though the definition there is slightly different). Based 
on the analogy with affine Hecke algebras, they are called “one-W -type” modules in 
[14]. In the preprint [14] the author gives a different notion of cuspidal Calogero–Moser 
families. Namely, in [14] a family is said to be cuspidal if it contains a rigid module. By 
Theorem C, every cuspidal family in our sense is cuspidal in the sense of [14]. However, 
it is clear that for most complex reflection groups that are not of Coxeter type there 
exist many cuspidal families (in our sense) that are not cuspidal in the sense of [14]. 
Moreover, as shown in [14], Conjecture B is false for the Weyl group of type E7 if we 
use the definition of cuspidal used in [14].

Symplectic leaves

As previously noted, the notion of cuspidal Calogero–Moser families depends on the 
fact that the Calogero–Moser space Xc(W ) is stratified by finitely many symplectic 
leaves. These leaves are naturally labelled by conjugacy classes of parabolic subgroups 
(W ′) of W . There are two natural partial orderings on the set of symplectic leaves: 
a geometric one given in terms of the closures of leaves, and another, algebraic one given 
in terms of inclusions of parabolic subgroups. It is clear that the geometric ordering 
refines the algebraic ordering.

Using results of Martino, we describe all symplectic leaves for the Coxeter groups 
of type A, B, D and I2(m) in terms of the conjugacy classes of parabolic subgroups. 
We also describe the two orderings on the set of symplectic leaves in these cases (see 
Theorem 6.2, Theorem 7.2 and [2, Tables 1, 2]). Based on this we arrive at the following 
conjecture.
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Conjecture D. Let W be a finite Coxeter group.

(a) Each conjugacy class of parabolic subgroups (W ′) labels at most one symplectic leaf.
(b) The geometric ordering on leaves equals the algebraic ordering.

We note that both statements of Conjecture D may fail if W is not a Coxeter group.

Clifford theory

Our results for Coxeter groups of type D are deduced from the corresponding results 
for the groups of type B using the fact that Dn � Bn. More generally, we consider a 
complex reflection group (h, W ) and a normal subgroup K � W such that (h|K , K) is 
also a reflection group. This situation is also considered in [4] and by Liboz [30].

Based on a suggestion of Rouquier, we show that Γ := W/K acts on the Calogero–
Moser space Xc(K) such that Xc(W ) = Xc(K)/Γ. This allows us to deduce the Calogero–
Moser families for K from the Calogero–Moser families for W , generalising results of [4]. 
Cuspidal families and rigid representations behave well under this correspondence. We 
also describe the symplectic leaves in Xc(K) in terms of those of Xc(W ).

1. Calogero–Moser families

We begin by recalling the definition of the main protagonists of this paper—the 
Calogero–Moser families for complex reflection groups. They are obtained from the block 
structure of the restricted rational Cherednik algebra studied by Gordon [25], which is a 
finite-dimensional quotient of the rational Cherednik algebra introduced by Etingof and 
Ginzburg [16].

1.1. Rational Cherednik algebras

Let (h, W ) be a finite complex reflection group. By this we mean that W is a non-trivial 
finite subgroup of GL(h) for some finite-dimensional complex vector space h such that 
W is generated by its set Ref(W ) of reflections, i.e., by those elements s ∈ W such 
that Ker(idh−s) is of codimension one in h. Let (·, ·) : h × h∗ → C be the natural 
pairing defined by (y, x) = x(y). For s ∈ Ref(W ) we fix αs ∈ h∗ to be a basis of the 
one-dimensional space Im(s − 1)|h∗ and α∨

s ∈ h to be a basis of the one-dimensional 
space Im(s −1)|h, normalised so that αs(α∨

s ) = 2. Our discussion will not depend on the 
choice of αs and α∨

s . Note that the group W acts on Ref(W ) by conjugation. Choose 
a function c : Ref(W ) → C which is invariant under W -conjugation (we say that c is 
W -equivariant) and furthermore choose a complex number t ∈ C. The rational Cherednik 
algebra Ht,c(W ), as introduced by Etingof and Ginzburg [16], is the quotient of the skew 
group algebra of the tensor algebra, T (h ⊕h∗) �W , by the ideal generated by the relations 
[x, x′] = [y, y′] = 0 for all x, x′ ∈ h∗ and y, y′ ∈ h, and
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[y, x] = t(y, x) −
∑

s∈Ref(W )

c(s)(y, αs)(α∨
s , x)s , ∀ y ∈ h, x ∈ h∗ . (1)

We concentrate on the case t = 0 and set Hc := H0,c. For any α ∈ C\{0}, the algebras 
Hαc(W ) and Hc(W ) are naturally isomorphic. Therefore we are free to rescale c by 
α whenever this is convenient. A fundamental result for rational Cherednik algebras, 
proved by Etingof and Ginzburg [16, Theorem 1.3], is that the PBW property holds for 
all c, i.e., the natural map

C[h] ⊗C CW ⊗C C[h∗] → Hc(W ) (2)

is an isomorphism of C-vector spaces. The rational Cherednik algebra is naturally 
Z-graded by deg(x) = 1 for x ∈ h∗, deg(y) = −1 for y ∈ h, and deg(w) = 0 for 
w ∈ W . We note that no such grading exists for general symplectic reflection algebras.

1.2. Calogero–Moser space

The centre Zc(W ) of Hc(W ) is an affine domain. We shall denote by Xc(W ) :=
Spec(Zc(W )) the corresponding affine variety. It is called the (generalized) Calogero–
Moser space associated to W at parameter c. These varieties define a flat family of 
deformations of (h ⊕ h∗)/W over the affine C-space of dimension | Ref(W )/W |. The fol-
lowing was shown for Coxeter groups in [16, Proposition 4.15], and the general case is 
due to [25, Proposition 3.6].

Proposition 1.1 (Etingof–Ginzburg, Gordon). The subspace D(W ) := C[h]W ⊗C C[h∗]W
of Hc(W ) is a central subalgebra and Zc(W ) is a free D(W )-module of rank |W |.

The inclusions C[h]W ↪→ Zc(W ) and C[h∗]W ↪→ Zc(W ) define finite surjective mor-
phisms

πc : Xc(W ) � h/W and �c : Xc(W ) � h∗/W .

We write

Υc := πc ×�c : Xc(W ) � h/W × h∗/W

for the product morphism. It is a finite, and hence closed, surjective morphism. Note 
that both Zc(W ) and D(W ) are graded subalgebras of Hc(W ). This implies that Xc(W )
and h/W × h∗/W carry a C∗-action making Υc a C∗-equivariant morphism.

1.3. Restricted rational Cherednik algebras

The inclusion of algebras D(W ) ↪→ Zc(W ) allows us to define the restricted rational 
Cherednik algebra Hc(W ) as the quotient
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Hc(W ) = Hc(W )
D(W )+ ·Hc(W ) ,

where D(W )+ denotes the ideal in D(W ) of elements with zero constant term. This 
algebra was originally introduced, and extensively studied, by Gordon [25]. The PBW 
theorem implies that

Hc(W ) � C[h]coW ⊗C CW ⊗C C[h∗]coW (3)

as C-vector spaces. Here,

C[h]coW = C[h]/〈C[h]W+ 〉

is the coinvariant algebra of W and C[h∗]coW is defined analogously. Since W is a re-
flection group, the coinvariant algebra C[h]coW is of dimension |W | and is isomorphic 
to the regular representation as a W -module. Thus, dimHc(W ) = |W |3. The restricted 
rational Cherednik algebra is a quotient of Hc(W ) by an ideal generated by homoge-
neous elements and so it is also a graded algebra. This combined with the triangular 
decomposition (3) of Hc(W ) implies that the representation theory of Hc(W ) has a 
rich combinatorial structure. The following is due to Gordon [25], based on an abstract 
framework by Holmes and Nakano [27]. First of all, note that the skew-group algebra 
C[h∗]coW �W is a graded subalgebra of Hc(W ).

Definition 1.2. The baby Verma module of Hc(W ) associated to a W -module λ is

Δc(λ) := Hc(W ) ⊗C[h∗]coW�W λ ,

where C[h∗]coW+ acts on λ as zero.

The baby Verma module Δc(λ) is naturally a graded Hc(W )-module, where 1 ⊗λ sits 
in degree zero. By studying quotients of baby Verma modules, it is possible to completely 
classify the simple Hc(W )-modules. We denote by IrrW the set of simple W -modules 
(up to isomorphism). Similarly, we understand Irr Hc(W ).

Proposition 1.3 (Gordon). Let λ, μ ∈ IrrW .

(1) The baby Verma module Δc(λ) has a simple head. We denote it by Lc(λ).
(2) Lc(λ) is isomorphic to Lc(μ) if and only if λ � μ.
(3) The map IrrW → Irr Hc(W ), λ → Lc(λ), is a bijection.

The bijection in the proposition allows us to transform representation theoretic in-
formation about Hc(W ) into combinatorial c-dependent data about W . The Calogero–
Moser families are the primary example of this process.
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1.4. Calogero–Moser families

Since the algebra Hc(W ) is finite-dimensional, it has a block decomposition Hc(W ) =⊕k
i=1 Bi, with each Bi an indecomposable algebra. If bi is the identity element of Bi then 

the identity element 1 of Hc(W ) is the sum 1 = b1 + · · · + bk of the bi. For each simple 
Hc(W )-module L, there exists a unique i such that bi · L �= 0. In this case we say that 
L belongs to the block Bi. By Proposition 1.3, we can (and will) identify Irr Hc(W ) with 
IrrW . Let Ωc(W ) be the set of equivalence classes of IrrW under the equivalence relation 
λ ∼ μ if and only if Lc(λ) and Lc(μ) belong to the same block. These equivalence classes 
are called the Calogero–Moser c-families of W .

These families have an important geometric interpretation. The image of the natural 
map

Zc(W )/D(W )+ · Zc(W ) → Hc(W )

is clearly contained in the centre of Hc(W ). In general it is not equal to the centre of 
Hc(W ). However, it is a consequence of a theorem by Müller, see [13, Corollary 2.7], 
that the primitive central idempotents of Hc(W ), the block idempotents bi above, are 
precisely the images of the primitive idempotents of Zc(W )/D(W )+ ·Zc(W ). This shows 
that the natural map IrrW → Υ−1

c (0), λ �→ SuppLc(λ) = χLc(λ), factors through the 
Calogero–Moser partition. Here, Υ−1

c (0) is considered as the set theoretic fibre over the 
origin 0 of h/W ×h∗/W . In other words, we have a natural bijection between Ωc(W ) and 
Υ−1

c (0). Now, recall that Υc is C∗-equivariant. The only C∗-fixed point of h/W×h∗/W is 
the origin 0 and therefore Υ−1

c (0) = Xc(W )C∗ . Hence, we can identify the Calogero–Moser 
families Ωc(W ) with the C∗-fixed closed points of the Calogero–Moser space Xc(W ).

The next theorem follows from the fact that the Azumaya locus of Hc(W ) is equal to 
the smooth locus of Zc(W ), which in turn follows from results by Etingof–Ginzburg [16, 
Theorem 1.7] and Brown (see [25, Lemma 7.2]).

Theorem 1.4 (Etingof–Ginzburg, Brown). A C∗-fixed closed point of Xc(W ) is smooth if 
and only if the corresponding Calogero–Moser family is a singleton, i.e. it consists only 
of one irreducible character of W .

Example 1.5. Consider the special case c = 0. In this case X0(W ) = (h ⊕ h∗)/W . The 
quotient morphism h ⊕ h∗ → (h ⊕ h∗)/W is C∗-equivariant and finite, hence X0(W )
has only one C∗-fixed closed point, namely the origin. In particular, there is only one 
Calogero–Moser family.

2. Lusztig families

In this section we give a short summary of the other protagonist of this paper—
Lusztig’s families. We review some of the constructions involved in the definition of 
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Lusztig families, such as truncated induction, as we will make use of these in the case-
by-case analysis in sections §5 to §8. For more details we refer to Lusztig’s books [32,33], 
and also to [22] and [20].

2.1. Hecke algebras

Throughout this section, let (W, S) be a finite Coxeter system. We choose an R-valued 
weight function L on (W, S), i.e., a function L : W → R satisfying L(ww′) = L(w) +L(w′)
for all w, w′ ∈ W with �(ww′) = �(w) + �(w′), where � is the length function of (W, S). 
Let A := ZW [R] be the group ring of the additive group R over the subring ZW of C
generated by the values of the irreducible complex characters of W . This is an integral 
domain and we denote by qα the element of A corresponding to α ∈ R. Note that 
qαqβ = qα+β . Set qw := qL(w) for w ∈ W . Let H := HL(W, S) be the Hecke algebra of 
(W, S) over A with respect to L. This is the free A-algebra with basis {Tw | w ∈ W}
whose multiplication is uniquely determined by the relations

TsTw =
{

Tsw if �(sw) > �(w)
Tsw + (qs − q−1

s )Tw if �(sw) < �(w)
(4)

for all s ∈ S and w ∈ W . It is a standard fact that the scalar extension HK of H to the 
fraction field K of A is split semisimple. It is then a consequence of Tits’s deformation 
theorem that there is a natural bijection between IrrW and IrrHK . We write Eλ

q for 
the simple HK -module corresponding to the simple W -module λ under this bijection. 
It is also well-known that H is a symmetric A-algebra. This implies that the scalar 
extension HK is symmetric and so by the theory in [23, §7] there is a Schur element
sλ ∈ A attached to every simple module Eλ

q . There is a unique element aλ ∈ R≥0

satisfying q2aλsλ ∈ ZW [R≥0] and q2aλsλ ≡ fλ mod ZW [R>0] for some fλ > 0. This is 
called Lusztig’s a-invariant of λ. The Schur elements and a-invariants are known for 
all Coxeter groups and all weight functions. Note that despite the notation the Schur 
elements sλ and the a-invariants aλ depend on L.

2.2. Truncated induction

Recall that if I ⊆ S is any subset, then (WI , I) is naturally a Coxeter system, where 
WI is the group generated by I. This is called a (standard) parabolic subgroup of (W, S). 
The restriction LI of our weight function L to WI is a weight function on (WI , I). For 
any simple module μ of WI , Lusztig defined the truncated induction (or j-induction) as

jWWI
μ :=

∑
λ∈Irr W

〈IndW
WI

μ, λ〉λ , (5)
aλ= aμ
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where 〈IndW
WI

μ, λ〉 denotes the multiplicity of λ in the induction of μ from WI to W . 
Keep in mind that the a-invariant aμ is computed using the restriction LI of L to WI . 
It is shown in [19, Lemma 3.5] that for any μ ∈ IrrW ′ there is a λ ∈ IrrW with aλ = aμ

so that the above sum is never empty. This operation extends to a morphism jWWI
:

K0(WI -mod) → K0(W -mod) of Grothendieck groups. It is transitive in the sense that 
jWWI

◦ jWI

WJ
= jWWJ

for J ⊆ I ⊆ S.

2.3. Constructible characters and families

Using truncated induction, Lusztig inductively defined the set ConL(W ) of L-con-
structible representations of W as follows: if W is trivial, then ConL(W ) consists of the 
unit representation, and otherwise ConL(W ) consists of the W -modules of the form jWWI

E

and (jWWI
E) ⊗ sgnW for all proper subsets I � S and all E ∈ ConLI

(WI). Here sgnW is 
the sign representation of (W, S). A key result shown by Lusztig, [33, Proposition 22.3], 
says

for each λ ∈ IrrW there exists E ∈ ConL(W ) such that 〈E, λ〉 �= 0. (6)

The constructible graph is the graph CL(W ) with vertices IrrW and an edge between λ
and μ if and only if λ �= μ and they both occur in an L-constructible representation of W . 
The connected components of this graph are called Lusztig’s L-families. They define a 
partition of IrrW . We denote the set of these families by LusL(W ). Lusztig’s families are 
known for all finite Coxeter groups (see [33, §22] and also §5 to §8).

Example 2.1. Consider the special case L = 0. The map Tw �→ w extends to an algebra 
isomorphism from H0(W, S) to the group algebra AW which is compatible with the 
symmetrising traces. Hence, sλ = |W |

dim λ ∈ ZW [R>0] by [23, 7.2.5] and so aλ = 0. This 
in turn immediately shows that jWWI

μ = IndW
WI

μ for any parabolic subgroup WI of W
and μ ∈ IrrWI . We then see that there is only one constructible representation, namely 
the regular representation of W . In particular, the constructible graph is connected and 
there is only one Lusztig family.

2.4. Calogero–Moser families vs. Lusztig families

It is a standard fact that W admits a reflection representation on the complex vector 
space h of dimension equal to the size of S, namely the complexification of the geometric 
representation. The set Ref(W ) of reflections then consists precisely of all conjugates of 
S in W . Hence, to W and a W -equivariant function c : Ref(W ) → C we can attach 
the rational Cherednik algebra Hc(W ) and have the notion of Calogero–Moser c-families 
Ωc(W ) of IrrW . It follows from Matsumoto’s lemma (see [22, 1.1.5]) that a weight func-
tion L on W is already uniquely determined by the values on the W -conjugacy classes 
of S, and that conversely every collection of elements cs ∈ R for s ∈ S with cs = ct
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whenever cs and ct are conjugate defines a unique weight function on (W, S). This shows 
that weight functions L : W → R, i.e., parameters for Hecke algebras attached to (W, S), 
are nothing else than W -equivariant functions c : Ref(W ) → R, i.e., R-valued param-
eters for rational Cherednik algebras attached to W . We will thus use both notions 
interchangeably.

Whenever we write c ≥ 0, resp. c > 0, we mean that c takes values in R≥0, resp. 
R>0. Similarly, we write L ≥ 0, resp. L > 0, if L(s) ≥ 0, resp. L(s) > 0, for all s ∈ S.

We can twist by linear characters of W in order to ensure that we are always in the 
situation c ≥ 0. Namely, let δ : W → R× be a linear character. Clearly δ is uniquely 
defined by its values on S, where it is ±1. Conversely, for any assignment of ±1 to 
each element of S, such that δ(s) = δ(s′) if s is conjugate to s′, we get a well-defined 
linear character of W . Then Tw �→ δ(w)Tw defines an algebra isomorphism HL(W, S) ∼−→
HδL(W, S). Given a representation λ of W , δλ denotes the twist of λ by δ. It is immediate 
from the definition of Lusztig families that λ and μ belong to the same L-family if and 
only if δλ and δμ belong to the same δL-family. Moreover, a family F is L-cuspidal (see 
below) if and only if δF is δL-cuspidal.

Similarly, one can twist the rational Cherednik algebra by the character δ, as explained 
in [9, 4.6B]. Again, the two representations λ, μ belong to the same c-family if and only 
if δλ and δμ belong to the same δc-family. Moreover, a family F is c-cuspidal (see below) 
if and only if δF is δc-cuspidal. Therefore, to prove Theorem A, it suffices to make the 
following assumption, as in [22]:

We assume that L ≥ 0.

The following conjecture is due to Gordon–Martino [26].

Conjecture 2.2. For any finite Coxeter group W and any real parameter c we have 
Ωc(W ) = Lusc(W ), i.e. the Calogero–Moser c-families are the same as the Lusztig 
c-families.

We note that this conjecture was formulated in [26] for Weyl groups and weight 
functions taking values in Q>0. Moreover, both in [26] and [9] it was conjectured that 
Ωc(W ) coincides with the partition of IrrW into Kazhdan–Lusztig families. Assuming 
Lusztig’s conjectures P1 to P15 (see [33, §14]), the Kazhdan–Lusztig families and the 
Lusztig families are equal (see [20, Theorem 4.3]), so that the conjecture above (which is 
also formulated in precisely this way by Bonnafé [8] for parameters c > 0) seems feasible.

Let us record the following observation we obtain from Examples 1.5 and 2.1.

Lemma 2.3. For any W we have Ω0(W ) = Lus0(W ), i.e. Conjecture 2.2 holds for c = 0.
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The work of Lusztig [32,33], Etingof–Ginzburg [16], Gordon [25], Gordon–Martino [26], 
Martino [35], the first author [3,4], and the second author [40] shows that Conjecture 2.2
holds in many cases.

Theorem 2.4. If W is of type A, B, D, I2(m), or H3, then Ωc(W ) = Lusc(W ) for any 
c : Ref(W ) → R.

Except for type H3, which follows from [40], the proof of this theorem is also obtained 
here from §5, Corollary 6.13, Theorem 7.3, and Corollary 8.4.

2.5. Cuspidal Lusztig families

What is now relevant for us in this paper is that it can happen that a Lusztig family 
F ∈ LusL(W ) is j-induced from a parabolic subgroup WI of W in the sense that there 
is a Lusztig family F ′ ∈ LusLI

(WI) such that jWWI
induces a bijection between F ′ and F

or between F ′ and F ⊗ sgnW . Lusztig called a family cuspidal if it is not j-induced from 
a proper parabolic subgroup of W . Let Luscusp

L (W ) ⊆ LusL(W ) be the set of cuspidal 
Lusztig families. These families are the building blocks of Lusztig families and it is most 
important to understand them.

The following useful lemma is well-known.

Lemma 2.5. For any α ∈ R>0 we have ConαL(W ) = ConL(W ), LusαL(W ) = LusL(W )
and Luscusp

αL (W ) = Luscusp
L (W ).

Proof. As in [22, 1.1.9] one can introduce a universal Hecke algebra H over ZW [Rn], 
where n is the number of W -conjugacy classes in S. The Hecke algebra HL for a particular 
weight function L : S → R is then obtained by specialisation of H. The algebra H admits 
Schur elements sλ ∈ ZW [Rn] and it follows from the theory in [23, §7] that sλ specialises 
to the Schur element sλ of HL. From this one can deduce that the a-invariant aλ of 
HαL is obtained from the one of HL by multiplication by α. This immediately proves 
the claim. �

The key fact (6) implies:

Lemma 2.6. If F = {λ} is a Lusztig family such that λ ∈ Conc(W ), then F is not 
cuspidal.

3. Cuspidal Calogero–Moser families

On the Calogero–Moser side we do not have anything similar to j-induction so far. 
However, the first author has introduced in [2] the notion of cuspidal Calogero–Moser 
families. These are also minimal with respect to a certain condition, but this time they 
have a geometric interpretation via the Poisson structure on Calogero–Moser spaces. 
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Despite their name, the two notions of cuspidality have, a priori, nothing in common. 
None the less, we will show that they coincide for all infinite families of Coxeter groups. 
In this paragraph we will review the foliation of Calogero–Moser spaces into symplectic 
leaves and the notion of cuspidal Calogero–Moser families.

3.1. Poisson structure

We consider again an arbitrary finite complex reflection group (h, W ). On the vector 
space h ⊕ h∗ we have a natural W -invariant symplectic form ω defined by

ω((y, x), (y′, x′)) := x(y′) − x′(y), ∀ y, y′ ∈ h, x, x′ ∈ h∗.

This induces a Poisson bracket {·, ·} on C[h ⊕ h∗]. Since the form ω is W -invariant, the 
Poisson bracket is W -invariant and restricts to the invariant ring C[h ⊕h∗]W making the 
quotient variety (h ⊕ h∗)/W into a Poisson variety.

The Calogero–Moser space Xc(W ) is a flat Poisson deformation of (h ⊕ h∗)/W . The 
Poisson structure on Xc(W ) comes from the commutation in the rational Cherednik alge-
bra at t �= 0 as follows. Let t be an indeterminate. Clearly, Hc(W ) = Ht,c(W )/tHt,c(W )
and therefore we can lift elements z1, z2 ∈ Zc(W ) to elements ẑ1, ̂z2 ∈ Ht,c(W ). Now, 
define

{z1, z2} := [ẑ1, ẑ2]t=0 ,

where [ẑ1, ̂z2] is the commutator of ẑ1 and ẑ2 in Ht,c(W ) and [ẑ1, ̂z2]t=0 is the projection 
of this commutator to Hc(W ) = Ht,c(W )/tHt,c(W ). This is indeed an element in Zc(W )
and defines a Poisson structure on this ring.

We recall that an ideal I of an arbitrary Poisson algebra A is a Poisson ideal if 
{I, A} ⊆ I, i.e., I is stable under the Poisson bracket {a, −} for all a ∈ A. The Poisson 
core P(I) of an ideal I of A is the largest Poisson ideal contained in I. By a Poisson 
prime (resp. maximal) ideal we mean a prime (resp. maximal) ideal which is also a 
Poisson ideal. The Poisson core of any prime ideal is a Poisson prime ideal. We denote 
by PSpec(A) the set of all Poisson prime ideals of A and by PMax(A) the set of all 
Poisson maximal ideals.

3.2. Symplectic leaves

The (analytification of the) smooth part (Xc(W ))sm of Xc(W ) is a Poisson manifold 
and admits a foliation into symplectic leaves; that is, a stratification into smooth con-
nected strata such that the rank of the bracket is maximal along strata. The strata are 
the symplectic leaves of the manifold (see [43]). By continuing this process on the com-
plement Xc(W ) \ (Xc(W ))sm we end up with a decomposition of Xc(W ) into symplectic 
leaves. Brown and Gordon [12] have shown that the leaves obtained in this way are in 
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fact algebraic, i.e., locally closed in the Zariski topology and finite in number. The leaf 
of a closed point m of Xc(W ) consists of all closed points n ∈ Xc(W ) such that m and n
have the same Poisson core. Furthermore, it is shown in [12] that each leaf L is a smooth 
symplectic variety, and that the closure L of the leaf L containing a closed point χ is 
the zero locus V(P(mχ)) of the Poisson core of its defining maximal ideal. This shows in 
particular that the closure of each symplectic leaf is an irreducible affine Poisson variety.

Lemma 3.1. The set of symplectic leaves of Xc(W ) is naturally in bijection with the set 
PSpec(Zc(W )) of Poisson prime ideals of Zc(W ).

Proof. Let L be a symplectic leaf. As we noted above, the closure L is an irreducible 
affine variety and therefore the defining ideal pL = I(L) is a prime ideal. Moreover, as 
L = V(P(mχ)) for any closed point χ of L, it follows that pL = P(mχ) is a Poisson prime 
ideal. The map L �→ pL is injective since if pL = pL′ , then L = V(pL) = V(pL′) = L′, and 
this implies L = L′ as the symplectic leaves form a stratification of Xc(W ). Now, let p be 
an arbitrary Poisson prime ideal of Zc(W ). Then Lp := {m ∈ Max(Zc(W )) | P(m) = p}
is a symplectic leaf by the description of symplectic leaves due to Brown and Gordon. 
By construction pLp

= p and therefore the map L �→ pL is also surjective. �
We immediately obtain the following.

Corollary 3.2. The set of zero-dimensional symplectic leaves of Xc(W ) is naturally in 
bijection with the set PMax(Zc(W )) of Poisson maximal ideals of Zc(W ).

Analogous to Lusztig–Spaltenstein induction for nilpotent adjoint orbits of a reductive 
group, one can show that symplectic leaves are induced from zero-dimensional leaves for 
parabolic subgroups of W . Before we discuss this we give a short recollection about 
parabolic subgroups.

3.3. Parabolic subgroups

Recall that a parabolic subgroup of W is the pointwise stabiliser Wh′ of a subspace h′

of h. By a theorem of Steinberg [38, Theorem 1.5] the pair (h′, Wh′) is itself a complex 
reflection group. Moreover, Wh′ is the stabiliser Wb of a generic point b of h′. Hence, 
parabolic subgroups of W are in fact the stabilisers of points of h.

Define the rank of a complex reflection group W to be the dimension of a faithful 
reflection representation of W of minimal dimension. Let W ′ be a parabolic subgroup 
of W . We write

(h∗W
′
)⊥ := {y ∈ h |x(y) = 0 for all x ∈ h∗W

′}.

Then h = hW
′⊕(h∗W ′)⊥ is a decomposition of h as a W ′-module and (h∗W ′)⊥ is a faithful 

reflection representation of W ′ of minimal rank. Hence, the rank of W ′ is dim(h∗W ′)⊥. 
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We will always consider parabolic subgroups with this minimal reflection representation. 
In particular, if c : Ref(W ) → C is a W -equivariant function, then the restriction c′ of 
c to Ref(W ′) is a W ′-equivariant function and we understand the rational Cherednik 
algebra Hc′(W ′) to be defined with respect to this reflection representation of W ′.

The group W acts on its set of parabolic subgroups by conjugation. Given a parabolic 
subgroup W ′ the corresponding conjugacy class will be denoted (W ′). We also require 
the partial ordering on conjugacy classes of parabolic subgroups of W defined by (W1) ≥
(W2) if and only if W1 is conjugate to a subgroup of W2. The ordering is chosen in this 
way so that it agrees with a geometric ordering to be introduced in the next paragraph.

Finally, for a given parabolic subgroup W ′ of W , we denote by hW
′

reg the subset of 
hW

′ consisting of those points whose stabiliser in W is equal to W ′. This is a locally 
closed subset of h. We denote by Ξ(W ′) the quotient NW (W ′)/W ′, where NW (W ′) is 
the normaliser of W ′ in W . The group Ξ(W ′) acts freely on hW

′
reg .

Remark 3.3. Suppose that (W, S) is a Coxeter group. In §2.4 we already used the stan-
dard parabolic subgroups WI of W for subsets I ⊆ S. Let h be the (complexified) 
geometric representation of W so that (h, W ) is a complex reflection group. Then WI is 
a parabolic subgroup of W in the sense just defined. Moreover, it follows from Steinberg’s 
theorem and [1, Theorem 3.1] that, up to conjugacy, the parabolic subgroups of W are 
precisely the standard parabolic subgroups WI .

3.4. Parabolic subgroup attached to a symplectic leaf

If W ′ is a parabolic subgroup of W then hW
′

reg/W denotes the image of hW ′
reg in h/W . 

The symplectic leaves of Xc(W ) are natural labelled by conjugacy classes of parabolic 
subgroups.

Theorem 3.4. The following holds:

(a) For any symplectic leaf L ⊆ Xc(W ) there exists a unique conjugacy class WL := (W ′)
of parabolic subgroups of W such that πc(L) ∩ hW

′
reg/W is dense in πc(L).

(b) If L, L′ ⊆ Xc(W ) are symplectic leaves with L ⊆ L′, then WL ≤ WL′ .

Proof. The bijection of Lemma 3.1 is denoted p �→ Lp. The proof of [2, Proposition 
4.8] shows that, for each Poisson prime p, there is a unique conjugacy class (W ′) with 
2 dim h = 2 rk(W ′) + dimLp such that

dimπc(Lp) ∩ hW
′

reg/W = dim hW
′

reg/W.

Since πc(L) is irreducible and dimπc(L) = dim hW
′

reg/W , this implies that πc(Lp) ∩hW
′

reg/W

is dense in πc(L). �
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3.5. Cuspidal reduction I

We recall the main results from [2]. For a closed point χ of Xc(W ) with defining 
maximal ideal mχ of Zc(W ) we set

Hc,χ(W ) := Hc(W )/mχ · Hc(W ) .

This is a finite-dimensional C-algebra. We call it cuspidal if χ is a zero-dimensional 
symplectic leaf of Xc(W ).

Theorem 3.5. Let L be a symplectic leaf of Xc(W ) of dimension 2l and χ a point on L. 
Then there exists a parabolic subgroup W ′ of W of rank dim h − l and a cuspidal algebra 
Hc′,χ′(W ′) such that

Hc,χ(W ) � Mat|W/W ′|(Hc′,χ′(W ′)).

Moreover, there exists a functor Φχ′,χ : Hc′,χ′(W ′)-mod
∼−→ Hc,χ(W )-mod defining an 

equivalence of categories such that

Φχ′,χ(M) � IndW
W ′ M ∀M ∈ Hc′,χ′(W ′)-mod

as W -modules.

Since there are only finitely many zero dimensional leaves in Xc(W ) the above result 
shows that to describe the W -module structure of all the simple modules for a particular 
rational Cherednik algebra one only needs to describe the W ′-module structure of the 
cuspidal simple modules for each parabolic subgroup W ′ of W .

3.6. Symplectic leaves and Calogero–Moser families

As explained in §1.4, there is a natural bijection between the set Ωc(W ) of Calogero–
Moser families and the points in Υ−1

c (0). If mF denotes the point of Υ−1
c (0) corresponding 

to the family F , then mF lies on a unique symplectic leaf LF of Xc(W ). Using Theo-
rem 3.4 we can attach a unique conjugacy class WF := WLF of parabolic subgroups of 
W to F . We define a partial ordering � on the Calogero–Moser families Ωc(W ) by

F � F ′ ⇐⇒ L(F) ⊆ L(F ′).

Proposition 3.6. The following holds for any F , F ′ ∈ Ωc(W ):

(a) F � F ′ and F ′ � F if and only if F = F ′.
(b) F � F ′ implies that WF ≤ WF ′ .
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Proof. Part a follows from directly from the definition of � and part (b) is a consequence 
of Theorem 3.4b. �

We say that a Calogero–Moser family F is cuspidal if LF is a zero-dimensional leaf. 
By Ωcusp

c (W ) we denote the set of cuspidal Calogero–Moser c-families. It follows from 
Theorem 3.4 that PMax(Zc(W )) ⊆ Υ−1

c (0). Hence, the set of zero-dimensional symplectic 
leaves of Xc(W ) is in bijection with Ωcusp

c (W ).

Lemma 3.7. A singleton Calogero–Moser family is not cuspidal.

Proof. If F is a singleton Calogero–Moser family, then by Theorem 1.4 the corresponding 
point mF of Xc(W ) is smooth. Therefore it is contained in the unique open leaf of Xc(W ). 
Since dimXc(W ) > 0, the open leaf is not zero-dimensional and hence the family is not 
cuspidal. �

The following well-known lemma is analogous to Lemma 2.5.

Lemma 3.8. For any α ∈ C× there is a canonical algebra isomorphism Hc(W ) 	−→
Hαc(W ), which induces an algebra isomorphism Hc(W ) 	−→ Hαc(W ) and a Poisson 
isomorphism Xc(W ) 	−→ Xαc(W ). Moreover, Ωc(W ) = Ωαc(W ) and Ωcusp

c (W ) =
Ωcusp

αc (W ).

We can now state the main theorem of this paper

Theorem A. If W is of type A, B, D or I2(m), then for any parameter c ≥ 0 the cuspidal 
Lusztig c-families of W equal the cuspidal Calogero–Moser c-families of W .

Proof. The Weyl groups of type A are dealt with in §5. For type B, see Corollary 6.26, 
and type D is dealt with in Theorem 7.3. Finally, for the dihedral groups I2(m), see 
§8.8. �

Based on this theorem we make the following conjecture.

Conjecture B. For any finite Coxeter group and any real parameter c the cuspidal Lusztig 
c-families equal the cuspidal Calogero–Moser c-families.

The proof of Theorem A follows from a case-by-case analysis in sections §5 to §8
using several theoretical methods we develop in the next section. We will deduce in 
Lemma 4.11 that Conjecture B holds for the special case c = 0 for any W . Note that 
because of Lemma 2.5 and Lemma 3.8 it is sufficient to prove the conjecture only up to 
multiplication of the parameter by positive real numbers.
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4. Calculating cuspidal Calogero–Moser families

To determine the cuspidal Calogero–Moser families we develop several theoretical 
methods—both of representation theoretic and geometric nature. On the one hand, we 
introduce the concept of rigid modules here and show that these always lie in a cuspidal 
family. On the other hand, we develop a Clifford theory for symplectic leaves. This allows 
us to deal with Weyl groups of type D later. All this is done for complex reflection groups 
in general.

4.1. Rigid modules

The key to figuring out which Calogero–Moser families are cuspidal for Coxeter groups 
is the notion of rigid Hc(W )-modules. We show in Theorem C below that every rigid 
module belongs to a cuspidal family. In all examples we consider it turns out that there 
is at most one cuspidal family. These two facts allow us to find all cuspidal families.

Definition 4.1. A simple Hc(W )-module L is said to be rigid if it is irreducible as a 
W -module.

This notion has played an important role for rational Cherednik algebras at t = 1, 
see e.g. [6]. At t = 0, the second author investigated rigid modules in [41]. Recently, 
they also played a prominent role in the work [14] of Ciubotaru on Dirac cohomology 
where they were called one-W -type modules. The terminology we adopt comes from the 
theory of module varieties, where it is standard. Intuitively, a rigid module is one that 
cannot be deformed (for fixed parameter c) to a continuous family of representation; see 
Lemma 4.9. On the other hand, if a simple Hc(W )-module is supported on a symplectic 
leaf of dimension greater than zero then one can deform the representation along the leaf. 
Therefore it is intuitively clear that rigid modules should be supported at zero dimen-
sional leaves. Showing the precise connection between rigidity and cuspidality depends 
on the following theorem.

Theorem 4.2. Let W be a complex reflection group. Then no irreducible W -module is 
induced from a proper parabolic subgroup of W , i.e., IndW

W ′λ is reducible for all parabolic 
subgroups W ′ � W .

In order to give the proof of Theorem 4.2, we first give some preparatory lemmata. 
Let G be a finite group. Given a character χ of G, we denote by �(χ) the length of χ, 
i.e. if χ =

∑n
i=1 niχi with χi ∈ Irr(G), then �(χ) =

∑n
i=1 ni. Note that (χ, χ) =

∑n
i=1 n

2
i

and therefore 
√

(χ, χ) ≤ �(χ) ≤ (χ, χ), where (·, ·) is the scalar product of characters.
We define the branching index of a subgroup P of G as

bP (G) := min{�(ψG) | ψ ∈ Irr(P )} ,
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where ψG := IndG
Pψ. We say that P is branching in G if bP (G) > 1, i.e., ψG is reducible for 

all ψ ∈ Irr(P ). We can now reformulate Theorem 4.2 as saying that all proper parabolic 
subgroups of W are branching.

Lemma 4.3. If G has a central element which is not contained in P , then P is branching.

Proof. Let z ∈ Z(G) \ P and let ψ ∈ Irr(P ). Note that zP = zPz−1 = P and therefore 
P ∩ zP = P . Similarly, we have zψ = ψ. Hence, (ψ, zψ) = (ψ, ψ) = 1 and therefore ψG

is not irreducible by [15, 10.25]. �
Lemma 4.4. Let N be a normal subgroup of G. Let P be a subgroup of G with branching 
index bP (G) > [G : N ]. Then P ∩N is branching in N .

Proof. Suppose that P ∩N is not branching in N . Then there exists some η ∈ Irr(P ∩N)
with ψ := ηN ∈ Irr(N). By Clifford theory for N � G, see [28, Theorem 19.3], we have 
(ηG, ηG) = (ψG, ψG) = [IG(ψ) : N ], where IG(ψ) is the inertia subgroup of ψ in G. 
Hence, �(ηG) ≤ [IG(ψ) : N ]. On the other hand, by Clifford theory for N ∩ P � P

we have (ηP , ηP ) = [IP (η) : N ∩ P ]. Hence, �(ηP ) ≥
√

[IP (η) : N ∩ P ] and therefore 
�(ηG) ≥ bP (G) ·

√
[IP (η) : N ∩ P ]. In total, we must have

bP (G) ≤ [IG(ψ) : N ]√
[IP (η) : N ∩ P ]

≤ [G : N ] .

Because of our assumption on bP (G) this is a contradiction. �
Lemma 4.5. Suppose that N � G. Then a subgroup Q of N is branching in N if and 
only if all its G-conjugates are branching in N .

Proof. This simply follows from the fact that IndN
gQ ◦ Cong,Q = Cong,N ◦IndN

Q and that 
conjugation Cong,Q with g defines a bijection between Irr(Q) and Irr(gQ) for all g ∈ G. �

For the proof of Theorem 4.2 we will need the classification of complex reflection 
groups due to Shephard and Todd [37], and in particular a description of the parabolic 
subgroups in the infinite series G(m, m, n). We quickly recall the definition of these 
groups. Let m, p, n ∈ N>0 with p dividing m and let ζ ∈ C be a primitive m-th root 
of unity. Then G(m, p, n) is the subgroup of GLn(C) consisting of the generalised per-
mutation matrices with entries in μm := 〈ζ〉 such that the product of all non-zero 
entries is an (m/p)-th root of unity. The group G(m, p, n) is a normal subgroup of 
index p in G(m, 1, n). For a partition λ of an integer |λ| ≤ n let Sλ be the corre-
sponding Young subgroup of the symmetric group S|λ|. We have an obvious embedding 
Sλ × G(m, m, n − |λ|) ↪→ G(m, m, n). The following lemma can be deduced from [39, 
3.11].
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Lemma 4.6. Up to G(m, 1, n)-conjugacy the parabolic subgroups of G(m, m, n) are the 
standard parabolic subgroups Sλ ×G(m, m, n − |λ|) for partitions λ of n.

We note that for the G(m, m, n)-conjugacy classes of parabolic subgroups of 
G(m, m, n) some G(m, 1, n)-conjugates of the above standard parabolic subgroups have 
to be taken into account (see [39, 3.11]). For us, however, it is sufficient to know 
the G(m, 1, n)-conjugacy classes because of Lemma 4.5. By Lemma 4.6 the maxi-
mal parabolic subgroups of G(m, m, n) are up to G(m, 1, n)-conjugacy of the form 
Sk ×G(m, m, n − k) for 1 ≤ k ≤ n.

Proof of Theorem 4.2. Clearly, we can assume that W acts irreducibly on h and that 
P is a maximal parabolic subgroup. It is well-known (see [29, Corollary 3.24]) that the 
centre Z(W ) of W is a cyclic group Z� = 〈σ〉. If σ �= 1, then σ fixes only the origin 
and so σ /∈ W ′ for any proper parabolic subgroup of W . Hence, if |Z(W )| > 1, then the 
claim holds by Lemma 4.3. The classification of irreducible complex reflection groups 
shows that |Z(W )| = 1 implies that W � G(m, m, n) for some m, n. By Lemma 4.6
and Lemma 4.5 we can assume that P = Sk × G(m, m, n − k), where 1 ≤ k ≤ n. Let 
λ ∈ Irr(P ).

We assume first that m > 1. The module πλ is isomorphic to π′
λ � πμ for some π′

λ ∈
Irr(Sk) and πμ ∈ Irr(G(m, m, n − k)). Note that P ⊂ G(m, m, k) ×G(m, m, n − k) ⊂ W .

If k > 1 then it suffices to show that IndG(m,m,k)
Sk

π′
λ is not irreducible. That is, we may 

assume k = n. The symmetric group Sn is a quotient of G(m, m, n), the morphism given 
by sending an element to the underlying permutation. Then we may consider π′

λ as an 

irreducible G(m, m, n)-module π′′
λ. Clearly π′′

λ|Sn
= π′

λ. Hence 
[
Ind

G(m,m,n)
Sn

π′
λ : π′′

λ

]
≥ 1. 

On the other hand, dim Ind
G(m,m,n)
Sn

π′
λ = mn−1 dimπ′

λ. Hence it is not irreducible.
In the case k = 1, we have P = G(m, m, n −1) ⊂ G(m, m, n). Let Q := G(m, 1, n −1) ⊆

G(m, 1, n) and note that P = Q ∩ G(m, m, n). If we can show that bQ(G(m, 1, n)) ≥
m + 1, then Lemma 4.4 shows that P is branching in G(m, m, n). But this follows 
from the branching rule ([36, Theorem 10]) which shows that, when viewing λ as an 
m-multipartition, we have at least m + 1 constituents in IndG(m,1,n)

G(m,1,n−1)πλ obtained by 
adding boxes to λ.

Finally, we need to deal with the case m = 1, i.e. W = Sn. In this case we have 
P = Sk ×Sn−k and it is known that IndSn

Sk×Sn−k
πλ � πμ =

∑
ν c

ν
λ,μπν , where cνλ,μ are 

the Littlewood–Richardson coefficients. We need to show that 
∑

ν c
ν
λ,μ > 1. Presumably, 

this is well-known. We will deduce it from the fact that for the Weyl group of Type Bn

we have

IndBn

Bk×Bn−k
π(λ(1),λ(2)) � π(μ(1),μ(2)) =

∑
(ν(1),ν(2))

cν
(1)

λ(1),μ(1)c
ν(2)

λ(2),μ(2)π(ν(1),ν(2)) . (7)

Take λ(1) = λ, λ(2) = ∅, μ(1) = μ and μ(2) = ∅. Then (7) implies that it suffices to 
show that IndBn

B ×B π(λ(1),λ(2)) � π(μ(1),μ(2)) is not an irreducible Bn-module. But Bn

k n−k
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contains a non-trivial central element that does not belong to either Bn−k or Bk. This 
implies by Lemma 4.3 that the induced module is not irreducible. �
Proposition 4.7. If L is rigid, then L � Lc(λ) is a Hc(W )-module (isomorphic to λ as 
a W -module), for some λ ∈ IrrW .

Proof. If L is not a simple Hc(W )-module, then either the set-theoretic support of L as a 
C[h]-module is not contained in {0}, or the set-theoretic support of L as a C[h∗]-module is 
not contained in {0}. Without loss of generality, we assume that the set-theoretic support 
of L as a C[h]-module is not contained in {0}. Thus, there exists some b �= 0 in h such 
that mb ·L �= 0, where mb is the maximal ideal defining b in h. The stabiliser Wb of b is a 
proper subgroup of W . Thus, the Bezrukavnikov–Etingof isomorphism, see [2, Theorem 
4.3], implies that L � IndW

Wb
L′ for some Hc′(Wb)-module L′. By Theorem 4.2, this implies 

that L is not rigid. Thus, L is a simple Hc(W )-module. The simple Hc(W )-modules are 
of the form Lc(λ) and λ always appears in the restriction to W of Lc(λ) with non-zero 
multiplicity. The result follows. �
Remark 4.8. Proposition 4.7 implies that if L is a rigid module then h · L = 0 = h∗ · L. 
In particular, every rigid module is of “one-W -type”, as recently defined in [14].

The following lemma explains our choice of terminology since it is standard in finite-
dimensional representation theory to say that a simple module L of dimension d for a 
finite-dimensional algebra A is rigid if the set of points M in the representation scheme 
Repd(A) satisfying M � L is open.

Lemma 4.9. Let L be a rigid Hc(W )-module and set d := dimL. Let Repd(Hc(W )) be 
the scheme parameterizing all d-dimensional representations of Hc(W ). Let X be the set 
of points M in Repd(Hc(W )) such that M � L. Then X is a connected component of 
Repd(Hc(W )).

Proof. Let S be a reduced, irreducible affine C-variety and F a flat family of 
Hc(W )-modules over S such that the fiber Fs0 is isomorphic to L, for some s0 ∈ S. Then 
it suffices to prove that h and h∗ act identically by zero on F . Since C[S] is a domain, its 
radical is zero, and hence it suffices to show that h and h∗ act as zero on every fiber Fs

of F for s ∈ MaxSpec(C[S]). We may consider F as a flat family of C[h] �W -modules 
instead and prove the claim in this setting (repeating the argument for C[h∗] � W ). 
Then the claim is a consequence of Theorem 4.2 together with the (easy) classification 
of simple C[h] � W -modules. Firstly, since S is connected Fs � L as a W -module for 
all s. This is well-known and follows for instance from [18, Corollary 1.4]. Therefore, it 
suffices to show that if M is any simple C[h] �W -module such that h∗ ⊂ C[h] does not 
act identically zero, then M �� L. If h∗ does not act identically zero then there exists a 
non-zero character χ : C[h] → C such that Mχ = {m ∈ M | x ·m = χ(x)m, ∀x ∈ h∗}
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is non-zero. Let W ′ � W be the stabilizer of χ ∈ h. Since M is simple, Mχ is a sim-
ple W ′-module and M � Ind

C[h]�W
C[h]�W ′Mχ. By Theorem 4.2, M is not irreducible. Hence 

M �� L as required.
To deduce the statement of the lemma, take S to be any irreducible component (with 

reduced scheme structure) of Repd(Hc(W )) containing L. �
Notice that Lemma 4.9 shows that the set of all rigid modules in Repd(Hc(W )) is 

open. In general, the connected component X has a very non-trivial scheme structure. 
This can be seen from Voigt’s Lemma [18] which implies that

dimX − dimXred = dimExt1Hc(W )(L,L) . (8)

One can compute, using the projective resolution (2.5) of [16, page 259], that for a rigid 
module L we have

Ext•Hc(W )(L,L) � ∧• V ⊗W EndC(L) ,

where V = h ⊕ h∗. In particular, it is easy to construct examples of rigid modules where 
the right hand side of (8) is strictly positive. Also, the variety Repd(Hc(W )) can have 
many connected components. This can be seen, for instance, by considering the case 
c = 0.

Via the bijection IrrW → Irr Hc(W ) given by Proposition 1.3, the element λ ∈ IrrW

is said to be c-rigid if Lc(λ) is a rigid Hc(W )-module. The following is the main theorem 
of this section.

Theorem C. Let W be a complex reflection group. If λ ∈ IrrW is c-rigid, then λ lies in 
a cuspidal Calogero–Moser c-family.

Proof. Let F be the Calogero–Moser c-family of Lc(λ) and let χ be the corresponding 
point of Xc(W ). Suppose that F is not cuspidal. Then by Theorem 3.5 there is a parabolic 
subgroup W ′ of W , a cuspidal symplectic leaf χ′ of Xc′(W ′), and an equivalence Φχ′,χ :
Hc′,χ′(W ′)-mod

∼−→ Hc,χ(W )-mod such that Φχ′,χ(M) � IndW
W ′ M as W -modules for all 

M ∈ Hc′,χ′(W ′)-mod. In particular, there must exist a W ′-module M with IndW
W ′M �

Lc(λ) � λ. But this is not possible by Theorem 4.2. �
Of course, the major advantage of rigid modules is that they are easily detected.

Lemma 4.10. Let λ : G → GLr(C) be an irreducible representation of W . Then Lc(λ) is 
a rigid module for Hc(W ) if and only if∑

s∈Ref(W )

c(s)(y, αs)(α∨
s , x)λ(s) = 0 (9)

for all y ∈ h and x ∈ h∗.
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Proof. The module Lc(λ) is rigid if and only if it is as a W -module isomorphic to λ. 
Moreover, by Remark 4.8 both h and h∗ act trivially on Lc(λ). Hence, Lc(λ) is rigid if 
and only if the representation λ̂ : T (h ⊕h∗) �W → Matr(C) with h and h∗ acting trivially 
and W acting by λ descends to Hc(W ). This is the case if and only if λ̂([y, x]) = 0, and 
this is equivalent to the asserted equation. �
Lemma 4.11. For any W we have Ωcusp

0 (W ) = Luscusp
0 (W ), i.e. Conjecture B holds for 

c = 0.

Proof. Recall from Lemma 2.3 that Ω0(W ) = Lus0(W ) = {IrrW}. Furthermore, re-
call from Example 2.1 that truncated induction is for c = 0 just usual induction, i.e. 
jWWI

= IndW
WI

for a parabolic subgroup WI of W . Now, if the unique Lusztig family 
were not cuspidal, then the irreducible characters of W would all be induced from 
a proper parabolic subgroup of W , but this is not possible by Theorem 4.2. Hence, 
the unique Lusztig family is cuspidal. On the other hand, all λ ∈ IrrW are rigid 
for c = 0 by Lemma 4.10. Hence, each λ ∈ IrrW lies in a cuspidal Calogero–Moser 
family by Theorem C. As there is just one Calogero–Moser family, this one is cuspi-
dal. �
Remark 4.12. Ciubotaru [14] has recently classified the rigid Hc(W )-modules for all 
Weyl groups and all parameters. We will independently obtain this classification for 
non-exceptional Coxeter groups from sections §5 to §8. Ciubotaru furthermore shows for 
all Weyl groups at equal parameters—except E7—that the rigid modules always lie in a 
single Calogero–Moser family, and that this family contains the (unique) cuspidal Lusztig 
family; for F4 and E6 this is in fact an equality. Using Theorem C, this shows that one 
direction of Conjecture B also holds for F4 and E6 for equal parameters. However, a 
classification of the cuspidal symplectic leaves is still open in all cases not covered by 
our Theorem A.

4.2. Cuspidal reduction II

For a conjugacy class (W ′) of parabolic subgroups of W we denote by
PSpec(W ′)(Zc(W )) the subset of PSpec(Zc(W )) of Poisson prime ideals p with WLp

=
(W ′). This set might be empty.

If W ⊆ G ⊆ NGL(h)(W ) is a finite subgroup such that c :Ref(W ) → C is G-invariant, 
then G acts on Hc(W ) by algebra automorphisms. This induces an action of G by Poisson 
algebra automorphisms on Zc(W ) and, since W acts trivially, this action factors through 
G/W . Applied to a parabolic subgroup W ′ of W and an arbitrary W -invariant function 
c : Ref(W ) → C this shows that Ξ(W ′) acts on Zc′(W ′). Here, and below, c′ denotes the 
restriction of c to Ref(W ) ∩W ′ = Ref(W ′).

The following was shown by Losev [31, Theorem 1.3.2].
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Theorem 4.13. Let W ′ be a parabolic subgroup of W . The group Ξ(W ′) acts on the set 
PMax(Zc′(W ′)) such that there is a bijection

PSpec(W ′)(Zc(W )) 1:1←→ PMax(Zc′(W ′))/Ξ(W ′) .

Losev considers in [31] a different completion of the rational Cherednik algebra 
than the one used in [2] (which is based on a construction by Bezrukavnikov and 
Etingof). Therefore we will now show that Theorem 4.13 still holds in the context of 
Bezrukavnikov–Etingof completions.

Fix a parabolic subgroup W ′ of W and let N := NW (W ′). Let U be an affine open 
subset of h/W such that U ∩ hW

′
reg/W is closed, but non-empty, in U . Let V denote the 

preimage of U in h. Then V is W -stable and VW ′ = hW
′

reg ∩V is closed in V . Let k denote 
the W ′-module complement to hW

′ in h. It is an N -module.
Let A := C[U ] and set Z := A ⊗C[h]W Zc(W ). The prime ideal of A defining 

U ∩ hW
′

reg/W is denoted q. Let Âq be the completion of A along q and set X̂c(W ) :=
Spec(Âq⊗AZ). Morally speaking, X̂c(W ) should be thought of as the formal neighbour-
hood of π−1(hW ′

reg/W ) in Xc(W ). However, since Z is not a finite A-module, this is not 
strictly true.

Let A′ = C[k/W ′ × VW ′ ] and q′ the prime ideal defining {0} × VW ′ in k/W ′ × VW ′ . 
Then

X̂c′(W ′, V ) := Spec
(
Â′

q′ ⊗A′ Zc′(W ′) ⊗ C[T ∗VW ′ ]
)
,

where T ∗VW ′ is the cotangent bundle of VW ′ . The group Ξ(W ′) acts on X̂c′(W ′, V ). The 
following is an analogue of the isomorphism Θ in section 3.7 of [7]; a complete proof is 
given in [5].

Theorem 4.14. There is an isomorphism of affine Poisson varieties

Φ : X̂c(W ) ∼−→ X̂c′(W ′, V )/ Ξ(W ′).

In order to deduce Theorem 4.13 from Theorem 4.14, we require the following lemma.

Lemma 4.15. The map p �→ Âq ⊗A p defines a bijection between PSpec(W ′)(Xc(W )) and 

the set of Poisson prime ideals of Âq ⊗A Z of height 2 dim k.

Proof. First, we must show that Âq ⊗A p is prime in Âq ⊗A Z. Let Y = U ∩ hW
′

reg/W

and denote by π(Lp) the closure of π(Lp) ∩U in U . Recall that π(Lp) ∩ hW
′

reg/W is dense 
in hW

′
reg/W . This implies that π(Lp) ∩ Y is dense in the closed, irreducible set Y , i.e. 

π(L) ∩ Y = Y . Similarly, π(Lp) ∩ Y is dense in π(Lp). Thus, π(Lp) = Y . This implies 
that q ⊂ p ∩ A and hence Z · q ⊂ p. Since Âq is flat over A, we have a short exact 
sequence
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0 → Âq ⊗A p → Âq ⊗A Z → Âq ⊗A (Z/p) → 0.

The order filtration on Hc(W ) defines an increasing filtration FiZ on Z such that each 
piece is a coherent A-module. This restricts to a filtration on p and we have a short 
exact sequence 0 → Fip → FiZ → FiZ/Fip → 0 of coherent A-modules. Since tensor 
products commute with colimits,

Âq ⊗A (Z/p) = lim
i→∞

Âq ⊗A (FiZ/Fip).

But Z · q ⊂ p implies that

Âq ⊗A (FiZ/Fip) = lim
∞←m

(FiZ/Fip)
qm(FiZ/Fip)

= FiZ/Fip.

Thus, Âq⊗A (Z/p) = Z/p is a domain and Âq⊗A p is prime. It is clearly Poisson; see [2, 
Lemma 3.5]. Moreover, the fact that Âq⊗A (Z/p) = Z/p shows that Âq⊗Ap1 = Âq⊗Ap2

if and only if p1 = p2. Lemma 3.3 of [2] says that ht(Âq ⊗A p) = ht(p), which equals 
2rk(W ′). Thus, the map we have written down is injective.

On the other hand, if p′ is a Poisson prime in Âq ⊗A Z of height 2 dim k, then Lem-
mata 3.3 and 3.5 of [2] say that p := p′ ∩ Z is a Poisson prime of height 2 dim k. 
Therefore, we just need to show that Y ∩ π(Lp) is dense in Y . The prime p belongs 
to PSpec(W ′′)(Xc(W )) for some parabolic W ′′ of W of the same rank as W ′. The sets 
U ∩ hW

′′
reg /W and Y are disjoint if W ′′ /∈ (W ′), which implies that the image in Âq of the 

ideal defining U ∩ hW
′′

reg /W is the whole of Âq. Therefore the image of p ∩A in Âq would 

also be the whole of Âq if W ′′ /∈ (W ′). But since Âq ⊗A p is contained in p′, this cannot 
happen and thus W ′′ ∈ (W ′) as required. �
Proof of Theorem 4.13. Since the symplectic structure on T ∗VW ′ is non-degenerate, the 
only Poisson prime in C[T ∗VW ′ ] is the zero ideal. Therefore, every Poisson prime in 
Zc′(W ′) ⊗ C[T ∗VW ′ ] has height at most 2 dim k and the Poisson primes of height 2 dim k

are in bijection with the Poisson maximal ideals of Zc′(W ′). Repeating the arguments 
of Lemma 4.15, there is a bijection between the Poisson primes in Zc′(W ′) ⊗ C[T ∗VW ′ ]
of height 2 dim k and the Poisson primes of height 2 dim k in C 

[
X̂c′(W ′, V )

]
.

By Lemma 4.15 and Theorem 4.14, the set PSpec(W ′)(Xc(W )) is in bijection with 

the symplectic leaves in X̂c′(W ′, V )/ Ξ(W ′) of dimension 2(dim h − dim k). Since Ξ(W ′)
acts freely on VW ′ it also acts freely on X̂c′(W ′, V ). Therefore the symplectic leaves in 
X̂c′(W ′, V )/ Ξ(W ′) of dimension 2(dim h − dim k) are in bijection with the Ξ(W ′)-orbits 
of symplectic leaves in X̂c′(W ′, V ) of dimension 2(dim h −dim k). But, as explained above, 
this is the same as the Ξ(W ′)-orbits of Poisson maximal ideals Zc′(W ′). �
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4.3. Clifford theory

Throughout this section we fix an irreducible complex reflection group (h, W ). More-
over, we assume that there exists a normal subgroup K � W such that K acts, via 
inclusion in W , on h as a complex reflection group (though h need not be irreducible as 
a K-module). Since K is normal in W , the group W acts on Ref(K) by conjugation. Let 
us fix a W -equivariant function c : Ref(K) → C. We extend this to a W -equivariant func-
tion c : Ref(W ) → C by setting c(s) = 0 for all s ∈ Ref(W ) � Ref(K). A K-equivariant 
function on Ref(K) is not always W -equivariant. For our choice of parameter c, the 
inclusion K ↪→ W extends to an algebra embedding Hc(K) ↪→ Hc(W ), which is the 
identity on h and h∗. Let Γ = W/K. As explained in [4, Section 4.1], the group W acts 
on Hc(K) by conjugation. Thus, it acts on Zc(K). This action factors through Γ.

We will require the following lemma.

Lemma 4.16. Under the graded W -module identification Hc(W ) =
⊕

w∈W C[h] ⊗
C[h∗] ⊗ w, every non-zero element z =

∑
w∈W zw · w ∈ Zc(W ) satisfies z1 �= 0.

Proof. A reformulation of the PBW property is that, under the filtration FiHc(W )
putting h and h∗ in degree one, W in degree zero and F−1 := 0, the associated graded 
grFHc(W ) equals C[h ⊕h∗] �W . An easy induction on k shows that FkHc(W ) = (C[h] ⊗
C[h∗])≤k ⊗ CW as a W -module, where (C[h] ⊗ C[h∗])≤k is the sum of all graded pieces 
of degree at most k. Then the short exact sequences 0 → Fk−1 → Fk → Fk/Fk−1 → 0
can be identified, as short exact sequences of W -modules, with

0 → (C[h]⊗C[h∗])≤k−1 ⊗CW → (C[h]⊗C[h∗])≤k ⊗CW → (C[h]⊗C[h∗])k ⊗CW → 0.

The image of Zc(W ) under grF equals C[h × h∗]W . Therefore, z =
∑

w∈W zw · w ∈
Fk�Fk−1 then its (non-zero!) image in (C[h] ⊗C[h∗])k⊗CW belongs to (C[h] ⊗C[h∗])Wk . 
In particular, z1 �= 0. �
Proposition 4.17. The centre Zc(W ) of Hc(W ) equals the subalgebra Zc(K)Γ of Zc(K). 
Moreover, the embedding Zc(W ) ↪→ Zc(K) is as Poisson algebras.

Proof. Clearly, Zc(W ) ∩ Zc(K) ⊆ Zc(K)W . Therefore, we just need to show that 
Zc(W ) ⊂ Zc(K). Fix coset representatives 1 = w1, . . . , w� of K in W . Then Hc(W ) =⊕�

i=1 Hc(K)wi as a left Hc(K)-module. Let z =
∑�

i=1 ziwi denote an element in Zc(W )
with zi ∈ Hc(K) for all i. We wish to show that zi = 0 for i �= 1. Let f ∈ Hc(K). Then

[f, z] =
�∑

([f, zi] + zi(f − wi(f)))wi.

i=1
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Since [f, zi] + zi(f − wi(f)) ∈ Hc(K) for all i, we must have [f, zi] + zi(f − wi(f)) = 0. 
In particular, this implies that z1 ∈ Zc(K) ∩ Zc(W ). Without loss of generality, z1 = 0. 
But now it follows from Lemma 4.16 that z = 0. Thus, Zc(W ) = Zc(K)W .

It is clear that the embedding is as Poisson algebras; one can see this directly from 
the construction or simply by noting that the bracket is Γ-invariant and hence restricts 
to Zc(K)Γ. �

Thus, geometrically we have a Poisson morphism η : Xc(K) → Xc(W ) identifying 
Xc(W ) with Xc(K)/Γ. It is a finite, surjective map which is generically a Γ-covering. 
This fits into a commutative diagram

Xc(K) Xc(W )

h/K × h∗/K h/W × h∗/W

η

Υc,K Υc,W

Lemma 4.18. If L is a leaf of Xc(K), then η(L) is a finite union of leaves of Xc(W ).

Proof. Since the stratification of Xc(W ) by symplectic leaves is finite, it suffices to show 
that η(L) is a union of leaves, i.e. invariant under Hamiltonian flows. After a suitable 
localization, we may assume that L is closed in Xc(K). Then η(L) is closed. It is invariant 
under Hamiltonian flows if and only if the semi-prime ideal I(η(L)) is Poisson. But 
I(η(L)) = I(L) ∩ Zc(K)Γ. Since I(L) is Poisson and the bracket is invariant under Γ, if 
z ∈ I(η(L)) ∩Zc(K)Γ and h ∈ Zc(K)Γ, then {z, h} ∈ I(η(L)) ∩Zc(K)Γ, as required. �

Note that, in general, the preimage of a leaf of Xc(W ) is not a leaf. Let Xc(K)sing be 
the singular locus of Xc(K), let Xc(K)sm be the smooth locus and let Xc(K)free be the 
locus where Γ acts freely. The following is the geometric counterpart of [4, Lemma 4.12].

Proposition 4.19. The preimage η−1(Xc(W )sm) equals Xc(K)sm ∩ Xc(K)free.

Proof. Since Γ preserves the Poisson structure on Xc(K), for each p ∈ Xc(K)sm, the 
group Γp acts symplectically on the tangent space TpXc(K)sm. Thus, (TpXc(K)sm)/Γp is 
smooth if and only if Γp = 1. Using the fact that one can linearize the action of a finite 
group in the formal neighbourhood of any fixed point, this implies that the smooth locus 
of Xc(K)sm/Γ equals (Xc(K)sm ∩ Xc(K)free)/Γ. Hence

η−1(Xc(W )sm) ∩ Xc(K)sm = Xc(K)sm ∩ Xc(K)free.

On the other hand, Xc(K)sing is a union of symplectic leaves L with dimL < dimXc(K). 
Therefore Lemma 4.18 implies that η(Xc(K)sing) ⊂ Xc(W )sing. �

The following was stated in [4] in the case Γ is a cyclic group. We give a simple 
geometric proof.
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Theorem 4.20. Let c : Ref(K) → C be W -equivariant.

(a) The group Γ acts on Ωc(K) such that σF = {σλ | λ ∈ F} for σ ∈ Γ and F ∈ Ωc(K).
(b) There is a natural bijection between Ωc(W ) and Ωc(K)/Γ given by

Ωc(W ) � F ←→ {λ ∈ Irr(K) | λ ⊂ ResWK μ for some μ ∈ F } ∈ Ωc(K)/Γ.

Proof. Recall the notation from §1.3. We will use the notation and results from [4, §3, 
§4]. Let Zc(W ) denote the quotient of Zc(W ) by the ideal generated by D(W )+, Zc(K)
the quotient of Zc(K) by the ideal generated by D(K)+ and Z̃c(K) the quotient of Zc(K)
by the ideal generated by D(W )+. We also let H̃c(K) denote the quotient of Hc(K) by 
the ideal generated by D(W )+. The Satake isomorphism [16, Theorem 3.1] implies that 
the natural map Zc(W ) → Z̃c(K) is an embedding. The group Γ acts on Z̃c(K) and 
Proposition 4.17 now implies that Zc(W ) = Z̃c(K)Γ. Thus,

Zc(W ) = Z̃c(K)Γ ↪→ Z̃c(K) � Zc(K).

The kernel of the surjection Z̃c(K) � Zc(K) is nilpotent. Therefore it identifies the 
primitive idempotents in both algebras.

Let

{di}i∈Ωc(W ), {b′j}j∈Ωc(K), {bj}j∈Ωc(K),

denote the primitive idempotents in Zc(W ), resp. Z̃c(K) and Zc(K). Then Γ acts on 
{b′j}j∈Ωc(K) and the rule

b′j �→
∑

σ∈Γ/StabΓ(b′j)

σb′j

defines a bijection

{di}i∈Ωc(W )
1:1←→ {b′j}/Γ.

There is a natural surjective map H̃c(K) � Hc(K) and the kernel of this map is generated 
by certain central nilpotent elements in H̃c(K). In particular, the kernel is contained in 
the radical of H̃c(K) and so the map induces a bijection between the simple modules. 
We can thus consider any simple Hc(K)-module Lc(λ) as a simple Hc(K)-module, and 
to be precise we denote this as L̃c(λ).

Now, b′i · L̃c(λ) �= 0 if and only if (σb′i) · (σL̃c(λ)) �= 0. The statements of the theorem 
then follow from the Clifford theoretic fact, compare [4, Proposition 4.7], that

ResAW

AK
Lc(λ) =

⊕
σL̃c(μ),
σ∈Γ/StabΓ(μ)
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for some (any) simple summand μ of ResWK λ, where AW := Hc(W )/ RadHc(W ) and 
AK = H̃c(K)/ Rad H̃c(K) are the maximal semisimple quotients of Hc(W ) and H̃c(K), 
respectively. �
Remark 4.21. Geometrically, Theorem 4.20 is simply saying that Υ−1

c,K(0) =η−1(Υ−1
c,W (0))

is a union of Γ-orbits.

Let Ωc(W )rigid denote the set of Calogero–Moser c-families containing a rigid module.

Proposition 4.22. Let c : Ref(K) → C be W -equivariant.

(a) The set Ωc(K)cusp is Γ-stable and the bijection of Theorem 4.20(a) restricts to an 
embedding Ωc(K)cusp/Γ ↪→ Ωc(W )cusp.

(b) The set Ωc(K)rigid is Γ-stable and the bijection of Theorem 4.20(b) restricts to a 

bijection Ωc(W )rigid 1:1←→ Ωc(K)rigid/Γ.

Proof. Part (a) follows from Lemma 4.18 which implies that the image of a zero-
dimensional leaf is a zero-dimensional leaf. If Lc(λ) is a rigid Hc(W )-module and λ′

an irreducible summand of ResWK λ, then Lc(λ′) is a rigid Hc(K)-module. Conversely, if 
Lc(μ) is a rigid Hc(K)-module and μ′ an irreducible summand of IndW

K μ, then Lc(μ′) is 
a rigid Hc(W )-module. This implies part (b). �
Remark 4.23. The embedding of Proposition 4.22 (1) is not generally a bijection since 
the preimage of a zero-dimensional leaf under η is not always a union of zero-dimensional 
leaves.

5. Type A

Let W be the Weyl group of type An. This is simply the symmetric group Sn+1. It has 
an n-dimensional irreducible reflection representation. There is just one conjugacy class 
of reflections so that our parameter c for rational Cherednik algebras is just a complex 
number. By Lemma 4.11 we know that Conjecture B holds for c = 0, so we can assume 
that c > 0.

Etingof and Ginzburg [16, Proposition 16.4] have shown that the Calogero–Moser 
space Xc(W ) is smooth. Theorem 1.4 now implies that the Calogero–Moser c-families are 
singletons and Lemma 3.7 shows that none of the Calogero–Moser c-families is cuspidal.

Lusztig [33, Lemma 22.5] on the other hand has shown that for integral c > 0 we have 
Conc(W ) = Irr(W ). Using Lemma 2.5 we conclude that Conc(W ) = Irr(W ) for arbitrary 
real c > 0. It then follows that the Lusztig c-families are singletons and using Lemma 2.6
we furthermore see that no Lusztig c-family is cuspidal.

Comparing both results proves Theorem 2.4 and Theorem A for W of type A.
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6. Type B

Weyl groups of type B are much more difficult to handle than those of type A, in 
particular as we now have to deal with a two-dimensional parameter space. We have split 
the discussion into several parts, some just dealing with the Calogero–Moser families, 
some just dealing with the Lusztig families. At the very end we combine these results to 
obtain the proof of Theorem A.

6.1. The group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.2. Reflections and parabolic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.3. Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.4. The rational Cherednik algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.5. Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.6. Symplectic leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.7. Parabolic subgroups attached to symplectic leaves . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.8. Calogero–Moser families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
6.9. Simple Hc(W )-modules in the degenerate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.10. Lusztig families in the non-degenerate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.11. Lusztig families in the degenerate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6.12. Calogero–Moser families vs. Lusztig families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6.13. Cuspidal Lusztig families in the non-degenerate case . . . . . . . . . . . . . . . . . . . . . . .238
6.14. Cuspidal Lusztig families in the degenerate case . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.15. Rigid modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.16. Cuspidal Lusztig families vs. cuspidal Calogero–Moser families . . . . . . . . . . . . 242

6.1. The group

Let W be the Weyl group of type Bn. This group is isomorphic to the group G(2, 1, n)
of generalized permutation matrices in GLn(C) with entries in μ2 := {1, −1} ⊆ C, and 
this defines at the same time an irreducible reflection representation of Bn. Note that 
W = μn

2 � Sn, where Sn acts on μn
2 by coordinate permutation. For each 1 ≤ i ≤ n

we have a natural embedding εi of μ2 into W , sending u ∈ μ2 to the diagonal matrix 
(1, . . . , u, . . . , 1) with u in the i-th place. For 1 ≤ i < j ≤ n let sij be the transposition 
(i, j) ∈ Sn. For u ∈ μ2 set sij,u := sijεi(u)−1εj(u). Note that sij,1 = sij . The group W
is generated by ε1(−1) and the transpositions sij .

6.2. Reflections and parabolic subgroups

Let (y1, . . . , yn) be the standard basis of h := Cn with dual basis (x1, . . . , xn). For any 
1 ≤ j ≤ n the element εj(−1) is a reflection with coroot α∨

j := yj and root αj := 2xj . 
Also, for any u ∈ μ2 and 1 ≤ i < j ≤ n the element sij,u is a reflection with coroot 
α∨
ij,u := uyi − yj and root αij,u := u−1xi − xj = uxi − xj . These elements are precisely 

the reflections in W . We can now easily compute that



G. Bellamy, U. Thiel / Journal of Algebra 462 (2016) 197–252 227
(yk, αj)(α∨
j , xl) =

{
2 if k = j = l

0 else
(10)

and

(yk, αij,u)(α∨
ij,u, xl) =

⎧⎪⎨⎪⎩
1 if k, l ∈ {i, j} with k = l

−u if k, l ∈ {i, j} with k �= l

0 else.
(11)

The conjugacy classes of reflections in W are

S0 := {sij,u | u ∈ μ2, 1 ≤ i < j ≤ n} and S1 := {εj(−1) | 1 ≤ j ≤ n} .

We have |S0| = n2 − n and S1 = n. The parabolic subgroups of W are, up to conjugacy, 
of the form Sλ ×Bn−|λ| for partitions λ of integers ≤ n.

6.3. Representations

Since W = μn
2 �Sn = μ2 �Sn, the irreducible representations of W are labelled by 

bipartitions λ = (λ(0), λ(1)) of n. Let πλ denote the representation labelled by λ. The 
trivial representation of W is π(n,∅). The representation γ := π(∅,n) is a linear character 
of W with γ(s) = 1 for all s ∈ S0 and γ(s) = −1 for s ∈ S1. We denote by γπλ the 
γ-twist of πλ.

The symmetric group Sn is a quotient of Bn by sending εj(−1) to 1. We can thus 
consider (irreducible) Sn-modules πλ for partitions λ of n as (irreducible) W -modules. 
If λ = (λ(0), λ(1)) is a bipartition of n and r := |λ(0)|, then πλ(0) �γπλ(1) is an irreducible 
(Br ×Bn−r)-subrepresentation of πλ with

πλ = IndBn

Br×Bn−r
πλ(0) � γπλ(1) . (12)

6.4. The rational Cherednik algebra

Fix a W -equivariant function c : Ref(W ) → C and define

c1 := c(S1) and κ := c(S0) .

In terms of the Coxeter diagram of type Bn the weight function c is determined as 
follows:

. . .

c1 κ κ κ κ

Using equations (10) and (11) we see that the defining relation (1) for Hc(W ) becomes
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[yi, xi] = −2c1εi(−1) − κ
∑
u∈μ2

n∑
j=1
j �=i

sij,u (13)

and

[yi, xj ] = κ
∑
u∈μ2

usij,u . (14)

for i �= j. These are the same relations and parameters as in [35].
Recall from Lemma 4.11 that Conjecture B holds for c = 0.

We assume from now on that c �= 0, i.e. c1 �= 0 or κ �= 0.

6.5. Isomorphisms

Recall that for any α ∈ C∗, the algebras Hc(W ) and Hαc(W ) are isomorphic. Given 
a bipartition λ = (λ(0), λ(1)), we define λτ to be (λ(1), λ(0)). The following proposition 
follows from [9, 4.6B].

Proposition 6.1. The linear character γ of W defined in §6.3 extends to an isomorphism

τ : H(c1,κ)(Bn) ∼−→ H(−c1,κ)(Bn)

with τ(x) = x, τ(y) = y and τ(w) = γ(w)w for all x ∈ h∗, y ∈ h and w ∈ W . Moreover,

(a) τ−1
L(c1,κ)(λ) � L(−c1,κ)(λτ ).

(b) λ and μ belong to the same Calogero–Moser (c1, κ)-family if and only if λτ and μτ

belong to the same Calogero–Moser (−c1, κ)-family.
(c) λ is cuspidal, resp. rigid, for H(c1,κ)(W ) if and only if λτ is cuspidal, resp. rigid, 

for H(−c1,κ)(W ).

In the case κ = 0 the defining relations (13) and (14) of Hc(W ) show that we have an 
algebra isomorphism Hc(W ) � Hc1(Z2)⊗n �Sn, where Sn naturally acts on the n-fold 
tensor product of the rational Cherednik algebra at c1 for the cyclic group of order 2. 
From this we get an isomorphism of Poisson varieties Xc(W ) � Sn(Xc1(Z2)), where Sn

denotes the n-th symmetric power. Since c1 �= 0, the Calogero–Moser space Xc1(Z2) is a 
smooth symplectic surface by [16, 16.2].

6.6. Symplectic leaves

It was shown by Etingof and Ginzburg [16, 16.2] that the Calogero–Moser space of 
type B is smooth for generic parameters. In this case the Calogero–Moser families are 
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singletons by Theorem 1.4 and none of them is cuspidal by Lemma 3.7. Using the relation 
between Calogero–Moser spaces and representation varieties of deformed preprojective 
algebras, Martino has determined in his Ph.D thesis [34, Section 5] for precisely which 
parameters the Calogero–Moser space is smooth and gave a parametrization of the sym-
plectic leaves.1 To simplify notations we set [a, b] := {a, . . . , b} and denote by ±[a, b] the 
set [−b, −a] ∪ [a, b] for integers a ≤ b. Note that ±[0, b] = [−b, b].

Theorem 6.2 (Martino). Let c = (κ, c1).

(a) Xc(W ) is singular if and only if κ = 0 or c1 = mκ for some m ∈ ±[0, n − 1].
(b) If κ = 0, then the symplectic leaves of Xc(W ) are parameterised by the set P(n) of 

partitions of n. For λ ∈ P(n), the corresponding leaf Lλ has dimension 2�(λ), where 
�(λ) is the length of λ.

(c) If c1 = mκ, with κ �= 0, then there is a bijection k �→ Lk,

{symplectic leaves L of Xc(W ) } 1:1←→ {k ∈ N≥0 | k(k + m) ≤ n} .

Moreover, dimLk = 2(n − k(k + m)).

We say that c is singular if Xc(W ) is singular. Moreover, we call singular parameters 
with κ �= 0 non-degenerate and those with κ = 0 degenerate. By the formulas for the 
dimensions of the symplectic leaves we can immediately deduce when zero-dimensional 
leaves (and thus cuspidal Calogero–Moser families) exist.

Corollary 6.3. The space Xc(W ) has a zero-dimensional symplectic leaf if and only if 
c1 = mκ for some m ∈ ±[0, n − 1] such that n = k(k + m) for some k > 0. In this 
case there is a unique zero-dimensional leaf and thus a unique cuspidal Calogero–Moser 
family.

If our parameter c is as in Corollary 6.3 we say that it is cuspidal.

Remark 6.4. For a given n and ±m ∈ [0, n − 1] there is at most one k ≥ 0 with 
n = k(k + m).

6.7. Parabolic subgroups attached to symplectic leaves

We would like to parameterise the symplectic leaves of Xc(Bn) by conjugacy classes 
of parabolic subgroups and work out the geometric ordering.

Lemma 6.5. If c1 = mκ for some m ∈ ±[0, n − 1], then the leaf Lk is labelled by the 
conjugacy class of the parabolic Bk(k+m) and

Lk ≺ Lk′ ⇐⇒ (Bk(k+m)) ≤ (Bk′(k′+m)) ⇐⇒ k ≥ k′.

1 In [34] the parameters are named (cγ , c1) instead of (c1, κ).
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Proof. If Lk is labelled by the parabolic W ′ then Xc′(W ′) contains at least one zero-
dimensional leaf and W ′ must have rank n − 1

2 dimLk = k(k + m). Since κ �= 0, the 
parabolic must be of the form Bm for some m. Hence W ′ = Bk(k+m). It is a consequence 
of the proof of [34, Proposition 5.7] that Lk ≺ Lk′ if and only if k ≥ k′. �

In the degenerate case κ = 0, recall from §6.5 that there is an isomorphism of Poisson 
varieties Xc(Bn) � Sn(Xc1(Z2)). Then Lλ = Sλ(Xc1(Z2)), where Sλ(X) is the image in 

Sn(X) of the set 
{∑�(λ)

i=1 λi · xi | xi �= xj ∈ X
}

. This implies that Lλ is labelled by the 
class of the parabolic subgroup Sλ = Sλ1 × · · · ×Sλ�(λ) and

Lλ ≺ Lμ ⇔ (Sλ) ≤ (Sμ).

Moreover, in this case, if Υ−1
c (0) = {p, q} for Hc1(Z2), where p = SuppLc1(1Z2) and 

q = SuppLc1(sgnZ2
), then in Xc(Bn) we have

Υ−1
c (0) = {n1 · p + n2 · q | n1 + n2 = n, ni ≥ 0}. (15)

The point n1 · p + n2 · q belongs to the leaf L(n1,n2).

6.8. Calogero–Moser families

The Calogero–Moser families in type Bn have been first described by Gordon and 
Martino [26] using the notion of J-hearts, and later by Martino [35] using the notion of 
residues. We recall the description given in [35] now.

Let λ = (λ1, λ2, . . .) be a partition. We think of λ as a stack of boxes, left justified, 
with the bottom row containing λ1 boxes, the next row containing λ2 boxes and so forth. 
The content ct(�) of a box � = (i, j) ∈ λ is defined to be j − i. We consider the group 
ring Z[C] of the additive group C and write xα for the element corresponding to α ∈ C. 
The residue of λ is the element

Res λ(x) :=
∑
�∈λ

xct(�) ∈ Z[Z] ⊆ Z[C] .

Just as in [10, §3A], we define for a triple m = (m0, m1, m′) of complex numbers (the 
charge), and a bipartition λ = (λ(0), λ(1)), the charged residue as

Resm
λ (x) := xm0Res λ(0)(xm′

) + xm1Res λ(1)(xm′
) ∈ Z[C] .

The following theorem is [35, Theorem 5.5]. The additional parameters (h, H0, H1) used 
in [35] are given by h = −κ, H0 = −c1, and H1 = c1.

Theorem 6.6 (Martino). Two bipartitions λ and μ lie in the same Calogero–Moser 
c-family if and only if Res ĉ

λ(x) = Res ĉ
μ(x) with respect to the charge ĉ := (0, c1, −κ).
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6.9. Simple Hc(W )-modules in the degenerate case

In the degenerate case κ = 0 it is possible to determine the structure of the simple 
Hc(W )-modules Lc(λ) as W -modules.

Lemma 6.7. If κ = 0, then λ = (λ(0), λ(1)) ∈ P2(n) and μ = (μ(0), μ(1)) ∈ P2(n) lie in 
the same Calogero–Moser c-family if and only if |λ(1)| = |μ(1)|. In particular, there are 
n + 1 Calogero–Moser families Fdeg

0;n , . . . , Fdeg
n;n with

Fdeg
i;n = {λ ∈ P2(n) | |λ(0)| = i} .

Proof. In the case κ = 0 we have

Res ĉ
λ(x) =

∑
�∈λ(0)

1ct� + xc1
∑

�∈λ(1)

1ct� = |λ(0)| + xc1 |λ(1)| = n− |λ(1)| + xc1 |λ(1)| .

The claim follows directly from Theorem 6.6. �
Proposition 6.8. Assume that κ = 0. Then the family Fdeg

i;n is labelled by the class of the 

parabolic Si ×Sn−i ⊂ Bn and we have a bijection Irr(Si ×Sn−i) 
∼−→ Fdeg

i;n , sending the 
pair of partitions (λ(0), λ(1)) to itself (thought of as a bipartition) such that

Lc(λ(0), λ(1)) � IndBn

Si×Sn−i
πλ(0) � πλ(1)

as W -modules.

Proof. Since Hc(Bn) � (Hc1(Z2)⊗2) �Sn in this case (see §6.5), we have

Lc(λ(0), λ(1)) � IndBn

(Hc1 (Z2)⊗2)�(Si×Sn−i)Lc1(1Z2) ⊗ Lc1(sgnZ2
) ⊗ (πλ(0) � πλ(1)) ,

Since c1 �= 0, both Lc1(1Z2) and Lc1(sgnZ2
) are isomorphic to the regular representation 

as Z2-modules. Recall that we have described Υ−1
c (0) in (15). If i = |λ(0)|, so that 

n − i = |λ(1)|, then the support of Lc(λ(0), λ(1)) is i · p + (n − i) · q, which lies on the leaf 
labelled by the parabolic Si ×Sn−i. The result follows. �
6.10. Lusztig families in the non-degenerate case

For the description of the Lusztig families in the non-degenerate case we first argue 
that we can restrict to the so-called integral case where c1 is an integral multiple of κ.

Proposition 6.9. Suppose that κ > 0. If there is no m ∈ N with c1 = mκ, then Conc W =
IrrW and so the Lusztig c-families are singletons.
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Proof. By Lemma 2.5, we may assume that κ = 1. The statement of the proposition 
has been shown by Lusztig [33, Proposition 22.25] when c1 is rational. We reduce the 
general case to the rational case. Let λ be an irreducible representation of a parabolic 
subgroup W ′ of W . The explicit formula given for the Schur element sλ, see [23, Theorem 
10.5.2] and [33, Lemma 22.12], shows that there exist finitely many integers rλ1 , rλ2 , . . ., 
sλ1 , s

λ
2 , . . . , with (ri, si) �= (rj , sj) for i �= j, and rational numbers fλ

1 , f
λ
2 , . . . such that

sλ =
∑
i

fλ
i q

2
(
rλi κ+sλi c1

)
.

Recall that κ = 1 and c1 /∈ Q. We claim that aλ = min{rλi κ + sλi c1 | i = 1, . . .}. Note 
that this is not the case in general since there might be some cancellation between the 
fλ
i when rλi κ + sλi c1 = rλj κ + sλj c1 for some i �= j. However, in our case the fact that 
κ = 1 and c1 is irrational implies that rλi κ + sλi c1 = rλj κ + sλj c1 if and only if rλi = rλj
and sλi = sλj , i.e. i = j. The claim follows.

The definition of j-induction and constructible representations makes it clear that if 
we are given two parameters c and c′ such that

aλ = aμ ⇔ a′
λ = a′

μ (16)

for all irreducible representations λ and μ of all parabolic subgroups of W , then Conc W =
Conc′ W . Since there are only finitely many rλi and sλj as λ ranges over all irreducible 
representations of all parabolic subgroups of W , one can easily choose a rational number 
c′1 > 0 with |c1 − c′1| very small and c′1 not an integer such that

rλi + sλi c1 < rμj + sμj c1 ⇔ rλi + sλi c
′
1 < rμj + sμj c

′
1

for all λ, μ and i, j. In particular, for c′ = (c′1, 1) equation (16) holds. Moreover, since c′1 is 
rational, every constructible representation in Conc′ W is irreducible by [33, Proposition 
22.25]. Hence Conc W = IrrW , too. �

We can thus restrict to the case c1 = mκ for some m ∈ N, which by Lemma 2.5 is the 
same as c = (m, 1). The Lusztig families in this case have been described by Lusztig [33, 
§22] using the notion of symbols. We review the notion of symbols for general integral 
parameters.

We assume that κ > 0 and that c = (c1, κ) ≥ 0 is integral.

We can uniquely write c1 = mκ + r for some m, r ∈ N≥0 with r < κ. Fix an arbitrary 
integer N > 0. A symbol for Bn with respect to N at parameter c is a list of the form

S =
(
β1 β2 · · · · · · · · · βN+m−1 βN+m

γ γ · · · γ

)
, (17)
1 2 N
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where 0 ≤ β1 < · · · < βN+m are congruent to r modulo κ and 0 ≤ γ1 < · · · < γN are 
divisible by κ, such that

∑
i

βi +
∑
j

γj = nκ + κN2 + N(c1 − κ) + κ

(
m

2

)
+ rm . (18)

Let SyNc;n denote the set of all such symbols. We have an embedding SyNc;n ↪→ SyN+1
c;n

sending a symbol S as above to the symbol

S[1] =
(

r β1 + κ β2 + κ · · · · · · βN+m + κ

0 γ1 + κ γ2 + κ · · · γN + κ

)
. (19)

For i ∈ N we denote by S[i] the i-fold composition of the above map applied to S and 
call this the shift of S by i. Let Syc;n be the direct limit of the SyNc;n with respect to 
the above maps. We say that N is large enough for a bipartition λ = (λ(0), λ(1)) of n if 
λ

(0)
N+m+1 = 0 = λ

(1)
N+1. We then define the corresponding symbol SyNc;n(λ) =

(
β
γ

)
∈ SyNc;n

via

βi := κ
(
λ

(0)
N+m−i+1 + i− 1

)
+ r for i ∈ [1, N + m]

γj := κ
(
λ

(1)
N−j+1 + j − 1

)
for j ∈ [1, N ] .

(20)

If N is large enough for all bipartitions of n, e.g., N ≥ n, the map λ �→ SyNc;n(λ) defines 
a bijection between the set P2(n) of bipartitions of n and SyNc;n. For a symbol S we then 
denote by πS the representation of W labelled by the bipartition corresponding to S. 
The content ct(S) of a symbol S ∈ SyNc;n is the multiset of its entries, i.e., the list of 
entries with repetitions but ignoring positions. We can, and will, equally well write the 
content as a polynomial 

∑
i≥0 nix

i, where ni denotes the multiplicity of the entry i in S. 
It is clear from the definition of a symbol that it has at least N +m distinct entries and 
the multiplicity of an entry in a symbol is at most 2.

Example 6.10. Let λ =
(

,
)

and (c1, κ) = (1, 1). Then

Sy3
(1,1);4(λ) =

(
0 1 3 5
0 1 3

)
∈ Sy3

(1,1);4 .

This symbol is in fact the shift of 
(

1 3
1

)
∈ Sy1

(1,1);4 by 2.

Theorem 6.11 (Lusztig). Let c = (c1, κ) ≥ 0 with κ > 0 and c1 = mκ for some 
m ∈ N. Then two bipartitions λ and μ lie in the same Lusztig c-family if and only 
if ct(SyN(m,1);n(λ)) = ct(SyN(m,1);n(μ)) for N sufficiently large.
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Proof. Because of Lemma 2.5 we can assume that c = (m, 1). Then the description of 
the c-constructible characters in [33, Proposition 22.24] along with [33, Lemma 22.22]
proves the claim. �
6.11. Lusztig families in the degenerate case

The description of the Lusztig families in the degenerate case is given in [21, Example 
7.13] and follows from the general theory in [22, §2.4.3].

Lemma 6.12. If κ = 0, then λ = (λ(0), λ(1)) ∈ P2(n) and μ = (μ(0), μ(1)) ∈ P2(n) lie in 
the same Lusztig c-family if and only if |λ(1)| = |μ(1)|. In particular, there are precisely 
n + 1 Lusztig families Fdeg

0;n , . . . , Fdeg
n;n with

Fdeg
i;n = {λ ∈ P2(n) | |λ(0)| = i} .

6.12. Calogero–Moser families vs. Lusztig families

We can now prove Theorem 2.4 for type Bn.

Corollary 6.13. For type Bn and any parameter c ≥ 0 the Lusztig c-families are equal 
to the Calogero–Moser c-families.

Proof. If κ = 0, the claim follows from Lemma 6.7 and Lemma 6.12. Now, assume that 
κ �= 0. If c1 �= mκ for all m ∈ N≥0, then we know from Theorem 6.2a and Proposition 6.9
that both the Calogero–Moser c-families and the Lusztig c-families are singletons. So, 
suppose that c1 = mκ for some m ∈ N≥0. Because of Lemma 2.5 and Lemma 3.8 we can 
assume that κ = 1. It follows from [10, Proposition 3.4] that ct(SyNc;n(λ)) = ct(SyNc;n(μ))
for N large enough if and only if Res ĉ

λ(x) = Res ĉ
μ(x). By Theorem 6.6 and Theorem 6.11

this shows that Ωc(W ) = Lusc(W ). �
6.13. Cuspidal Lusztig families in the non-degenerate case

In the non-singular case, Proposition 6.9 and Lemma 2.6 immediately imply the fol-
lowing result.

Lemma 6.14. If κ > 0 and there is no m ∈ N with c1 = mκ, then there are no cuspidal 
Lusztig c-families.

Lemma 2.5 implies that we can restrict to the following situation.

We assume that κ = 1 and that c1 = mκ = m for some m ∈ N≥0.
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At equal parameters, i.e. m = 1, the cuspidal families are described by Lusztig in [32, 
Section 8.1]. It seems difficult to find an explicit description of the cuspidal families for 
unequal parameters. Therefore we derive the classification here in Theorem 6.21 using 
the results of [33].

We choose N sufficiently large for all bipartitions of n (see §6.10). For a Lusztig 
c-family F we denote by SyNc;n(F) the set of symbols SyNc;n(λ) with λ ∈ F . Using the 
combinatorics of symbols, we can explicitly determine the size of F .

Lemma 6.15. Let F ∈ Lusc(W ). Let 
∑

i≥0 nix
i be the content of one (any) S ∈ SyNc;n(F). 

Set kF := N − |{i | ni = 2}|. Then kF ≥ 0, kF (kF + m) ≤ n, and |F| =
(2kF+m

kF

)
.

Proof. Let S ∈ SyNc;n(F) and set k := kF . The multiplicity of an entry in S is at most 
equal to 2 and S has at least N + m distinct entries. Since S has exactly 2N + m

entries with multiplicity, this immediately shows that k ≥ 0. Let E be the set (not 
multiset) of entries of S. By definition of k we have |E| = N + k + m. Any N -element 
subset of E containing the set {i | ni = 2} defines a unique symbol in SyNc;n(F), and 
in this way all symbols of SyNc;n(F) are obtained. The number of such sets is equal to (N+k+m−(N−k)

N−(N−k)
)

=
(2k+m

k

)
.

It remains to show that k(k + m) ≤ n. Since S ∈ SyNc;n, equation (18) says that

∑
i

βi +
∑
j

γj −N2 −N(m− 1) −
(
m

2

)
= n , (21)

where the βi and γj are the entries of S. Hence, it suffices to show that the left hand side 
is at least as big as k(k+m). Recall that N−k is equal to the number of pairs (i, j) such 
that βi = γj . Since βi, γj ≥ 0, the expression on the left is minimal if βi = γi = i − 1 for 
i = 1, . . . , N − k and the remaining 2k + m entries are in {N − k, . . . , N + k + m − 1}. 
Then the left hand side of equation (21) becomes

N−k∑
i=1

2(i− 1) +
N+k+m−1∑

i=N−k

i−N2 −N(m− 1) −
(
m

2

)
= k(k + m) . �

Definition 6.16. A symbol S ∈ SyNc;n with content 
∑

i≥0 nix
i is called cuspidal if ni ≥ ni+1

for all i = 0, 1, . . .

If S is a cuspidal symbol then S[1] is also cuspidal.
Suppose that n = k(k+m) for some k ∈ N>0. Then we have the box partition (kk+m)

of n. If λ is any partition such that �(λ) ≤ k +m and λ1 ≤ k, then λ ⊆ (kk+m). Adding 
zeros, we may assume that �(λ) = k + m. Define the partition λ† by

λ†
i := #{j ∈ [1, k + m] | k − λk+m+1−j ≥ i}

= k + m + 1 −min{j ∈ [1, k + m] | k − i ≥ λj} .
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This is simply the transpose of the reverse of the complement k − λ of λ in the box 
(kk+m). Since |λ| + |λ†| = k(k + m) = n, we get in this way a bipartition (λ, λ†) of n. 
Let

Fcusp
k,m := {(λ, λ†) | �(λ) ≤ k + m,λ1 ≤ k} .

Example 6.17. If n = 6 and m = 1, we can write n = k(k + m) with k = 2 and get

Fcusp
2,1 =

{(
,

)
,
(
∅ ,

)
,

(
, ∅

)
,
(

,
)
,

(
,

)
,

(
,

)
,
(

,
)
,

(
,

)
,

(
,

)
,
(

,
)}

.

If n = 3 and m = 2, we can write n = k(k + m) with k = 1 and get

Fcusp
1,2 =

{
(∅ , ) , ( , ) ,

(
,

)
,

(
, ∅

)}
.

Lemma 6.18. Suppose that n = k(k+m). The content of the symbol Sykc;n(λ, λ†) is equal 
to 

∑2k+m−1
i=0 xi for any (λ, λ†) ∈ Fcusp

k,m . In particular, Sykc;n(λ, λ†) is cuspidal and Fcusp
k,m

is a Lusztig c-family with |Fcusp
k,m | =

(2k+m
k

)
.

Proof. First, note that N = k is large enough for any (λ, λ†) ∈ Fcusp
k,m . The symbol 

Sykc;n(λ, λ†) =
(
β
γ

)
is then given by

βi := λk+m−i+1 + i− 1 for i ∈ [1, k + m]
γj := λ†

k−j+1 + j − 1 for j ∈ [1, k] .

Our assertion about the content of this symbol is equivalent to showing that the symbol 
contains the entry 0, all entries are bounded above by 2k + m − 1, and that βi �= γj for 
all i, j. First, we have

β1 = λk+m and γ1 = λ†
k = k + m + 1 −min{j ∈ [k + m | 0 ≥ λj} = k + m− �(λ) .

We immediately see that either β1 = 0 or γ1 = 0. On the other hand, we have

βk+m = λ1 + k+m− 1 and γk = λ†
1 + k− 1 = 2k+m−min{j ∈ [1, k+m] | k > λj} .

This shows that the entries of the symbol are at most equal to 2k+m − 1. Showing that 
βi �= γj for all i ∈ [1, k + m] and j ∈ [1, m] is equivalent to showing that βk+m−i+1 �=
γk−j+1 for all i ∈ [1, k + m] and j ∈ [1, m]. Now,
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βk+m−i+1 = γk−j+1 ⇔ λi + m− i = λ†
j + k − j

⇔ λi − i = k + 1 −min{l ∈ [1, k + m] | k − j ≥ λl} − j . (22)

Suppose that k− j ≥ λi. Then min{l | k− j ≥ λl} ≤ i and we get from equation (22) the 
estimate λi − i ≥ k + 1 − i − j. This implies λi > k − j, contradicting the assumption. 
On the other hand, if k − j ≤ λi, we similarly deduce the estimate λi < k − j, again a 
contradiction. Hence, βi �= γj for all i, j.

The number of elements in Fcusp
k,m equals the number of sub-partitions λ of (kk+m), 

and this number is equal to 
(2k+m

k

)
. We have just seen that Fcusp

k,m is contained in a 
single Lusztig family F . Since the multiplicity of each entry in the content we have just 
computed is equal to 1, it follows from Lemma 6.15 that |F| =

(2k+m
k

)
. Hence, Fcusp

k,m = F
is a Lusztig family. �

The symbols in Lemma 6.18 are in fact the minimal representatives of cuspidal sym-
bols.

Lemma 6.19. Suppose that S ∈ SyNc;n is a cuspidal symbol. Then n = k(k+m) for some 
k and S ∈ Fcusp

k,m .

Proof. Recall that S cuspidal means that ni ≥ ni+1 for i = 0, 1, . . . . Since there is at least 
one i such that ni �= 0, we have n0 �= 0. As in Lemma 6.15, let k := N − |{i | ni = 2}|. 
Because S is cuspidal, the symbol S′ := S[−(N−k)] ∈ Sykc;n is well-defined. By definition 

of shift, the content of this symbol is equal to 
∑2k+m−1

i=0 xi. Equation (18) for S′ says 
that

n =
2k+m−1∑

i=0
i− k2 − k(m− 1) −

(
m

2

)
= k(k + m) .

Hence, S ∈ Fcusp
k,m by Lemma 6.18 and Theorem 6.11. �

For a symbol S ∈ SyNc;n as in (17) we define the symbol S ∈ SyN
′

c;n for certain N ′

as follows. Choose t ≥ max{βN+m, γN}. Note that t ≥ m since S has at least N + m

distinct entries. Now, the first row of S is the set {0, 1, . . . , t} � {t − γ1, . . . , t − γN}
and the second row is {0, 1, . . . , t} � {t − β1, . . . , t − βN+m}. By [33, 22.8], the symbol S
belongs to Syt+1−N−m

c;n and by [33, Lemma 22.18] we have πS ⊗ sgnW = πS .

Example 6.20. Let λ =
(

,
)

and (c1, κ) = (1, 1). Recall from Example 6.10 that

Sy3
(1,1);4(λ) =

(
0 1 3 5
0 1 3

)
∈ Sy3

(1,1);4 .

Choosing t = 5 we get



238 G. Bellamy, U. Thiel / Journal of Algebra 462 (2016) 197–252
Sy3
(1,1);4(λ) =

(
0 1 3
1 3

)
= Sy2

(1,1);4

(
,

)
.

Indeed,

(
,

)
⊗

⎛⎝∅ ,

⎞⎠
︸ ︷︷ ︸

= sgnW

=
(

,
)

.

Theorem 6.21. There exists a cuspidal Lusztig family if and only if there is a k > 0
such that n = k(k +m). In this case there is a unique cuspidal family, and it is equal to 
Fcusp

k,m .

Proof. Because of the transitivity of j-induction, Lusztig families of Bn induced from 
some parabolic subgroup are also induced from some maximal parabolic subgroup. These 
subgroups are all of the form Bl ×Sn−l for some 0 ≤ l ≤ n − 1. The restriction of the 
parameter c to Sn−l is equal to κ > 0 and so the Lusztig families of Sn−l are singletons 
by §5. A Lusztig family of Bl ×Sn−l is thus of the form {πS � πλ | πS ∈ F} for some 
Lusztig family F of Bl and some fixed λ ∈ P(n − l). Since any given number can only 
appear at most twice in S, either the set of n − l largest entries in S is well-defined 
or there is a choice of two possible “largest n − l-entries”. Notice that this depends 
only on the content of S. By adding 1 to the n − l largest entries, we get either a new 
symbol S′ or two new symbols SI and SII . Then, as explained in [33, Section 22.15], 
jBn

Bl×Sn−l
πS �sgnW equals πS′ or πSI ⊕πSII . In the latter case, the j-induction of πS �πλ

is not irreducible and so j-induction does not induce a Lusztig family of Bn. We thus 
assume we are in the former case. Let 

∑
i≥0 nix

i be the content of S′. Here ni ∈ {0, 1, 2}
and ni = 0 for i � 0. Assume that there exists some i such that ni > ni−1. There are 
two possibilities, either ni−1 = 0 or (ni−1, ni) = (1, 2). Consider first the former. We let 
l be defined such that the n − l largest numbers in S are {ni · i, ni+1 · (i + 1), . . . }. Here, 
ni · i means that i occurs with multiplicity ni. Since ni−1 = 0, we can remove 1 from 
each of the n − l largest numbers and still have a well-defined symbol S′′. Moreover, 
jBn

Bl×Sn−l
πS′′ ⊗ sgnW = πS′ . This applies to all symbols in the family to which S belongs. 

Hence this family is not cuspidal. The other case is where (ni−1, ni) = (1, 2). In this case 
it suffices to show that πS = πS ⊗ sgnW is not cuspidal. If the content of S is 

∑
i≥0 nix

i, 
then the content of S equals 

∑
i≥0(2 − nt−i)xi for some t � 0. Thus, there exists some 

j such that (nj−1, nj) equals (0, 1) in the content of S. By our previous argument, the 
family to which S belongs is induced from some parabolic subgroup.

Above, we assumed that there exists some i such that ni > ni−1. When ni ≤ ni−1

for all i, Lemma 6.19 implies that πS belongs to the family Fcusp
k,m for some k with 

n = k(k + m). If F ′ is a family in Irr(Bl × Sn−l) for some l < n, then Lemma 6.15
implies that |F ′| < |F|. Hence F cannot be induced and must be cuspidal. �
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6.14. Cuspidal Lusztig families in the degenerate case

In this section we consider the case κ = 0. Recall from Lemma 6.12 that the Lusztig 
families are labelled Fdeg

i;n for i = 0, . . . , n.

Lemma 6.22. For any i, tensoring with the sign character yields a bijection Fdeg
i;n

∼−→
Fdeg

n−i;n.

Proof. If λ = (λ(0), λ(1)) ∈ P2(n), then πλ ⊗ sgnW = π((λ(1))∗,(λ(0))∗) by [23, Theorem 

5.5.6(c)]. Hence, if πλ ∈ Fdeg
i;n , then πλ ⊗ sgnW ∈ Fdeg

n−i;n. As sgnW is an automorphism 
on IrrW , the claim follows. �
Proposition 6.23. If κ = 0 but c1 �= 0, there are no cuspidal Lusztig c-families.

Proof. We claim that jBn

Bi×Sn−i
induces a bijection between the Lusztig family Fdeg

i;i ×
IrrSn−i of the parabolic subgroup Bi ×Sn−i of Bn and Fdeg

i;n for 0 ≤ i < n. This shows 
that all Fdeg

i;n with i < n are induced, and since Fdeg
0;n ⊗ sgnW = Fdeg

n;n by Lemma 6.22, 
this proves the claim.

So, assume that 0 ≤ i < n. In [21, Example 7.13] (see also [22, §2.4.3]) it is shown that 
the a-invariant in the degenerate case of μ ∈ P2(i) is aμ = c1|μ(1)|. Moreover, in the 
degenerate case, the restriction of the parameter to Sn−i is zero so that the a-invariants 
aν are zero for all ν ∈ P(n − i) by Example 2.1. Hence,

jBn

Bi×Sn−i
πμ � πν =

∑
λ∈P2(n)

|λ(1)|=|μ(1)|

〈IndBn

Bi×Sn−i
πμ � πν , πλ〉πλ

for μ ∈ P2(i) and ν ∈ P(n − i). We will show that if (μ, ν) ∈ Fdeg
i;i × IrrSn−i, then

jBn

Bi×Sn−i
πμ � πν = π(ν,μ(1)) . (23)

From this equation, the claim follows immediately. Since Sn−i is a subgroup of Bn−i, 
we get the following relation using the branching rules:

IndBn

Bi×Sn−i
πμ � πν = IndBn

Bi×Bn−i
Ind

Bi×Bn−i

Bi×Sni
πμ � πν

= IndBn

Bi×Bn−i

(
πμ � Ind

Bn−i

Sn−i
πν

)
= IndBn

Bi×Bn−i

⎛⎝πμ �
∑

α∈P2(n−i)

cναπα

⎞⎠
=

∑
λ∈P2(n)

∑
α∈P2(n−i)

cλ
(0)

μ(0),α(0)c
λ(1)

μ(1),α(1)c
ν
απλ .
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Note that the sum runs only over those α with α(0), α(1) ⊆ ν and |ν| = |α(0)| + |α(1)|, 
and similarly only over those λ which satisfy

μ(j), α(j) ⊆ λ(j) (24)

and

|λ(j)| = |μ(j)| + |α(j)| (25)

for j ∈ {1, 2}. To show (23) we need to show that among those λ ∈ P2(n) occurring in 
this sum such that |λ(1)| = |μ(1)| we have

cλ
(0)

μ(0),α(0)c
λ(1)

μ(1),α(1)c
ν
α =

{
1 if λ = (ν, μ(1)),μ = (∅, μ(1)),α = (ν, ∅)
0 else.

So, suppose that cλ(0)

μ(0),α(0)c
λ(1)

μ(1),α(1)c
ν
α �= 0. By (24) we have μ(1) ⊆ λ(1), which implies that 

μ
(1)
k ≤ λ

(1)
k for all k. Hence, as |λ(1)| = |μ(1)| by assumption, we must have μ(1) = λ(1). 

In combination with (25) this shows that α(1) = ∅.
By definition of the Littlewood–Richardson coefficients, the coefficient cνα = cν

α(0),∅
is equal to the coefficient of the symmetric polynomial sν in the product sα(0) · s∅ =
sα(0) · 1 = sα(0) . Hence,

cνα =
{

1 if ν = α(0)

0 else

and therefore we must have ν = α(0). With the same argumentation we see that

cλ
(1)

μ(1),α(1) = cλ
(1)

λ(1),∅ = 1 .

Since μ ∈ Fdeg
i;i , we have μ(0) = ∅. Hence,

cλ
(0)

μ(0),α(0) = cλ
(0)

∅,ν =
{

1 if λ(0) = ν

0 else

so that λ(0) = ν. This proves the claim. �
6.15. Rigid modules

We will now show that rigid modules exist precisely in the cuspidal cases and describe 
them explicitly. In this section, we consider again an arbitrary complex parameter c.
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Theorem 6.24. There is a rigid Hc(W )-module if and only if c is cuspidal, i.e., c1 = mκ

for some m ∈ ±[0, n −1] with n = k(k+m) for some k > 0. In this case there are exactly 
two rigid Hc(W )-modules, namely Lc(λ) with

λ = ((kk+m), ∅) , or λ = (∅, (k + m)k) .

Proof. First of all, by Theorem C and Corollary 6.3 there can only exist a rigid 
Hc(W )-module if c is cuspidal. So, assume that c1 = mκ for some m ∈ ±[0, n − 1] with 
n = k(k + m) for some k > 0. By Proposition 6.1, we can assume that m ∈ [0, n − 1]. 
Let λ = (λ(0), λ(1)) be a bipartition of n. By Lemma 4.10 and equations (13) and (14)
the representation πλ is c-rigid if and only if

2mεi(−1) · v +
n∑

j=1
j �=i

(sij + sij,−1) · v = 0 , ∀ v ∈ πλ, i = 1, . . . , n , (26)

and

(sij − sij,−1) · v = 0 , ∀ v ∈ πλ, i �= j . (27)

Let r := |λ(0)|. Take v to be a non-zero vector in the irreducible (Br×Bn−r)-subrepresen-
tation πλ(0) ⊗ γπλ(1) inducing πλ; see equation (12). Suppose that r /∈ {0, n}. Then we 
can find i < j with i ≤ r and r < j. Due to this choice, we have εi(−1) · v = v and 
εj(−1) · v = −v as we twist by γ in the second component. Hence,

sij,−1 · v = sijεi(−1)εj(−1) · v = −sij · v .

Equation (27) thus says that 2sij · v = 0 and therefore already v = 0. This is a contra-
diction, so we must have r ∈ {0, n}. Assume that r = n. Then πλ = πλ(0) . Now, equation 
(27) says that

n∑
j=1
j �=i

sij · v = −mv , ∀ v ∈ πλ(0) , i = 1, . . . n .

In other words, 
∑

j �=i sij acts by a scalar on πλ(0) . This holds in particular for i = 1, and 
now a standard result (see [17, Lemma 2.4]) implies that λ(0) = (lb) is a rectangle for 
some positive integers l, b with lb = n. The n-th Jucys–Murphy element zn =

∑
j<n sjn

acts on π(lb) by multiplication by l−b since every standard tableaux on (ab) must have n
in the top corner. Thus, lb = n and l+m = b, so n = l(l+m). Because of Remark 6.4 we 
must have l = k, proving the claim. If r = 0, then πλ = γπλ(1) and the same argument 
shows that λ(1) = ((k + m)k). �
Remark 6.25. The proof of Theorem 6.24 can be adapted to all the groups G(�, 1, n) =
Z� �Sn.
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6.16. Cuspidal Lusztig families vs. cuspidal Calogero–Moser families

Combing all of the above results, we arrive at the proof of Theorem A for type Bn.

Theorem 6.26. Assume that c ≥ 0. Then

(a) A family (Lusztig = Calogero–Moser) is cuspidal in the sense of Lusztig if and only 
if it is cuspidal as a Calogero–Moser family.

(b) If κ �= 0 and n = k(k + m) for some k, m ∈ N, then both rigid modules lie in the 
(unique) cuspidal family Fcusp

k,m .

7. Type D

The group Dn is a normal subgroup of Bn of index two. By setting c = (0, κ), we 
get an embedding Hc(Dn) ↪→ Hc(Bn). Thus, we are in the situation of section §4.3. We 
assume that κ �= 0. Recall that the irreducible representations of Dn are essentially given 
by unordered bipartitions of n. More precisely, if λ and μ are a pair of partitions such 
that λ �= μ and |λ| + |μ| = n then the set {λ, μ} labels a simple Dn-module. If λ = μ, 
then there are two non-isomorphic simple modules {λ}1 and {λ}2 labelled by λ. These 
modules are defined by

π(λ,μ)|Dn
= π{λ,μ} for λ �= μ ,

and π(λ,λ)|Dn
= π{λ}1 ⊕ π{λ}2 .

Lemma 7.1. If there exists k such that n = k2 then there is a unique rigid 
Hc(Dn)-module, which is Lc({(kk), ∅}). Otherwise, there are no rigid modules.

Proof. By Theorem 6.24, if n = k2 for some k, then the modules Lc((kk), ∅) and 
Lc(∅, (kk)) are the two rigid modules for Hc(Bn) and if there exists no k such that 
n = k2, then there exists no rigid modules. Therefore, Proposition 4.22 implies that, in 
this latter case, there exist no rigid modules for Hc(Dn). Moreover, in the case n = k2, 
the rigid Hc(Dn)-modules are precisely the modules of the form Lc(λ), where πλ is an 
irreducible Dn-submodule of π((kk),∅) or π(∅,(kk)). But both of these Bn-modules restrict 
to the irreducible Dn-module π{(kk),∅}. �
Theorem 7.2. Assume that κ �= 0. The symplectic leaves of Xc(Dn) are in bijection with 
the set {k ≥ 1 | k2 ≤ n}, such that

(a) dimLk = 2(n − k2),
(b) the leaf Lk is labelled by the conjugacy class of the parabolic subgroup Dk2,
(c) Lk ≺ Lk′ if and only if (Dk2) ≤ (D(k′)2), if and only if k ≥ k′.
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Proof. By Lemma 7.1 and Theorem C, there exists at least one zero-dimensional leaf 
in Xc(Dn) when n = k2. But we know that there is exactly one zero-dimensional leaf 
in Xc(Bn) when n = k2. Thus, Lemma 4.18 implies that Xc(Dn) contains exactly one 
zero-dimensional leaf when n = k2. Since Xc(Bn) contains no zero-dimensional leaves 
when n �= k2, Lemma 4.18 implies that Xc(Dn) also contains no zero-dimensional leaves 
in this case.

Now, we apply Theorem 4.13. By Lemma 4.6, the proper parabolic subgroups of Dn

are all conjugate to a subgroup of the form Dm × Sλ, where 0 ≤ m < n and λ is a 
partition of n − m. We denote by c′ the restriction of c to Dm × Sλ. Let us consider 
when Xc′(Dm ×Sλ) = Xc′(Dm) × Xc(Sλ) admits a zero dimensional leaf. Since κ �= 0, 
there is a zero-dimensional leaf in Xc′(Sλ) if and only if Sλ = {1}, i.e. if λ = (1n−m). 
In this case Xc(Sλ) is a point. Moreover, Xc′(Dm) has a zero-dimensional leaf if and 
only if there exists a k such that m = k2. Thus, either m = k2 and λ = (1n−m), in 
which case there is exactly one zero-dimensional leaf in Xc′(Dm ×Sλ), or there are no 
zero-dimensional leaves in Xc′(Dm × Sλ). Hence Theorem 4.13 implies the statements 
of the theorem. �

By [4, Corollary 6.10], the Calogero–Moser families for Hc(Dn), with c �= 0, are 
described as follows. If λ is a partition of n/2, then the two representations {λ}1 and 
{λ}2 each form a singleton family. Otherwise, {λ, μ} and {λ′, μ′} are in the same family 
if and only if Res {λ,μ}(x) = Res {λ′,μ′}(x), where Res {λ,μ}(x) := Res λ(x) + Res μ(x).

Theorem 7.3. Assume that c ≥ 0.

(a) The Lusztig c-families for Dn equal the Calogero–Moser c-families.
(b) The cuspidal Lusztig c-families equal the cuspidal Calogero–Moser c-families.

Proof. By Lemma 2.5, Lemma 3.8 and Lemma 4.11 we may assume that (c1, κ) = (0, 1). 
The first part of the theorem follows from Corollary 6.13, [33, Section 22.26], and the 
above description of the Calogero–Moser families. As shown in [32, Section 8.1], there is 
a unique cuspidal Lusztig family when n = k2 and none otherwise. In the case n = k2, 
it is the unique family containing the symbol

(
0, 2, . . . , 2k − 2
1, 3, . . . , 2k − 1

)
. (28)

The content of this symbol is 
∑2k−1

i=0 xi, which is the same as the content of the symbol

S =
(
k, k + 1, . . . , 2k − 1
0, 1, . . . , k − 1

)
.
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This is the symbol of ((kk), ∅) in Syk(1,0);n, which implies that the cuspidal Lusztig family 
corresponding to the content of the symbol (28) is the same as the Calogero–Moser 
family containing {(kk), ∅}. By Lemma 7.1 and Theorem 7.2, this is the unique cuspidal 
Calogero–Moser family. �
8. Type I2(m)

In this section we treat the case of dihedral groups. We show that almost all represen-
tations of the restricted rational Cherednik algebra are rigid. From this we easily obtain 
the proof of Theorem A. We note that the results here together with [42, Appendix B]
give a complete description of the representation theory of restricted rational Cherednik 
algebras for dihedral groups at all parameters.

8.1. The group

Throughout, we assume that m ≥ 5 and choose a primitive m-th root of unity ζ ∈ C. 
Let W be the Coxeter group of type I2(m). This is the dihedral group of order 2m. It has 
two natural presentations, namely the Coxeter presentation 〈s, t | s2 = t2 = (st)m = 1〉
and the geometric presentation 〈s, r | rm = 1, s2 = 1, s−1rs = r−1〉 with a generating 
rotation r := st for the symmetries of a regular m-gon.

8.2. Representations

The representation theory of W depends on the parity of m. In the following we use 
the same notation for the representations as in [23, 5.3.4], which essentially is also the 
same as in [22].

If m is odd, the conjugacy classes of W are

{1}, {r±1}, {r±2}, . . . , {r±(m−1)/2}, {rls | 0 ≤ l ≤ m− 1} ,

and so the total number of conjugacy classes is (m + 3)/2. There are two irreducible 
one-dimensional representations: the trivial one 1W and the sign representation ε : W →
C with

ε(s) = −1 , ε(t) = −1 , ε(r) = 1 .

The remaining (m +3)/2 −2 = (m −1)/2 irreducible representations ϕi, 1 ≤ i ≤ (m −1)/2, 
are all two-dimensional and are given by

ϕi(s) =
(

0 1
1 0

)
, ϕi(t) :=

(
0 ζ−i

ζi 0

)
, ϕi(r) =

(
ζi 0
0 ζ−i

)
.

We denote the character of ϕi by χi.
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If m is even, then the conjugacy classes of W are

{1} , {r±1} , {r±2} , . . . , {r±m/2} ,

{r2ks | 0 ≤ k ≤ (m/2) − 1} , {r2k+1s | 0 ≤ k ≤ (m/2) − 1} ,

and so the total number of conjugacy classes is (m + 6)/2. There are four irreducible 
one-dimensional representations: the trivial one 1W , the sign representation ε, and two 
further representations ε1, ε2 with

ε(s) = −1 , ε(t) = −1 , ε(r) = 1 ,

ε1(s) = 1 , ε1(t) = −1 , ε1(r) = −1 ,

ε2(s) = −1 , ε2(t) = 1 , ε2(r) = −1 .

The remaining (m +6)/2 −4 = (m −2)/2 irreducible representations ϕi, 1 ≤ i ≤ (m −2)/2, 
are all two-dimensional and are defined as in case m is odd. Again, we denote the 
character of ϕi by χi.

8.3. Reflections and parameters

The two-dimensional faithful irreducible representation ϕ1 of W is a reflection repre-
sentation in which precisely the elements sl := rls for 0 ≤ l ≤ m − 1 act as reflections. 
We will always fix this representation as the reflection representation of W . Let (y1, y2)
be the standard basis of h := C2 and let (x1, x2) be the dual basis. We can easily verify 
that roots and coroots for the reflections sl are given by

αsl = x1 − ζ−lx2 and α∨
sl

= y1 − ζy2 .

With this we see that the Cherednik coefficients (yi, xj)sl = −(yi, αsl)(α∨
sl
, xj) are:

(y1, x1)sl = −1 , (y1, x2)sl = ζ−l , (y2, x1)sl = ζl , (y2, x2)sl = −1 .

If m is odd, there is just one conjugacy class of reflections in W , namely the one of s
which is {sl | 0 ≤ l ≤ m − 1}. If m is even, there are two conjugacy classes of reflections 
in W , namely the one of s which is {s2l | 0 ≤ l ≤ m

2 − 1} and the one of t which is 
{s2l+1 | 0 ≤ l ≤ m

2 − 1}. Note that

ϕi(sl) =
(

0 ζil

ζ−il 0

)
.

If c : Ref(W ) → C is a function which is constant on conjugacy classes, then, as in 
[22, 1.3.7], we define

b := c(s) , a := c(t) .
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Table 1
The (cuspidal) Calogero–Moser families and rigid representations for dihedral groups.

Parameters CM families Rigid
representations

Cuspidal
CM families

a, b �= 0 and a �= ±b {1}, {ε}, {ε1}, {ε2}, F R F
a = 0 and b �= 0 {1, ε2}, {ε, ε1}, F R F
a �= 0 and b = 0 {1, ε1}, {ε, ε2}, F R F
a = b �= 0 {1}, {ε}, {ε1, ε2} ∪ F ε1, ε2, ϕ|F|, R {ε1, ε2} ∪ F
a = −b �= 0 {ε1}, {ε2}, {1, ε} ∪ F 1, ε, ϕ1, R {1, ε} ∪ F

We fix such a function from now on and assume that c �= 0. Note that if m is odd, we 
have a = b.

8.4. Summary

We start with a tabular summary of the description of (cuspidal) Calogero–Moser 
families and rigid representations. To simplify notation we denote by F the set of two-
dimensional irreducible characters of W . To allow a presentation which is independent 
of the parity of m we set

R :=
{

{ϕi | 1 < i ≤ (m− 1)/2} = F \ {ϕ1} if m is odd
{ϕi | 1 < i < (m− 2)/2} = F \ {ϕ1, ϕ(m−2)/2} if m is even.

We make the convention that we ignore ε1 and ε2 whenever m is odd.

Theorem 8.1. The (cuspidal) Calogero–Moser families and rigid representations of 
Hc(W ) are as listed in Table 1.

In the next three sections we will prove this theorem.

8.5. Calogero–Moser families

We recall from [40] the notion of Euler c-families. These are defined by the action of 
the (central) Euler element of Hc(W ) on the simple modules and are coarser than the 
Calogero–Moser c-families. In [40, Corollary 1] a simple character theoretic formula for 
determining these families is given: two irreducible characters λ and μ of W lie in the 
same Euler c-family if and only if

∑
x∈Ref(W )

c(x)
(
λ(x)
λ(1) − μ(x)

μ(1)

)
= 0 .

This formula is in our case equivalent to

a

(
λ(s) − μ(s)

)
+ b

(
λ(t) − μ(t)

)
= 0 .
λ(1) μ(1) λ(1) μ(1)
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From this it is easy to deduce that the Euler families are as in Table 1. In [3] the first 
author has proven that, for any c, the Euler c-families are in fact already Calogero–Moser 
c-families when W is a dihedral group.

8.6. Rigid representations

We split the proof of the description of rigid representations into two parts, depending 
on the parity of m.

Proposition 8.2. Assume that m is odd. The following holds:

(a) The representations 1, ε, and ϕ1 are not rigid.
(b) The representation ϕi is a rigid representation for all 1 < i ≤ (m − 1)/2.

Proof. The representation ϕi for 1 ≤ i ≤ (m − 1)/2 is rigid if and only if

0 = a
m−1∑
l=0

(yk, xj)slϕi(sl)

for all k, j ∈ {1, 2}. As a �= 0, this is equivalent to

m−1∑
l=0

(yk, xj)slϕi(sl) = 0 (29)

for all k, j ∈ {1, 2}. Note that

m−1∑
l=0

(ζq)l =
{

m if q ∈ mZ

0 else.

Using the Cherednik coefficients computed in §8.3, equation (29) is for k = 1 = j and 
for k = 2 = j equivalent to

m−1∑
l=0

(
0 ζil

ζ−il 0

)
= 0 ⇐⇒

m−1∑
l=0

(ζi)l = 0 and
m−1∑
l=0

(ζ−i)l = 0

and due to the aforementioned, this condition is satisfied if and only if i /∈ mZ. Since 
1 ≤ i ≤ (m −1)/2, this is always satisfied. For k = 1 and j = 2 equation (29) is equivalent 
to

m−1∑
ζ−l

(
0 ζil

ζ−il 0

)
= 0 ⇐⇒

m−1∑
ζil−l = 0 and

m−1∑
ζ−il−l = 0
l=0 l=0 l=0
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⇐⇒
m−1∑
l=0

(ζi−1)l = 0 and
m−1∑
l=0

(ζ−i−1)l = 0

⇐⇒ i− 1 /∈ mZ and i + 1 /∈ mZ .

Due to 1 ≤ i ≤ (m − 1)/2 the condition i +1 /∈ mZ is always satisfied. Hence, (29) holds 
for k = 1 and j = 2 if and only if i �= 1. Finally, for k = 2 and j = 1 equation (29) is 
equivalent to

m−1∑
l=0

ζl
(

0 ζil

ζ−il 0

)
= 0 ⇐⇒

m−1∑
l=0

ζil+l = 0 and
m−1∑
l=0

ζ−il+l = 0

⇐⇒
m−1∑
l=0

(ζi+1)l = 0 and
m−1∑
l=0

(ζ−i+1)l = 0

⇐⇒ i + 1 /∈ mZ and i− 1 /∈ mZ .

Again, the condition i + 1 /∈ Z is always satisfied and i − 1 /∈ mZ holds if and only if 
i �= 1. This proves the claim. �
Proposition 8.3. Assume that m is even. The following holds:

(a) For any 1 < i < (m − 2)/2 the representation ϕi is rigid.
(b) The representation ϕ1 is rigid if and only if a = −b.
(c) The representation ϕ(m−2)/2 is rigid if and only if a = b.
(d) The representations 1 and ε are rigid if and only if a = −b.
(e) The representations ε1 and ε2 are rigid if and only if a = b.

Proof. This follows from a similar direct computation as in the proof of Proposition 8.2. 
We omit the details here. �
8.7. Cuspidal Calogero–Moser families

For m ≥ 5 the first author has shown in [2, §5.5] that independent of the parameter 
c there is exactly one cuspidal Calogero–Moser family. It thus remains to identify this 
family. Since m ≥ 5 we have R �= ∅, and as R is always contained in the Calogero–Moser 
family which in Table 1 is claimed to be cuspidal, it follows from Theorem C that this 
family is indeed the unique cuspidal one.

8.8. Lusztig families

From now on we assume that c ≥ 0. The Lusztig families of W are listed in Table 2
which is taken from [22, 1.7.3].
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Table 2
Lusztig families.

Parameters Lusztig families
b = a > 0 {1W }, {ε}, {ε1, ε2} ∪ F
b > a > 0 or a > b > 0 {1W }, {ε}, {ε1}, {ε2}, F
b > a = 0 {1W , ε1}, {ε, ε2}, F
a > b = 0 {1W , ε2}, {ε, ε1}, F

Table 3
The a-function.

Parameters ϕi 1W ε ε1 ε2

b = a > 0 a 0 ma a a

b > a ≥ 0 b 0 m
2 (a + b) a m

2 (b − a) + a

a > b ≥ 0 a 0 m
2 (a + b) m

2 (a − b) + b b

Comparison with the Calogero–Moser families immediately yields the proof of Theo-
rem 2.4 for dihedral groups:

Corollary 8.4. For any c ≥ 0 the Lusztig c-families are equal to the Calogero–Moser 
c-families.

8.9. Cuspidal Lusztig families

In order to determine which of the Lusztig families are cuspidal we explicitly compute 
the j-induction. The group W has two non-trivial proper parabolic subgroups: the group 
P1 := 〈s〉 and the group P2 := 〈t〉, which are both Coxeter groups of type A1. Let ψi be 
the non-trivial irreducible character of Pi and note that this is the sign representation 
of this Coxeter group. It is not hard to compute that

IndW
P1

1P1 = 1W + ε1 +
∑
j

χj , IndW
P1
ψ1 = ε + ε2 +

∑
j

χj + δ1W ,

IndW
P2

1P2 = 1W + ε2 +
∑
j

χj , IndW
P2
ψ2 = ε + ε1 +

∑
j

χ + δ1W ,

where

δ :=
{

0 if m is even
1 if m is odd

and the sums are taken over all two-dimensional characters.
Lusztig’s a-functions aχ of the irreducible characters χ of W with respect to c are 

listed in Table 3 which is taken from [22, 1.3.7], where the last row follows by symmetry. 
Using [22, 1.3.3] we see that the a-functions for the irreducible characters of the parabolic 
subgroups with respect to the restriction of c to these groups are as in Table 4. From 
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Table 4
The a-function for the parabolic subgroups Pi.

χ 1P1 ψ1 1P2 ψ2

aχ 0 b 0 a

Table 5
j-induction.

Parameters jWP1
1P1 jWP1

ψ1 jWP2
1P2 jWP2

ψ2

b = a > 0 1W ε2 +
∑

j χj 1W ε1 +
∑

j χj

b > a > 0 1W

∑
j χj 1W ε1

b > a = 0 1W + ε1
∑

j χj 1W ε1
a > b > 0 1W ε2 1W

∑
j χj

a > b = 0 1W ε2 1W + ε2
∑

j χj

these tables we can deduce that Lusztig’s j-induction is as in Table 5.
Using the table of j-inductions we can now easily determine the cuspidal Lusztig 

families.

Lemma 8.5. Let c ≥ 0. There is a unique cuspidal Lusztig family. This family is equal to 
{ε1, ε2} ∪ F if b = a, and otherwise it is equal to F .

Proof. The Lusztig families of the parabolic subgroup Pi are {1Pi
} and {ψi} if b �= 0, 

respectively a �= 0, and they are {1Pi
, ψi} if b = 0, respectively a = 0. The claim follows 

now easily from the definition of cuspidality using the table of j-inductions. �
Comparison with the cuspidal Calogero–Moser families completes the proof of Theo-

rem A.
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