期刊论文详细信息
JOURNAL OF ALGEBRA 卷:484
Homotopy theory and generalized dimension subgroups
Article
Ivanov, Sergei O.1  Mikhailov, Roman1,2  Wu, Jie3 
[1] St Petersburg State Univ, Chebyshev Lab, 14th Line,29b, St Petersburg 199178, Russia
[2] Steklov Math Inst, St Petersburg Dept, St Petersburg, Russia
[3] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
关键词: Homotopy groups;    Group ring;    Generalized dimension subgroups;    Simplicial groups;   
DOI  :  10.1016/j.jalgebra.2017.04.012
来源: Elsevier
PDF
【 摘 要 】

Let G be a group and R, S, T its normal subgroups. There is a natural extension of the concept of commutator subgroup for the case of three subgroups parallel to R, S, T parallel to as well as the natural extension of the symmetric product parallel to r, s, t parallel to for corresponding ideals r, s, t in the integral group ring Z[G]. In this paper, it is shown that the generalized dimension subgroup G boolean AND (1 + parallel to r, s, t parallel to) has exponent 2 modulo parallel to R, S, T parallel to. The proof essentially uses homotopy theory. The considered generalized dimension quotient of exponent 2 is identified with a subgroup of the kernel of the Hurewicz homomorphism for the loop space over a homotopy colimit of classifying spaces. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2017_04_012.pdf 415KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次