JOURNAL OF ALGEBRA | 卷:274 |
Zeta functions of integral representations of cyclic p-groups | |
Article | |
Wittmann, C | |
关键词: zeta function; modules over group rings; integral representation; Mobius function; | |
DOI : 10.1016/S0021-8693(03)00422-8 | |
来源: Elsevier | |
【 摘 要 】
For a prime number p and C-pk, the cyclic group of order p(k), we consider the group ring Z(p)[C-pk] over the p-adic integers. Following L. Solomon, one can define the zeta function of the free Z(p) [C-pk]-module Z(p)[C-pk](n), which counts submodules of finite index in Z(p)[C-pk](n). In this article we develop a recursion formula (relating submodules of Z(p)[C-pk](n) to certain submodules of Z(p)[Cpk-1](n) ),(.)which yields some new explicit formulas for the zeta function of Z(p)[C-pk](n) in the cases k = 1, 2 and n greater than or equal to 1, and k = 3, n = 1. An important combinatorial tool for these computations is the Mobius function of a partially ordered set. (C) 2004 Published by Elsevier Inc.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_S0021-8693(03)00422-8.pdf | 371KB | download |