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1. Introduction

Let G be a group and Z[G] its integral group ring. Every two-sided ideal a in the 
integral group ring Z[G] of a group G determines a normal subgroup

D(G,a) := G ∩ (1 + a)

of G. Such subgroups are called generalized dimension subgroups. The identification of 
generalized dimension subgroups is a fundamental problem in the theory of group rings. 
In general, given an ideal a, the identification of D(G, a) is very difficult, for a survey 
on the problems in this area see [12,16].

The idea that the generalized dimension subgroups are related to the kernels of 
Hurewicz homomorphisms of certain spaces was discussed in [16,17], however, in the 
cited sources, all applications of homotopical methods to the problems of group rings 
were related to very special cases. In this paper, we apply homotopy theory for a purely 
group-theoretical result of a more general type, namely to the description of the expo-
nent of generalized dimension quotient constructed for a triple of normal subgroups in 
any group G.

Let G be a group and R, S its normal subgroups. Denote r = (R − 1)Z[G], s =
(S − 1)Z[G]. It is proved in [2] that

D(G, rs + sr) = [R,S]. (1)

The following question arises naturally: how one can generalize the result (1) to the case 
of three or more normal subgroups of G. Our main result is the following.

Theorem 1. Let G be a group and R, S, T its normal subgroups. Denote

r = (R− 1)Z[G], s = (S − 1)Z[G], t = (T − 1)Z[G]

and

‖R,S, T‖ := [R,S ∩ T ][S,R ∩ T ][T,R ∩ S]

‖r, s, t‖ := r(s ∩ t) + (s ∩ t)r + s(r ∩ t) + (r ∩ t)s + t(r ∩ s) + (r ∩ s)t.

Then, for every g ∈ D(G, ‖r, s, t‖), g2 ∈ ‖R, S, T‖, i.e. the generalized dimension quo-
tient

D(G, ‖r, s, t‖)
‖R,S, T‖ (2)

is a Z/2-vector space.
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The proof of Theorem 1 consists of the following steps. First we show that there exists 
a space X such that there is a commutative diagram

R∩S∩T
‖R,S,T‖

r∩s∩t
‖r,s,t‖

π2(ΩX)
h2Ω

H2(ΩX)

(3)

where the lower horizontal map is the Hurewicz homomorphism. Secondly, we show that, 
for any space X, the kernel of the Hurewicz homomorphism

Ωh2 : π2(ΩX) → H2(ΩX)

is a 2-torsion subgroup of π2(ΩX) = π3(X).
There are examples of groups with triples of subgroups such that the generalized 

dimension quotient 2 is non-trivial. Let F = F (a, b, c) be a free group with basis {a, b, c}. 
Consider the following normal subgroups of F :

R = 〈a−1b2, c〉F , S = 〈a, bc−1〉F , T = 〈a, b〉F .

Then, there exists the following natural commutative diagram

Z/2 R∩S∩T
‖R,S,T‖

r∩s∩t
‖r,s,t‖

Z/2 π2(ΩΣRP 2)
h2Ω

H2(ΩΣRP 2)

This example and discussion of a generalization of the considered construction to the 
case of 3 or more normal subgroups is given in section 5.

Another application of homotopic methods is the following identification of the gen-
eralized dimension subgroup (see Theorem 10):

D(G, rs + sr + (r ∩ s)t + t(r ∩ s)) = [R,S][R ∩ S, T ]. (4)

This generalizes (1), indeed, (1) is equivalent to (4) for T = 1.
The space X from (3) is the homotopy colimit of the cubic diagram of eight classifying 

spaces BG, B(G/R), B(G/S), B(G/T ), B(G/RS), B(G/RT ), B(G/ST ). The left vertical 
isomorphism in (3) is proved in [9]. In section 3 we develop the theory of cubes of 
fibrations in the category of simplicial non-unital rings and correspondence between 
n-cubes of fibrations with crossed n-cubes of rings. We obtain ring-theoretical analogs 
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of the result from [10]. Note that, in this paper, we do not consider the properties of 
universality of crossed n-cubes of rings. The universality property is needed for an explicit 
description of the homology groups H∗(ΩX) of homotopy colimits X of classifying spaces 
(see the proof of theorem 1 in [9]). For the reason of this paper, namely, for an analysis 
of generalized dimension subgroups, only crossed properties of the diagrams of rings are 
enough and these properties are given in section 3.

The above problem can be naturally generalized to the case of > 3 normal subgroups. 
Let G be a group and R1, . . . , Rn, n ≥ 2 its normal subgroups. Denote

‖R1, . . . , Rn‖ :=
∏

I∪J={1,...,n},I∩J=∅
[∩i∈IRi,∩j∈JRj ]

Similarly, for a collection a0, . . . , an of ideals in a ring R, denote

‖a1, . . . ,an‖ :=
∑

I∪J={1,...,n},I∩J=∅
(∩i∈Iai)(∩j∈Jaj) + (∩j∈Jaj)(∩i∈Iai).

It is easy to check that for arbitrary ideals a, b of Z[G] we have D(a)D(b) ⊆ D(a + b)
and [D(a), D(b)] ⊆ D(ab + ba). Indeed, the first inclusion is obvious, and the second 
follows from the equality g−1h−1gh − 1 = g−1h−1((g − 1)(h − 1) − (h − 1)(g − 1)) for 
arbitrary g, h ∈ G. Therefore, for any G and its normal subgroups R1, . . . , Rn,

‖R1, . . . , Rn‖ ⊆ D(G, ‖r1, . . . , rn‖),

where ri = (Ri−1)Z[G]. One can ask how to identify the generalized dimension quotient 
or at least to describe its exponent. In the last section we consider some examples of 
groups G with collection of subgroups R1, . . . , Rn, such that the generalized dimension 
quotient is isomorphic to the kernel of the nth Hurewicz homomorphism for a certain 
space (or simplicial group).

2. Hurewicz homomorphism

2.1. Two lemmas about squares of abelian groups

First we state two lemmas about squares of abelian groups. These lemmas are ad-
vanced versions of well known statements (see [11, Part 1, 6.2.6]). We give them without 
a proof because it is standard. Authors learned these lemmas from non-formal discussions 
with Alexander Generalov.

Consider a square of abelian groups S with induced homomorphisms on kernels and 
cokernels:
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Ker(g)
f̃

Ker(g′)

Ker(f)

g̃

A
f

g

B

g′

Coker(f)

g̃′S

Ker(f ′) C
f ′

D Coker(f ′)

Coker(g)
f̃ ′

Coker(g′),

and maps A → B ⊕ C → D given by a �→ (f(a), −g(a)) and (b, c) �→ g′(b) + f ′(c).

Lemma 2. The following statements are equivalent.

(1) S is a pushout square.
(2) The sequence A → B ⊕ C → D → 0 is exact.
(3) g̃′ is an isomorphism and g̃ is an epimorphism.
(4) f̃ ′ is an isomorphism and f̃ is an epimorphism.

Lemma 3. The following statements are equivalent.

(1) S is a pullback square.
(2) The sequence 0 → A → B ⊕ C → D is exact.
(3) g̃ is an isomorphism and g̃′ is a monomorphism.
(4) f̃ is an isomorphism and f̃ ′ is a monomorphism.

2.2. Whitehead quadratic functor

For an abelian group A, the Whitehead group Γ(A) (see [1,19]) is generated by symbols 
γ(a), a ∈ A with the following relations

γ(0) = 0,

γ(−a) = γ(a), a ∈ A

γ(a + b + c) − γ(a + b) − γ(a + c) − γ(b + c) + γ(a) + γ(b) + γ(c) = 0, a, b, c ∈ A.

The correspondence A �→ Γ(A) defines a quadratic functor in the category of abelian 
groups called the Whitehead quadratic functor. It has the following simple properties

Γ(Z/n) = Z/(2n, n2)
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A⊗B = Ker{Γ(A⊕B) → Γ(A) ⊕ Γ(B)}.

There is a natural transformation of functors Γ → ⊗2 defined, for an abelian group A, 
as γ(a) �→ a ⊗ a, a ∈ A.

Define the functor Φ as a kernel of Γ → ⊗2. Then, for any abelian group A, there is 
a natural exact sequence

0 → Φ(A) → Γ(A) → A⊗A → Λ2(A) → 0

where Λ2 is the exterior square. One can easily check that, for any pair of abelian groups 
A, B, the (bi)natural map between the cross-effects of the functors Γ and ⊗2

Γ(A|B) = A⊗B → ⊗2(A|B) = A⊗B ⊕B ⊗A

is a monomorphism. From this property together with the above description of the values 
of Γ for cyclic groups follows that Φ is a 2-torsion functor, i.e. for any A and a ∈ Φ(A), 
2a = 0 in Φ(A).

2.3. Kernel of the Hurewicz homomorphism

Proposition 4. For any connected space X, the kernel of the Hurewicz homomorphism

h2Ω : π2(ΩX) → H2(ΩX)

is a 2-torsion subgroup of π2(ΩX) = π3(X).

Observe that, the statement about the third Hurewicz homomorphism obviously is 
not true without taking loops. For any odd prime p, the 3-dimensional Moore space1

P 3(p) = S2 ∪p e
3 has π3(P 3(p)) = Z/p and H3(P 3(p)) = 0. A simpler example is S2 in 

which π3(S2) = Z but H3(S2) = 0.

Proof. First consider the case of a simply-connected space Y . Let GY be the simplicial 
Kan loop construction. Denote by Δ(GY ) the augmentation ideal Ker{Z[GY ] → Z}. 
Recall that, Δ(GY )/Δ2(GY ) = (GY )ab. The natural exact sequence

0 → Δ(GY )/Δ2(GY ) → Z[GY ]/Δ2(GY ) → Z → 0

implies that πi(Z[GY ]/Δ2(GY )) = πi((GY )ab) = Hi+1(Y ), i ≥ 1. Applying homotopy 
groups to the diagram of fibrations

1 There are two standard notations for Moore spaces. One notation is M(G, n). Another is Pn(k) =
Sk−1 ∪k en = M(Z/k, n − 1) used in classical homotopy theory [6].
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[GY,GY ] GY (GY )ab

Δ2(GY ) Z[GY ] Z[GY ]/Δ2(GY ),

we obtain the following commutative diagram

H4(Y ) π2([GY,GY ]) π2(ΩY )

h2Ω

H3(Y )

H4(Y ) π2(Δ2(GY )) H2(ΩY ) H3(Y ),

(5)

where the right two arrows are epimorphisms because the second Whitehead group 
Γ2(Y ) = 0 [19, p. 72]. By Curtis Connectivity Theorem (see [7, Theorem 7.2]),

πi([[GY,GY ], GY ]) = 0, i ≤ 2.

Analogous property holds for the augmentation cube:

πi(Δ3(GY )) = 0, i ≤ 2.

To see that, one can filter the simplicial abelian group Δ3(GY ) by augmentation powers 
Δi(GY ), i ≥ 3„ which is convergent by [3, Theorem 10.2], and observe that, by Kunneth 
formula, the corresponding quotients

Δi(GY )/Δi+1(GY ) = (GY )⊗i
ab

have zero homotopy groups in dimension ≤ 2 for all i ≥ 3. Therefore there are natural 
isomorphisms

π2([GY,GY ]) = π2([GY,GY ]/[[GY,GY ], GY ]) = π2(Λ2((GY )ab)),
π2(Δ2(GY )) = π2(Δ2(GY )/Δ3(GY )) = π2((GY )ab ⊗ (GY )ab).

The derived functors of Λ2 and ⊗2 are well-known in a general situation (see, for exam-
ple, [1]). We obtain the following natural diagram

π2([GY,GY ]) π2(Δ2(GY ))

Γ(H2(Y )) H2(Y ) ⊗H2(Y )

The left hand isomorphism in the last diagram is a reformulation of the result due to 
Whitehead [19] (the upper sequence in (5) is a part of so-called Certain Exact Sequence 
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from [19]), the right hand isomorphism follows from the Künneth formula. Now Lemmas 2
and 3 imply that, the diagram (5) can be extended to the following diagram

Φ(H2(Y )) K

H4(Y ) Γ(H2(Y )) π3(Y )

h2Ω

H3(Y )

H4(Y ) H2(Y ) ⊗H2(Y ) H2(ΩY ) H3(Y )

H2(Y ) ∧H2(Y ) H2(π1(ΩY ))

where the upper horizontal map is an epimorphism. Since the group Φ(H2(Y )) is 
2-torsion, the kernel K of the Hurewicz homomorphism also is 2-torsion and the needed 
statement is proved.

Now consider the case of arbitrary connected space X. Consider its universal cover 
X̃ → X. The needed statement follows from the diagram

π2(ΩX̃)

h2Ω

π2(ΩX)

h2Ω

H2(ΩX̃) H2(ΩX)

and the above proof of the statement for the simply-connected case. �
3. Cubes of simplicial non-unital rings and their crossed cubes

3.1. Cubes of fibrations and fibrant cubes

Set 〈n〉 = {1, . . . , n}. By a ring we assume a non-unital ring, and by a ring homomor-
phism we assume a non-unital ring homomorphism.

Consider the category of simplicial rings (s.r.) as a model category, whose weak equiv-
alences are weak equivalences of underlying simplicial sets and fibrations are level-wise 
surjective homomorphisms (see Ch.2 Σ4 [18]). Then a strict fibration sequence in sRng
is isomorphic to a sequence of the form

I → R � R/I, (6)

where I is an ideal of the simplicial ring R.
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Consider the ordered sets {0, 1} and {−1, 0, 1} as categories in a usual way. Let F :
{−1, 0, 1}n → sRng be a functor. For two disjoint subsets α, β ⊆ 〈n〉 (i.e. α ∩ β = ∅) we 
put

F(α, β) = F(i1, . . . , in),

where α = {k | ik = 1} and β = {k | ik = −1}. Then, if α′ ⊇ α and β′ ⊆ β, we have a 
map

F(α, β) −→ F(α′, β′).

An n-cube of fibrations of s.r. (see [15, 1.3]) is a functor F : {−1, 0, 1}n → sRng such 
that for any disjoint subsets α, β ⊆ 〈n〉 and k ∈ 〈n〉 \(α∪β) we have a fibration sequence

F(α, β ∪ {k}) → F(α, β) � F(α ∪ {k}, β).

If n = 2 it is a 3 × 3 square whose rows and columns are fibration sequences:

F(∅, 〈2〉) F(∅, {2}) F({1}, {2})

F(∅, {1}) F(∅, ∅) F({1}, ∅)

F({2}, {1}) F({2}, ∅) F(〈2〉, ∅).

An n-cube of s.r. is a functor R : {0, 1}n → sRng. We set

R(α) = R(i1, . . . , in),

where α = {k | ik = 1}. It is easy to see that {0, 1}n is a direct category, and hence, it 
is a Reedy category. It follows that there is a natural model structure on the category 
of n-cubes of simplicial rings, called Reedy model structure [14,13]. Weak equivalences 
of n-cubes in this model structure are defined level-wise. An n-cube R is fibrant in this 
model structure if and only if the map

R(α) −→ limα′� α R(α′)

is a fibration of s.r. for any α ⊆ 〈n〉.
We say that an n-cube of s.r. R can be embedded into an n-cube of fibrations of s.r. 

if there exists an n-cube of fibrations of s.r. F such that

R(α) = F(α, ∅).
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Let R be an n-cube of s.r. We consider the functor Efib(R) : {−1, 0, 1}n → sRng given 
by

Efib(R)(α, β) = Ker

⎛
⎝R(α) →

∏
i∈β

R(α ∪ {i})

⎞
⎠ (7)

with obvious morphisms.

Lemma 5. Let R be an n-cube of s.r. Then the following statements are equivalent.

(1) R is fibrant.
(2) R can be embedded into an n-cube of fibrations.
(3) Efib(R) is an n-cube of fibrations.

Moreover, if R is a fibrant n-cube of s.r., Efib(R) is the unique (up to unique isomorphism 
that respects the embeddings) n-cube of fibrations to which R can be embedded.

Proof. If d ≥ 0, k /∈ α and r ∈ R(α)d, we denote by rk the image of r in R(α ∪
{k})d. Assume that α, β ⊆ 〈n〉 are disjoint sets and d ≥ 0. An (α, β)-collection is a 
collection (ri) ∈

∏
i∈β R(α ∪ {i})d such that rji = rij for any i, j ∈ β. A lifting of an 

(α, β)-collection (ri) is an element r ∈ R(α)d such that ri = ri. It is easy to see that 
the ring limα′� α R(α′)d consist of (α, αc)-collections, where αc = 〈n〉 \ α. Then R is 
fibrant if and only if for any (α, αc)-collection there exists a lifting. We claim that if R is 
fibrant then for any disjoint α, β and any (α, β)-collection there exist a lifting. The proof 
is by induction on |〈n〉 \ (α∪ β)|. We already know the base case α∪ β = 〈n〉. Prove the 
inductive step. Assume that (ri)i∈β is an (α, β)-collection. Fix any j ∈ 〈n〉 \(α∪β) and the 
(α∪{j}, β)-collection (rji )i∈β . By induction hypothesis we have a lifting rj ∈ R(α∪{j})
of (rji ). Then we get a (α, β∪{j})-collection (ri)i∈β∪{j}. By induction hypothesis it has a 
lifting which is the lifting of the original (α, β)-collection (ri)i∈β . Therefore R is fibrant 
if and only if any (α, β)-collection has a lifting.

(1) ⇒ (3). Assume that R is fibrant and prove that Efib(R) is an n-cube of fibrations. 
Consider the diagram with exact rows

0 Efib(R)(α, β ∪ {k}) R(α)
∏

i∈β∪{k} R(α ∪ {i})

0 Efib(R)(α, β) R(α)
∏

i∈β R(α ∪ {i})

0 Efib(R)(α ∪ {k}, β) R(α ∪ {k})
∏

i∈β R(α ∪ {i, k}).

We have to prove that the left column is a short exact sequence. The only non-obvious 
thing is that Efib(R)(α, β)d → Efib(R)(α ∪ {k}, β)d is surjective. Consider any rk ∈
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Efib(R)(α ∪ {k}, β)d and denote ri = 0 for i ∈ β. Then (ri) is a (α, β ∪ {k})-collection, 
whose lifting is a preimage of rk.

(3) ⇒ (1). Assume that Efib(R) is an n-cube of fibrations and prove that R is fibrant. 
We need to prove that for any (α, β)-collection there exists a lifting. Prove it by induction 
on |β|. If β = ∅, it is obvious. Assume that it holds for β and prove it for β′ = β ∪ {k}, 
where k ∈ 〈n〉 \ (α ∪ β). Consider an (α, β ∪ {k})-collection (ri)i∈β∪{k}. By induction 
hypotheses its (α, β)-subcollection (ri)i∈β has a lifting r̄ ∈ R(α)d. Then rk − r̄k ∈
Efib(α ∪ {k}, β)d. Since the map Efib(R)(α, β)d → Efib(R)(α ∪ {k}, β)d is surjective we 
get a preimage r̂ ∈ Efib(R)(α, β)d such that r̂k = rk − r̄k. Then r = r̂ + r̄ is a lifting of 
the (α, β ∪ {k})-collection (ri)i∈β∪{k}.

(3) ⇒ (2). Obvious.
(2) ⇒ (3). Assume that R is embedded into an n-cube of fibrations F . Replacing F

by isomorphic one, we can assume that the fibres are identical embeddings. Prove that 
F(α, β) = Efib(α, β) by induction on |β|. If β = ∅, then F(α, ∅) = R(α) = Efib(α, ∅). 
Assume that it holds for β and prove it for β′ = α ∪ {k}. By induction hypothesis we 
have a commutative diagram

0

F(α, β ∪ {k}) R(α)
∏

i∈β∪{k} R(α ∪ {i})

0 Efib(R)(α, β) R(α)
∏

i∈β R(α ∪ {i})

0 Efib(R)(α ∪ {k}, β) R(α ∪ {k})
∏

i∈β R(α ∪ {i, k}),

where the left column is a fibration sequence. Using that

F(α, β ∪ {k})d = Ker(Efib(α, β)d → Efib(α ∪ {k}, β)d)

it is easy to deduce from the diagram that

F(α, β ∪ {k})d = Ker(R(α)d →
∏

i∈β∪{k}
R(α ∪ {i})d) = Efib(R)(α, β ∪ {k})d. �

Remark 6. In the proof of Lemma 5 we do not really use the simplicial structure. Ev-
erything is done degreewise. We do not even use the multiplication. Basically it is a 
very elementary statement about abelian groups. If we define (fibrant) n-cube of abelian 
groups, n-cube of short exact sequences and Efib in the appropriate way, we get the fol-
lowing statement. If A is an n-cube of abelian groups, then the following are equivalent:
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(1) A is fibrant.
(2) A can be embedded into an n-cube of short exact sequences.
(3) Efib(A) is an n-cube of short exact sequences.

3.2. Cubes of fibrations and good tuples of ideals

An n-tuple of ideals of a s.r. is a tuple I = (R; I1, . . . , In), where R is a simplicial ring 
and Ii are (simplicial) ideals of R. For β ⊆ 〈n〉 we set

I(β) =
⋂
i∈β

Ii.

An n-tuple of ideals I is said to be good if for any disjoint subsets α, β ⊂ 〈n〉 and 
k ∈ 〈n〉 \ (α ∪ β) the following equality holds

I(β ∪ {k}) ∩
(∑

i∈α

I(β ∪ {i})
)

=
∑
i∈α

I(β ∪ {k, i}). (8)

It easy to check that any 2-tuple of ideals is always good. But a 3-tuple of ideals is good 
if and only if for any i, j, k ∈ {1, 2, 3} the following holds

Ii ∩ (Ij + Ik) = Ii ∩ Ij + Ii ∩ Ik.

For an n-tuple of ideals I = (R; I1, . . . , In) we consider the functor

Eidl(I) : {−1, 0, 1}n → sRng

given by

Eidl(I)(α, β) = I(β)∑
i∈α I(β ∪ {i}) (9)

with obvious morphisms. For example Eidl(R; I, J) looks as follows:

I ∩ J I I/(I ∩ J)

J R R/J

J/(I ∩ J) R/I R/(I + J).

Note that this definition can be rewritten in a way dual to (7):

Eidl(I)(α, β) = Coker
(∐

I(β ∪ {i}) → I(β)
)
.

i∈α
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For an n-cube of fibrations F we consider an n-tuple of ideals

Tidl(F) = (R; I1, . . . , In), R = F(∅, ∅), Ii = Ker(F(∅, ∅) → F({i}, ∅)). (10)

Lemma 7. Let I be an n-tuple of ideals of a s.r. Then the following statements are 
equivalent.

(1) I is good;
(2) I = Tidl(F) for some n-cube of fibrations F ;
(3) Eidl(I) is an n-cube of fibrations.

Moreover, if I is good, Eidl(I) is the unique (up to unique isomorphism that respects the 
equalities) n-cube of fibrations such that I = Tidl(Eidl(I)).

Proof. (1) ⇔ (3). Let α, β ⊂ 〈n〉 be disjoint sets and k ∈ 〈n〉 \ (α ∪ β). Consider the 
sequence

I(β ∪ {k})∑
i∈α I(β ∪ {i, k}) −→ I(β)∑

i∈α I(β ∪ {i}) −→ I(β)∑
i∈α∪{k} I(β ∪ {i}) .

It is easy to see that the right hand map is an epimorphism and that it is exact in the 
middle term. Moreover, the left hand homomorphism is a monomorphism if and only if 
(8) holds.

(3) ⇒ (2). Follows from the equality Tidl(Eidl(I)) = I.
(2) ⇒ (3). Assume that I = Tidl(F) for some n-cube of fibrations F . Replacing F by 

isomorphic one, we can assume that the fibres are identical embeddings. First we prove 
that I(β) = F(∅, β). The proof is by induction on |β|. If |β| = 0, 1 it is obvious. Assume 
that |β| ≥ 2 and fix two distinct elements k, l ∈ β. By induction hypothesis we have

F(∅, β \ {k}) = I(β \ {k})

and

F(∅, β \ {l}) = I(β \ {l}).

Consider the diagram

0 F(∅, β) I(β \ {k}) F({k}, β) 0

0 I(β \ {l}) I(β \ {k, l}) F({k}, β \ {k, l}) 0,

whose rows are short exact sequences. Since the left square consists of monomorphisms 
and the map on the cokernels

F({k}, β) → F({k}, β \ {k, l})
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is a monomorphism, by Lemma 3 we get that the left square is a pullback square. Hence,

F(∅, β) = I(β \ {k}) ∩ I(β \ {l}) = I(β).

So we have F(∅, β) = Eidl(∅, β). Further we prove by induction on |α| that there is 
a unique isomorphism F(α, β) ∼= Eidl(I)(α, β) that satisfies commutation properties and 
lifts this equality for α = ∅. Assume that this holds for α and prove it for α ∪ {k}. By 
the induction hypothesis we have that

F(α, β ∪ {k}) = I(β ∪ {k})∑
i∈α I(β ∪ {i, k})

and

F(α, β) = I(β)∑
i∈α I(β ∪ {i}) .

It follows that there is a short exact sequence

0 → I(β ∪ {k})∑
i∈α I(β ∪ {i, k}) −→ I(β)∑

i∈α I(β ∪ {i}) −→ F(α ∪ {k}, β) → 0,

which induces the required isomorphism F(α, β) ∼= I(β)∑
i∈α∪{k} I(β∪{i}) . �

3.3. Three equivalent categories

Consider the truncation functor

Tfib : (n-cubes of fibrations of s.r.) −→ (fibrant n-cubes of s.r.) (11)

that induced by the embedding {0, 1}n ⊂ {−1, 0, 1}n. Lemma 5 implies that this functor 
is well defined.

Proposition 8. The functors

(fibrant n-cubes of s.r.)

Efib∼

(n-cubes of fibrations of s.r.)

Tidl∼

Tfib

(good n-tuples of ideals of s.r.)

Eidl

(12)

given by (7), (9), (11) and (10) define mutually invert equivalences of categories.
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Proof. The equalities TfibEfib = Id, TidlEidl = Id are obvious. The isomorphisms 
EfibTidl ∼= Id and EfibTidl ∼= Id follow from Lemma 5 and Lemma 7. �

Consider the functor

Fibre : (fibrant n-cubes of s.r.) ∼−→ (good n-tuples of ideals of s.r.), (13)

given by Fibre(R) = (R; I1, . . . , In), where R = R(∅) and Ii = Ker(R(∅) → R({i})).

Corollary 9. The functor (13) is an equivalence of categories.

3.4. Crossed cubes of cubes of simplicial rings

Following Ellis [8] we define a crossed n-cube of rings {Rβ} as a family of rings, where 
β ⊆ 〈n〉 together with homomorphisms μi : Rβ → Rβ\{i} and h : Rβ ⊗ Rβ′ → Rβ∪β′

such that for a, a′ ∈ Rβ , b, b′ ∈ Rβ′ , c ∈ Rβ′′ and i, j ∈ 〈n〉 such that

• μia = a if i /∈ β;
• μiμja = μjμia;
• μih(a ⊗ b) = h(μia ⊗ b) = h(a ⊗ μib);
• h(a ⊗ b) = h(μia ⊗ b) = h(a ⊗ μib) if i ∈ β ∩ β′;
• h(a ⊗ a′) = aa′;

with the associative property:

• h(h(a ⊗ b) ⊗ c) = h(a ⊗ h(b ⊗ c)).

Morphisms of crossed n-cubes are defined obviously. Consider the functor

π0 : (n-tuples of ideals of s.r.) −−→ (crossed n-cubes of r.) (14)

that sends I to {Rβ}, where Rβ = π0I(β), μi = π0(I(β) ↪→ I(β\{i})) and h : Rβ⊗Rβ′ →
Rβ∪β′ is the composition of the isomorphism π0I(β) ⊗ π0I(β′) ∼= π0(I(β) ⊗ I(β′)) and 
the map π0(I(β) ⊗ I(β′) → I(β ∪ β′)). It is easy to check that {Rβ} is a crossed n-cube 
of rings.

In the Reedy model structure on the category of n-cubes there is a functorial fibrant 
replacement

γ : R ∼−→ R,

where R is a fibrant n-cube and γ is a weak equivalence and a cofibration. Then consider 
the functor

Π : (n-cubes of s.r.) −→ (crossed n-cubes of rings), (15)
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given by Π(R) = π0(Fibre(R)), which is analogue of the one constructed in [4] for 
simplicial rings (in order to make the analogue precise one should use that the category 
of catn-rings is equivalent to the category of crossed n-cubes of rings [8, Theorem 1.7]). 
Analysing the definition of Π we get the following. If R is an n-cube of s.r. we can 
embed it into a n-cube of homotopy fibration sequences F in the homotopy category of 
simplicial rings by taking homotopy fibres of all arrows, and then

Π(R)β = π0(F(∅, β)).

4. Proof of Theorem 1

4.1. The case of two subgroups

The case of two normal subgroups R, S in G is much simpler than the case in Theo-
rem 1. In this case, one has a square of fibrations (in the category of simplicial rings)

T r fib2

s Z[G] Z[G/S]

fib1 Z[G/R] Z[ΩX]

such that

π0(T )
μ2

μ1

r

s Z[G]

is a crossed square of rings. Since μ1h(a ⊗ b) = ab, a ∈ s, b ∈ r, and μ1h(a ⊗ b) = ab, 
a ∈ s, b ∈ r, rs + sr ⊆ Im(μ1) and rs + sr ⊆ Im(μ2). Comparing the picture for groups 
and group rings we conclude that there is a commutative diagram

R∩S
[R,S]

r∩s
rs+sr

π1(ΩX)
h1Ω

H1(ΩX)
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Since, for any connected space X, the Hurewicz homomorphism π1(ΩX) → H1(ΩX)
is a monomorphism, we obtain the following identification of the generalized dimension 
subgroup

D(G, rs + sr) = [R,S].

This gives a new proof of the result from [2]. This result can be generalized as follows.
Let T be a normal subgroup of subgroup of G and t = (T − 1)Z[G]. We obtain the 

following diagram

R∩S
[R,S][R∩S,T ]

r∩s
rs+sr+(r∩s)t+t(r∩s)

π1(ΩX)TRS/RS

(h1Ω)TRS/RS

H1(ΩX)TRS/RS .

Here the group TRS/RS is considered as a subgroup of π1(X) = G/RS. We show that 
(h1Ω)TRS/RS : π1(ΩX)TRS/RS −→ H1(ΩX)TRS/RS is a monomorphism for any normal 
subgroup T of G. Let G∗ be a simplicial group such that the geometric realization |G∗|
is weakly homotopy equivalent to ΩX. Observe that the action of π1(X) ∼= π0(G∗) is 
induced by the conjugation action of G0 on G∗. Let G̃∗ be the path-connected component 
of G∗ containing the identity element. From the simplicial Postnikov system, there is a 
short exact sequence of simplicial groups

1 −→ G̃∗ −→ G∗ −→ π0(G) −→ 1,

where π0(G) is the discrete simplicial group. Hence

G∗ =
∐

g∈π0(G)

gG̃∗

as a simplicial set. Let χh : G∗ → G∗, x �→ hxh−1 be the conjugation action of h ∈ G0
on G∗. Then χh(gG̃∗) = hgh−1G̃∗ with

χh(gx) = (hgh−1)(hxh−1).

This implies that

Hk(ΩX) ∼= H∗(G∗) ∼= Hk(G̃∗) ⊗ Z[π0(G∗)]

as modules over Z[π0(G∗)] for k ≥ 0, where Z[π0(G∗)] acts diagonally on the tensor 
product Hk(G̃∗) ⊗ Z[π0(G∗)]. It follows that Hk(Ω0X) ∼= Hk(G̃∗) is a Z[π0(G∗)] ∼=
Z[π1(X)]-equivariant summand of Hk(ΩX), where Ω0X is the path-connected com-
ponent of X containing the basepoint. By taking k = 1 with using the fact that 
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π1(ΩX) ∼= H1(Ω0X), we have (h1Ω)TRS/RS : π1(ΩX)TRS/RS −→ H1(ΩX)TRS/RS is 
a monomorphism for any normal subgroup T of G. As a consequence, we obtain that

R ∩ S

[R,S][R ∩ S, T ] −→
r ∩ s

rs + sr + (r ∩ s)t + t(r ∩ s) (16)

is a monomorphism for any normal subgroup T ≤ G. We proved the following

Theorem 10. For a group G and its normal subgroups R, S, T ,

D(G, rs + sr + (r ∩ s)t + t(r ∩ s)) = [R,S][R ∩ S, T ].

4.2. Proof of Theorem 1

Now suppose that R, S, T are normal subgroups of a group G. Let X be a homotopy 
pushout of the following diagram of classifying spaces:

BG B(G/R)

B(G/S) B(G/RS)

B(G/T ) B(G/RT )

B(G/ST ) X

(17)

Description of π1(X) follows from van Kampen theorem:

π1(X) � G/RST.

Certain higher homotopy groups of X are described in [9]. In particular, there is a natural 
isomorphism of π1(X)-modules:

π3(X) � R ∩ S ∩ T

‖R,S, T‖ (18)

where the action of π1(X) � G/RST on the right hand side of (18) is viewed via 
conjugation in G. Recall the idea of the proof from [9]. Extend the above pushout to the 
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cube of fibrations which have 27 spaces. The π1 of the opposite cube with eight vertices 
to the pushout in the cube of fibrations

π1(upper corner) S ∩ T

R ∩ T T

R ∩ S S

R G

is a crossed cube of groups. Moreover, it is a universal crossed cube of groups (see [9] for 
definition and discussion of the universality). One can realize the pushout diagram as 
a diagram of simplicial groups. The functor of group rings Z[−] : groups → group rings
sends pushouts to the pushouts in the category of simplicial rings. Extending this pushout 
diagram to a cube of homotopy fibration sequences in the category of simplicial rings 
and taking π0 of the complement part as in (15) we obtain the crossed cube of rings

π0(upper corner)
μ1

μ3
μ2

s ∩ t

r ∩ s s

r ∩ t t

r Z[G]
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Now we observe that

‖r, s, t‖ ⊆ Im(μi), i = 1, 2, 3.

This follows from the properties of crossed cubes

μih(a⊗ b) = h(μia⊗ b) = h(a⊗ μib), i = 1, 2, 3

for a ∈ r ∩ s, b ∈ t and other choices of ideals. Applying homotopy exact sequences of 
fibrations three times, and comparing them for simplicial groups and group rings, we 
obtain the needed commutative diagram

R∩S∩T
‖R,S,T‖

r∩s∩t
‖r,s,t‖

π2(ΩX)
h2Ω

H2(ΩX)

which considered together with Proposition 4 imply the needed statement. Theorem 1
follows. �
5. Generalizations and examples

5.1. Simplicial groups

If G is a simplicial group, we denote by NG its Moore complex. Cycles of this complex 
we denote by ZnG = Ker(d : NnG → Nn−1G), and boundaries by BnG = Im(d :
Nn+1G → NnG). Then πnG = ZnG/BnG. The following theorem is Theorem B of [5].

Theorem 11 ([5]). Let G be a simplicial group and n ≥ 1 such that Gn+1 is generated by 
degeneracies. Set Ki := Ker(di : Gn → Gn−1). Then

BnG = ‖K0, . . . ,Kn‖, πnG =
⋂n

i=0 Ki

‖K0, . . . ,Kn‖
.

The following theorem is an analogue of the previous one for the case of simplicial 
rings. It follows from Theorem A of [5].

Theorem 12 ([5]). Let R be a simplicial ring and n ≥ 1 such that Rn+1 is generated by 
degeneracies as a ring. Set ki := Ker(di : Rn → Rn−1). Then

BnR = ‖k0, . . . ,kn‖, πnR =
⋂n

i=0 ki

‖k0, . . . ,kn‖
.
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For a simplicial group G, the Hurewicz homomorphism h : πnG → HnG for n ≥ 1 is 
induced by the map G → Z[G] given by g �→ g − 1. The following statement is a direct 
corollary of Theorems 11 and 12.

Proposition 13. Let G be a simplicial group and n ≥ 1 such that Gn+1 is generated by 
degeneracies. Set

Ki := Ker(di : Gn → Gn−1)

ki := Ker(di : Z[Gn] → Z[Gn−1]).

Then

D(Gn, ‖k0, . . . ,kn‖)
‖K0, . . . ,Kn‖

= Ker(hn : πnG −→ HnG),

where hn is the nth Hurewicz homomorphism.

The generalized dimension subgroups as in Proposition 13 were considered in [17] for 
the case of simplicial Carlsson’s constructions. The main example which we will consider 
here is the p-Moore space P 3(p) = S2 ∪p e2 for a prime p ≥ 2. The lowest homotopy 
group of P 3(p) which contains Z/p2-summand is π2p−1P

3(p). This was proved in [6] for 
p > 3, however, π3P

3(2) = Z/4, π5P
3(3) = Z/9. Since all homology groups H∗(ΩP 3(p))

have exponent p, we have

Z/p ⊆ Ker{h2p−2 : π2p−2(ΩP 3(p)) → H2p−2(ΩP 3(p))}.

Taking G to be a simplicial model for ΩP 3(p) with G3 generated by degeneracies, we 
obtain the following example. Set G = G2p−2, Ki = Kerdi : G2p−2 → G2p−3, then, by 
Proposition 13, the generalized dimension quotient

D(G, ‖k0, . . . ,k2p−2‖)
‖K0, . . . ,K2p−2‖

contains a subgroup Z/p.
In the case p = 2, we can choose

G1 = F (σ), G2 = F (a, b, c)

with the face maps

d0 :

⎧⎪⎪⎨
⎪⎪⎩
a �→ σ2

b �→ σ

c �→ 1
, d1 :

⎧⎪⎪⎨
⎪⎪⎩
a �→ 1
b �→ σ

c �→ σ

, d2 :

⎧⎪⎪⎨
⎪⎪⎩
a �→ 1
b �→ 1
c �→ σ
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Taking the kernels R = Ker(d0), S = Ker(d1), T = Ker(d2), we obtain an example 
discussed in introduction, with

D(G, ‖r, s, t‖)
‖R,S, T‖ � Z/2.

Conjecture. For a prime p, any group G and its normal subgroups R1, . . . , Rn, n ≥ 2, 
the quotient

D(G, ‖r1, . . . , rn‖)
‖R1, . . . , Rn‖

is p-torsion free provided n < 2p − 1.

5.2. Connectivity conditions

Let G be a group with normal subgroups R1, . . . , Rn, n ≥ 2. Recall the connectivity 
condition from [9]. The n-tuple of normal subgroups (R1, . . . , Rn) is called connected if 
either n ≥ 2 or n ≥ 3 and for all subsets I, J ⊆ {1, . . . , n}, with |I| ≥ 2, |J | ≥ 1, the 
following holds

(⋂
i∈I

Ri

)⎛
⎝∏

j∈J

Rj

⎞
⎠ =

⋂
i∈I

⎛
⎝Ri(

∏
j∈J

Rj)

⎞
⎠

Now consider the homotopy colimit X of classifying spaces B(G/ 
∏

i∈I Ri), where I
ranges over all proper subsets I ⊂ {1, . . . , n}. Then, if for any i = 1, . . . , n, the n −1-tuple 
of normal subgroups (R1, . . . , R̂i, . . . , Rn) is connected, then

πn(X) = R1 ∩ · · · ∩Rn

‖R1, . . . , Rn‖
.

This is proved in [9]. The proof of theorem 1 from [9] together with results of section 3, 
namely, together with the construction of the functor Π, implies the following

Proposition 14. If for any i = 1, . . . , n, the n − 1-tuple of normal subgroups (R1, . . . , R̂i,

. . . , Rn) is connected, then there is a commutative diagram

R1∩···∩Rn

‖R1,...,Rn‖
r1∩···∩rn
‖r1,...,rn‖

πn−1(ΩX)
hn−1Ω

Hn−1(ΩX)

.
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One can use Proposition 14 for proving the above conjecture about the p-torsion in 
the generalized dimension quotient in some particular cases (see, for example, [17]).
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