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Abstract

For a prime numberp andCpk , the cyclic group of orderpk , we consider the group ringZp[Cpk ]
over thep-adic integers. Following L. Solomon, one can define the zeta function of the freeZp[Cpk ]-
moduleZp[Cpk ]n, which counts submodules of finite index inZp[Cpk ]n. In this article we develop
a recursion formula (relating submodules ofZp[Cpk ]n to certain submodules ofZp[Cpk−1]n), which
yields some new explicit formulas for the zeta function ofZp[Cpk ]n in the casesk = 1,2 andn � 1,
andk = 3, n = 1. An important combinatorial tool for these computations is the Möbius functio
a partially ordered set.
 2004 Published by Elsevier Inc.
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1. Introduction

Letp be a prime number andCpk be the (multiplicative) cyclic group of orderpk , where
k is a non-negative integer. LetL be a finitely generated torsion freeZ[Cpk ]-module. In
[8] L. Solomon introduced a zeta function attached toL, defined as

ζL(s) =
∑
U⊆L

[L :U ]−s;
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here the sum extends over all submodulesU of finite index inL, and the series converg
for all s ∈ C with Re(s) sufficiently large (although we will regard this series rather
a formal sum; therefore, we will not care aboutquestions of convergence in the sequ
Solomon showed that there is an Euler product

ζL(s) =
∏
l

ζLl (s),

wherel ranges over all prime numbers,Ll = L ⊗ Zl (Zl being the ring ofl-adic integers)
and

ζLl =
∑

Ul⊆Ll

[Ll : Ul]−s ,

this time summing over allZl[Cpk ]-submodulesUl of finite index inLl . Thus we can work
locally in order to computeζL(s).

If l �= p the orderZl[Cpk ] is the maximal order inQl[Cpk ], andζLl (s) is a product of
Dedekind zeta functions of number fields, cf. [8, (1.2)]. The casel = p is more delicate
Let R̃ ⊆ Qp[Cpk ] be the maximal order (containingZp[Cpk ]). Then

ζLp(s) = δLp(s)ζL⊗R̃(s),

where againζL⊗R̃(s) is a product of Dedekind zeta functions of number fields,
δLp(s) ∈ Z[p−s ] is a polynomial inp−s with integral coefficients, according toSolomon’s
First Conjectureproved in [1, Theorem 1]. The difficulty in calculating the zeta funct
of L consists in determining this polynomial.

The goal of this paper is to find explicit formulas for the zeta function ofL = Z[Cpk ]n,
wheren is a positive integer. PutRk := Zp[Cpk ], and letR̃k be the maximal order o
the group algebraQp[Cpk ]. SinceQp[Cpk ] ∼= Qp ⊕ Qp(ω1) ⊕ · · · ⊕ Qp(ωk) (ωi being a
primitive pi th root of unity) we get̃Rk

∼= Zp ⊕ Zp[ω1] ⊕ · · · ⊕ Zp[ωk]. In this case [8,
(1.2)] reads

ζZ[C
pk ]n (s) = δRn

k
(s)

n−1∏
j=0

(
ζ(s − j)

k∏
i=1

ζQ(ωi)(s − j)

)
,

whereζ(s) is the Riemann zeta function, andζQ(ωi)(s) is the Dedekind zeta function of th
cyclotomic fieldQ(ωi). Furthermore the zeta function of̃Rn

k is the “p-part” of the above
product of zeta functions,

ζR̃n
k
(s) = 1

((1− p−s )(1− p1−s ) · · · (1− pn−1−s ))k+1 ,

and it suffices to compute

ζRn(s) = δRn(s)ζR̃n(s).

k k k
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The only cases treated so far aren = 1 andk = 1 by Solomon (cf. [8], and an easier pro
by I. Reiner in [6]), andn = 1 andk = 2 by Reiner in [6]. In this paper we will generaliz
Reiner’s method. The main idea is thatRk can be written as a fibre product ofRk−1 and
some discrete valuation ring. This allows one to reduce the zeta function ofRn

k (a sum
over submodules ofRn

k ) to a sum over submodules ofRn
k−1. More accurately we get th

following formula:

ζRn
k
(s) = ζZn

p
(s)

∑
U⊆Rn

k−1

(
pr(U)

)n−s[
Rn

k−1 : U]−s
,

whereζZn
p
(s) is easy to calculate, andr(U) is a certain non-negative integer, depend

on the submoduleU of finite index in Rn
k−1. Unfortunately the sum on the right-han

side is not quite the zeta function ofRn
k−1, but the terms can be rearranged in or

to obtain aZ[p−s ]-linear combination of the zeta functions of the submodulesU for
pRn

k−1 ⊆ U ⊆ Rn
k−1. This transformation is accomplished by means of a combinatori

tool: the Möbius function of the lattice of those submodulesU . In addition we mention tha
it is evidently not enough to consider zeta functions of freeRk-modules. We should rathe
find a recursive formula, similar to the one above, for the zeta function of any subm
U ⊆ Rn

k of finite index.
This will be done in the sequel, and thereby we are able to find explicit formula

ζRn
k
(s) in the following cases

• k = 1 andn � 1,
• k = 2 andn � 1 (where our result in the casen = 1 is “more explicit” than the one in

[6]),
• k = 3 andn = 1.

The paper is organized as follows: in Section 2 we briefly describe two algebraic concep
that will be useful for the derivation of the recursion formula in Section 3. In Section
define the Möbius function of a partially ordered set, and apply it to our case. In Sec
we discuss a functional equation for the zeta function ofZp[Cpk ]n. Eventually, Sections 6
8 are devoted to the development of explicit formulas for the zeta functions ofZp[Cpk ]n
in the cases mentioned above.

Throughout this paper, we fix the following notation:p is a prime number,Zp the ring
of p-adic integers,Cpk with k � 0 is the cyclic group of orderpk , andσ is a fixed generato
of this group. FurthermoreRk = Zp[Cpk ], and

φk = σpk−1(p−1) + σpk−1(p−2) + · · · + σpk−1 + 1 ∈ Rk,

and fori � 1 we letωi be a primitivepi th root of unity.
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2. Zeta functions of matrix rings and Reiner’s method

If R is any commutative ring, we denote by Mn(R) the ring ofn × n matrices overR.
We define the zeta function of Mn(R) as the formal sum

ζMn(R)(s) =
∑

I⊆Mn(R)

[
Mn(R) : I]−s

.

Here the summation is over all left idealsI of finite index in Mn(R) (or equivalently, all
right idealsI of finite index in Mn(R)). In a similar way we can generalize the definiti
of a zeta function from the introduction: letV be anR-module, and put

ζV (s) =
∑
U⊆V

[V : U ]−s,

whereU runs through allR-submodules of finite index inV .

Theorem 2.1. The zeta function ofMn(R) and the zeta function of theR-moduleRn satisfy

ζMn(R)(s) = ζRn(ns).

Proof. By Morita’s theorem (cf. [4, Section 3.12]) there is a lattice isomorphism betw
the lattice of left idealsI of Mn(R) and the lattice ofR-submodulesU of Rn. This induces
an isomorphism between the lattices of ideals/submodules offinite index. Moreover, ifI
andU correspond to each other under this isomorphism, one can easily show that[

Mn(R) : I] = [
Rn : U]n

,

whence the desired equality.�
Form the proof of the theorem we immediately infer:

Corollary 2.2. If I ⊆ Mn(R) andU ⊆ Rn are of finite index and correspond to each oth
under Morita’s isomorphism, then

ζI (s) = ζU(ns),

whereζI (s) = ∑
J⊆I [I : J ]−s , J running through all leftMn(R)-ideals of finite index

contained inI .

The above theorem allows us to compute the zeta function of the ring Mn(Rk) instead
of the zeta function of the moduleRn

k . To this ring, Reiner’s method is applicable, as
will see in the next section. We will now briefly describe this method introduced by R
in [6].
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Suppose we are given a fibre product of rings

A

f2

f1
A1

g1

A2
g2

A′

where all maps are ring surjections. Thus

A = {
(x1, x2) ∈ A1 ⊕ A2 | g1(x1) = g2(x2)

}
.

We further assume that every left ideal ofA1 is principal. The aim is to describe all le
ideals ofA in terms of the left ideals ofA1 andA2.

Let I ⊆ A be a left ideal. Thenf1(I) = A1α for someα ∈ A1. Hence there exist
β ∈ f2(I) such that (α,β) ∈ A andg1(α) = g2(β). Put

I2 := {
x ∈ A2 | (0, x) ∈ I

}
,

which is a left ideal ofA2 satisfying

I = A(α,β) + (0, I2).

Therefore, every left idealI ⊆ A has the formI = A(α,β) + (0, I2) with

• a uniquely determined left idealI2 ⊆ A2 with g2(I2) = 0,
• a generatorα ∈ A1 of f1(I),
• an elementβ ∈ A2 with g1(α) = g2(β); hereβ is uniquely determined modI2.

3. A recursion formula for the zeta function of Rn
k

In this section we will derive a formula forζMn(Rk)(s) (which amounts to the same
ζRn

k
(s), by Theorem 2.1). To this end, as we already mentioned in the introductio

have to find a formula forζV (s), whereV ⊆ Mn(Rk) is an arbitrary ideal (from now on a
ideals are of finite index, unless stated otherwise). Put

R = Rk, R = Rk−1, S = Zp[ωk], F := Fp[Cpk−1]
andφ := φk. There is a canonical fibre product diagram linking these rings

R

σ �→τ

modφk

S

mod (1−ωk)
pk−1

R
modp

F
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where all maps are ring surjections andτ is a generator ofCpk−1 in R. This leads to a fibre
product diagram

Mn(R)

f2

f1
Mn(S)

g1

Mn(R)
g2

Mn(F )

(1)

SinceS is a principal ideal domain (even a discrete valuation ring), we know that e
left ideal of Mn(S) is principal (cf. [5, Theorem 17.24]). Therefore, Reiner’s meth
introduced in the preceding section,is applicable to this situation.

Let V ⊆ Mn(R) be a left ideal. Then

V = Mn(R)(αV ,βV ) + (0,V2), (2)

whereαV ∈ f1(V ), βV ∈ f2(V ) with g1(αV ) = g2(βV ) and

V2 = {
x ∈ Mn(R) | (0, x) ∈ V

}
.

Lemma 3.1. The left idealV2 ⊆ Mn(R) is given by

V2 = f2
(
V ∩ φMn(R)

)
.

Proof. This follows fromφMn(R) = ker(f1) = {(0, x) ∈ Mn(R) | x ∈ Mn(R)}. �
Lemma 3.2.

(a) There exists a leftMn(R)-idealV ◦ ⊇ f2(V ) such thatV2 = pV ◦.
(b) βV ∈ V ◦, whereβV is as in(2).

Proof. The canonical mapR → R mapsφ to p. Hence

V2 = f2
(
V ∩ φMn(R)

) ⊆ f2
(
φMn(R)

) = pMn(R),

i.e., there is aV ◦ ⊆ Mn(R) such thatV2 = pV ◦. Now (a) follows because of

pV ◦ = V2 ⊇ f2(φ · V ) = pf2(V ).

Part (b) follows from

(0,pβV ) = (0,p)(αV ,βV ) = φ(αV ,βV ) ∈ V,

i.e.,pβV ∈ V2 = pV ◦. �
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We summarize: the left idealV can be written as

V = Mn(R)(αV ,βV ) + (
0,pV ◦) (3)

with αV ∈ f1(V ), βV ∈ V ◦, g1(αV ) = g2(βV ) andpV ◦ = f2(V ∩ φMn(R)).
Our goal is the computation of

ζV (s) =
∑
N⊆V

[V : N]−s .

By Reiner’s method and the above lemma, every left ideal of Mn(R) has the form

Mn(R)(α,β) + (0,pN), (4)

where

• N ⊆ Mn(R) is a left ideal,
• α ∈ Mn(S) with det(α) �= 0 (which means[Mn(S) : Mn(S)α] < ∞),
• β ∈ N such thatg1(α) = g2(β).

Let R denote a system of representatives of generatorsα ∈ Mn(S) with det(α) �= 0 of all
left ideals of Mn(S). Every left ideal of Mn(R) determines a unique pair(α,N) with α ∈R
and a left idealsN ⊆ Mn(R). On the other hand, ifα ∈ R andN ⊆ Mn(R) are fixed, the
number of left ideals of Mn(R) belonging to(α,N) equals the number of elementsβ ∈ N

distinct modpN , satisfyingg1(α) = g2(β).
For our purpose we have to determine the left ideals of the form (4) of Mn(R) contained

in V , and we denote the number of these byν(α,N). A necessary condition for such a le
ideal to be contained inV is pN ⊆ pV ◦, that isN ⊆ V ◦.

Lemma 3.3. Letα ∈R andN ⊆ V ◦.

(a) ν(α,N) �= 0 ⇐⇒ α ∈ f1(V ∩ f −1
2 (N)).

(b) If ν(α,N) �= 0, thenν(α,N) = [pV ◦ ∩ N : pN ].

Proof. (a) ν(α,N) �= 0 iff there is a left ideal of the form (4) contained inV , i.e., there is
aβ ∈ N such that(α,β) ∈ V . This is the case iffα = f1(v) for somev ∈ V ∩ f −1

2 (N).
(b) Supposeν(α,N) �= 0. Letv0 ∈ V with α = f1(v0) andβ0 := f2(v0) ∈ N , according

to (a). The possibleβ , defining a left ideal as in (4) contained inV , are exactly all

β ∈ N such that ∃v ∈ V : α = f1(v) andβ = f2(v).

Sincev − v0 ∈ ker(f1), this meansβ ∈ f2(v0 + (ker(f1) ∩ V )) ∩ N . Now

f2
(
v0 + (

ker(f1) ∩ V
)) ∩ N = (

β0 + f2
(
ker(f1) ∩ V

)) ∩ N

= β0 + (
f2

(
ker(f1) ∩ V

) ∩ N
)

sinceβ0 ∈ N
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= β0 + (
pV ◦ ∩ N

)
.

Since we have to count the numberν(α,N) of thoseβ that are distinct modpN , the claim
follows. �
Lemma 3.4. LetN := Mn(R)(α,β) + (0,pN) be a left ideal as in(4). Then[

Mn(R) : N] = [
Mn(S) : Mn(S)α

][
Mn(R) : N]

,

and in particular this index does not depend onβ .

Proof. Consider the surjective map

ϕ : Mn(R) → Mn(S)/Mn(S)α = Mn(S)/f1(N)

induced byf1. ThenN ⊆ ker(ϕ), and because of ker(ϕ) = f −1
1 (f1(N)) = N +ker(f1) we

get[
ker(ϕ) : N] = [

ker(f1) : N ∩ ker(f1)
] = [(

0,pMn(R)
) : (0,pN)

] = [
Mn(R) : N]

. �
We now obtain a first formula for the zeta function ofV:

ζV (s) =
∑

N⊆V ◦

∑
α∈R

ν(α,N)

( [Mn(S) : Mn(S)α][Mn(R) : N ]
[Mn(R) : V ]

)−s

, (5)

and using Lemma 3.3

ζV (s) = [
Mn(R) : V ]s ∑

N⊆V ◦

∑
α∈R

α∈f1(V ∩f
−1
2 (N))

[
pV ◦ ∩ N : pN

]

× ([
Mn(S) : Mn(S)α

][
Mn(R) : N])−s

. (6)

Lemma 3.5.∑
α∈R

α∈f1(V ∩f −1
2 (N))

[
Mn(S) : Mn(S)α

]−s = [
Mn(S) : f1

(
V ∩ f −1

2 (N)
)]−s

ζMn(S)(s).

Proof. Every left ideal of Mn(S) is principal, hence we have an isomorphism

Mn(S) ∼= f1
(
V ∩ f −1

2 (N)
)

of left Mn(S)-modules. Thus their zeta functions coincide, and the lemma is proved.�



C. Wittmann / Journal of Algebra 274 (2004) 271–308 279

nto
Note thatV ◦/pV ◦ is anFp-vector space in a natural way. Therefore, we may put

lV ◦(N) := dimFp

(
N + pV ◦/pV ◦)

if N ⊆ V ◦, and the value ofν(α,N) determined in Lemma 3.3(b) can be transformed i

[
pV ◦ ∩ N : pN

] = [N : pN]
[N : pV ◦ ∩ N] = pn2pk−1

[N + pV ◦ : pV ◦] = pn2pk−1−lV ◦ (N).

Together with [
Mn(R) : V ] = [

Mn(S) : f1(V )
][

M(R) : V ◦]
(cf. Lemma 3.4) we infer from (6) the new formula

ζV (s) = ζMn(S)(s)
∑

N⊆V ◦
pn2pk−1−lV ◦ (N)

([
f1(V ) : f1

(
V ∩ f −1

2 (N)
)][

V ◦ : N])−s (7)

for the zeta function ofV .

Lemma 3.6.[
f1(V ) : f1

(
V ∩ f −1

2 (N)
)][

V ◦ : N] = pn2pk−1−lV ◦ (N)
[
N + f2(V ) : N]

.

Proof. The following exact sequence is immediate:

0→ (
V ∩ f −1

2 (N)
) + (

V ∩ ker(f1)
)
↪→ V

π1−→ f1(V )/f1
(
V ∩ f −1

2 (N)
) → 0,

whereπ1 is induced byf1. The definition ofV ◦ impliesf2(V ∩ker(f1)) = pV ◦, and using
f2(V ∩ f −1

2 (N)) = f2(V ) ∩ N we get another exact sequence

0 → (
V ∩ f −1

2 (N)
) + (

V ∩ ker(f1)
)
↪→ V

π2−→ f2(V )/
((

f2(V ) ∩ N
) + pV ◦) → 0,

whereπ2 is induced byf2.
Hence

[
f1(V ) : f1

(
V ∩ f −1

2 (N)
)] = [

f2(V ) : (f2(V ) ∩ N
) + pV ◦]

= [f2(V ) : f2(V ) ∩ N]
[(f2(V ) ∩ N) + pV ◦ : f2(V ) ∩ N] = [N + f2(V ) : N ]

[pV ◦ : pV ◦ ∩ N ]
and
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.,
[
pV ◦ : pV ◦ ∩ N

] = [
N + pV ◦ : N] = [V ◦ : N]

[V ◦ : N + pV ◦]

= [V ◦ : N]
[V ◦ : pV ◦]/[N + pV ◦ : pV ◦] = [V ◦ : N]

pn2pk−1−lV ◦ (N)
,

and the assertion follows.�
With the help of this lemma formula (7) can be further simplified, and this yields

following theorem.

Theorem 3.7. The following recursion formula holds for the zeta function of a left id
V ⊆ Mn(R):

ζV (s) = ζMn(S)(s)
∑

N⊆V ◦

(
pn2pk−1−lV ◦ (N)

)1−s[
N + f2(V ) : N]−s; (8)

hereV ◦ is given bypV ◦ = f2(V ∩ φMn(R)) andlV ◦(N) = dimFp (N + pV ◦/pV ◦).

We will now retranslate this formula back to submodules ofRn, using Morita’s theorem
(cf. Corollary 2.2). We will mainly use the same notation as before, which should n
confusing. All submodules ofRn are again understood to be of finite index, unless st
otherwise. We have a fibre product diagram analogous to (1)

Rn

f2

f1
Sn

g1

Rn
g2

Fn

(9)

with surjectiveR-module homomorphisms.

Theorem 3.8. The following recursion formula holds for the zeta function of a submo
V ⊆ Rn:

ζV (s) = ζSn(s)
∑

N⊆V ◦
p(npk−1−eV ◦ (N))(n−s)

[
N + f2(V ) : N]−s; (10)

hereV ◦ is given bypV ◦ = f2(V ∩ φRn) andeV ◦(N) = dimFp (N + pV ◦/pV ◦).

The term “recursion formula” is justified by the fact that the sum on the right-hand
extends over submodules ofRn, hence we descended fromk to k − 1. We will reorder this
sum in the next section and thereby obtain more practical results, at least in some
Note that the factorζSn(s) can be easily evaluated, forS is a discrete valuation ring (e.g
[1, Section 1]):
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Theorem 3.9. Let C be a discrete valuation ring with residue fieldFp , the field withp

elements. Then

ζCn(s) =
n−1∏
j=0

(
1− pj−s

)−1
.

Notation. Let e ∈ {0, . . . , npk−1}. We put

tV (e; s) :=
∑

N⊆V ◦
eV ◦ (N)=e

[
N + f2(V ) : N]−s

. (11)

Then (10) can be rewritten as

ζV (s) = ζSn(s)

npk−1∑
e=0

p(npk−1−e)(n−s)tV (e; s). (12)

We remark that it is particularly interesting to apply the recursion formula fors = n.
This is discussed in [10] together with some applications.

4. Möbius functions

Our intention is to express the right-hand side of (10) in terms of the zeta func
ζU (s) for certain submodulesU ⊆ Rn. This can be done by a combinatorial tool, t
Möbius function of a partially ordered set, which we will introduce first. The stan
reference for details and examples is [7].

Thus let(P,�) be a partially ordered set, which we require to belocally finite, i.e.,
for all x, y ∈ P there are only finitely manyz ∈ P with x � z � y. TheMöbius function
µ :P × P → Z is inductively defined by

µ(x, y) =


0 x � y,

1 x = y,

−∑
x�z<y µ(x, z) x < y.

We recover the classical Möbius functionµ′ from number theory by lettingP be the set of
positive integers, partially ordered by the divisibility relation|. If m | n are integers, the
µ(m,n) = µ′(n/m).

The reason for studyingµ is the following useful inversion formula, which follow
immediately from the definition.
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Theorem 4.1 (Möbius inversion formula).Let (P,�) be a locally finite partially ordered
set and leta ∈ P . Let f :P → C be a function such thatf (x) = 0 if a � x. Define
g :P → C by

g(x) :=
∑

a�y�x

f (y).

Then

f (x) =
∑

a�y�x

µ(y, x)g(y).

In the rest of this section we will deal with the following situation. LetR be a
commutative ring. IfV is an R-module, we can consider the lattice of all submodu
of finite index inV , which is partially ordered by inclusion and locally finite. Hence
can study the Möbius functionµ of that lattice.

Theorem 4.2. Let U,V be R-modules withU ⊆ V and [V : U ] < ∞. If the radical of
V/U satisfiesrad(V /U) �= 0, thenµ(U,V ) = 0.

Proof. Let µ̄ be the Möbius function of the finite lattice of submodules ofV/U . Then
obviously

µ(U,V ) = µ̄(0,V /U).

If M is a non-empty subset of all maximal submodules ofV/U , then
⋂

M �= 0, because
rad(V /U) �= 0. Thus the set of all maximal submodules ofV/U is across cutof the lattice
(cf. [7, Section 6]), and the claim follows from [7, Theorem 3].�
Theorem 4.3. The Möbius functionµ of the lattice of subspaces of anr-dimensionalFp-
vector space satisfies

µ
(
0,Fr

p

) = (−1)rp(r
2).

This is proved in [7, Section 5, Example 2]. We are now able to calculate the M
function of the lattice of submodules of a finitely generated module over a discre
valuation ring.

Corollary 4.4. Let C be a discrete valuation ring with prime elementπ and residue class
fieldFp . LetM be a finiteC-module,

M ∼= C/
(
πa1

) ⊕ · · · ⊕ C/
(
πar

)
(ai � 1).

Then the Möbius functionµ of the lattice of submodules ofM satisfies

µ(0,M) =
{

(−1)rp(r
2) a1 = · · · = ar = 1,
0 otherwise.
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We continue lettingR be a commutative ring. Moreover, the submodules ofRn

considered here are always of finite index.

Notation. Let U ⊆ X ⊆ Rn be submodules. We put

zU (X; s) :=
∑
N⊆X

N+U=X

[X : N]−s . (13)

We clearly have

zU (U ; s) = ζU(s).

We will now show thatzU (X; s) for U ⊆ X can always be expressed in terms ofζW (s) for
U ⊆ W ⊆ X. More precisely:

Theorem 4.5. Let U ⊆ X ⊆ Rn submodules, and letµ be the Möbius junction of al
submodules of finite index inRn. Then

zU (X; s) =
∑

U⊆W⊆X

µ(W,X)[X : W ]−sζW (s).

Proof. We define

f (W) := [X : W ]−szU (W ; s)

for all U ⊆ W ⊆ X, and

g(W) :=
∑

U⊆W ′⊆W

f (W ′) =
∑

U⊆W ′⊆W

[X : W ′]−szU (W ′; s)

= [X : W ]−s
∑

U⊆W ′⊆W

[W : W ′]−s
∑

N⊆W ′
N+U=W ′

[W ′ : N]−s = [X : W ]−sζW (s).

Now the inversion formula (Theorem 4.1) implies

zU (X; s) = f (X) =
∑

U⊆W⊆X

µ(W,X)g(W),

and the theorem is proved.�
We now return to the notations of Section 3. In particular we letR = Rk = Zp[Cpk ],

R = Rk−1 = Zp[Cpk−1] andeV (N) = dimFp (N + pV/pV ).
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Lemma 4.6. LetV ⊆ Rn andpV ⊆ Y ⊆ V . Then∑
N⊆V

eV (N)=e

[N + Y : N]−s =
∑

pV ⊆X⊆V
[X:pV ]=pe

[X + Y : X]−szpV (X; s)

for all e ∈ {0, . . . , npk}.

Proof. SinceN ⊆ V we have 0� eV (N) = dimFp (N + pV/pV ) � npk , and

eV (N) = e ⇔ ∃pV ⊆ X ⊆ V : N + pV = X and [X : pV ] = pe.

Hence ∑
N⊆V

eV (N)=e

[N + Y : N]−s =
∑

pV ⊆X⊆V
[X:pV ]=pe

∑
N⊆V

N+pV =X

[N + Y : N]−s .

Now N + pV = X impliesN + Y = X + Y , whence the latter sum equals∑
pV ⊆X⊆V
[X:pV ]=pe

[X + Y : X]−s
∑
N⊆X

N+pV =X

[X : N]−s =
∑

pV ⊆X⊆V
[X:pV ]=pe

[X + Y : X]−szpV (X; s). �

We can use the results of this section in order to computetV (e; s) for e ∈ {0, . . . , npk−1}
(defined in (11)), which are the building blocks of the zeta function ofV ⊆ Rn. By
Lemma 3.2 we havepV ◦ ⊆ f2(V ) ⊆ V ◦, and Lemma 4.6 yields

tV (e; s) =
∑

pV ◦⊆X⊆V ◦
[X:pV ◦]=pe

[X + f2(V ) : X]−szpV ◦(X; s). (14)

The expressionszpV ◦(X; s) for pV ◦ ⊆ X ⊆ V ◦ equal (according to Theorem 4.5)

zpV ◦(X; s) =
∑

pV ◦⊆W⊆X

µ(W,X)[X : W ]−sζW (s), (15)

where µ is the Möbius function of the lattice of submodules of finite index inRn.
Therefore, we have proved the following important corollary.

Corollary 4.7. Let V ⊆ Rn be a submodule. By(12), (14), (15) the quotientζV (s)/ζSn(s)

is a Z[p−s ]-linear combination of the zeta functions

ζW (s) for pV ◦ ⊆ W ⊆ V ◦.
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5. A functional equation

Let R = Rk andV ⊆ Rn be anR-submodule. Furthermore, we let̃R be the maxima
order ofR ⊗ Qp = Qp[Cpk ], hence

R̃ ∼= Zp ⊕ Zp[ω1] ⊕ · · · ⊕ Zp[ωk].

In the introduction we defined

δV (s) := ζV (s)

ζR̃n(s)
= ζV (s)

(ζZn
p
(s))k+1

,

whereζZn
p
(s) is given by Theorem 3.9, andδV (s) ∈ Z[p−s ], which is a special case o

Solomon’s first conjecture proved in [1]. Note that this assertion also follows from
recursion formula (12) together with Corollary 4.7 (even though the conjecture is p
in [1] in a much more general situation).

The main result of this section is the following functional equation forδRn(s).

Theorem 5.1. The functionδRn(s) satisfies the following functional equation

δRn(s) = p(n2−2ns)(1+p+···+pk−1)δRn(n − s).

Proof. PutΛ := Mn(R). ThenΛ̃ := Mn(R̃) ⊇ Λ is a maximal order in Mn(R ⊗ Qp). The
proof of the functional equation for the zeta function of a group ringZp[G] presented
in [1, Theorem 2] can be generalized to the matrix ring Mn(Zp[G]), and hence to ourΛ
(details are worked out in [9]). Thus we obtain in the same manner

ζΛ(s)

ζΛ(1− s)
= [Λ̃ : Λ]1−2s ζΛ̃(s)

ζΛ̃(1− s)
.

Now Theorem 2.1 yields

ζRn(ns)

ζR̃n(ns)
= [R̃ : R]n2−2n2s ζRn(n − ns)

ζR̃n(n − ns)
.

If we substitutes for ns, the claim follows from the next lemma.�
Lemma 5.2. Let R̃k ⊇ Rk be the maximal order inRk ⊗ Qp. Then

[R̃k : Rk] = p1+p+···+pk−1
.
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Proof. The assertion is trivial fork = 0, sinceR̃0 = R0 = Zp . If k > 0 we have the fibre
product diagram

Rk Zp[ωk]

Rk−1 Fp[Cpk−1]

which gives rise to an exact sequence

0 Rk Zp[ωk] ⊕ Rk−1
h Fp[Cpk−1] 0.

Then

[R̃k : Rk] = [
Zp[ωk] ⊕ R̃k−1 : Zp[ωk] ⊕ Rk−1

] · [Zp[ωk] ⊕ Rk−1 : Rk

]
= [R̃k−1 : Rk−1] · |im(h)| = [R̃k−1 : Rk−1] · ppk−1

,

and the claim follows by induction.�
Putx := p−s and definêδV (x) ∈ Z[x] for a submoduleV ⊆ Rn by

δ̂V

(
p−s

) = δV (s). (16)

Similarly we definêtV (e;x) ∈ Z[x] for 0 � e � npk−1 by

t̂V
(
e;p−s

) = tV (e; s)

(ζZn
p
(s))k

, (17)

wheretV (e; s) is as in (11), and so we clearly may write (12) in the form

δ̂V (x) =
npk−1∑
e=0

pn(npk−1−e)xnpk−1−e t̂V (e;x). (18)

Corollary 5.3. δ̂Rn(x) is a polynomial inZ[x] of degree2n(1 + p + · · · + pk−1), having
constant term1 and satisfying the functional equation

δ̂Rn(x) = (
pn2

x2n
)1+p+···+pk−1

δ̂Rn

(
1

pnx

)
.
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Proof. The functional equation follows immediately from Theorem 5.1, and this imp
the degree statement as soon as we have shown thatδ̂Rn(0) = 1 �= 0. Now

δ̂Rn(0) = lim
s→∞

ζRn(s)

ζZn
p
(s)k+1 ,

and the denominator tends to 1 by Theorem 3.9. But the same holds for the nomin
formula (12), since all terms disappear fors → ∞, except the one havinge-valuenpk−1,
i.e.,N = Rn, contributing 1 to the sum. �

6. The case n = 1

In this section we fixn = 1 and k � 1. Let R = Rk = Zp[σ ] with σpk = 1, and

R = Rk−1 = Zp[τ ] with τpk−1 = 1. Then we have a surjective homomorphism

π :R → R/pR ∼= Fp[Cpk ] ∼= Fp[y]/(ypk)
,

σ �→ σ modp �→ ȳ + 1. (19)

Therefore, we have a unique filtration

R = V
(k)
0 � V

(k)
1 � · · · � V

(k)

pk = pR.

The ideals of the ringFp[y]/(ypk
) are the ones generated byȳl for 0 � l � pk , whence

V
(k)
l = (

p, (σ − 1)l
) (

0 � l � pk
)
.

We begin by computingζV (s) for V = V
(k)
l (0 � l � pk). This will be done by applying th

recursion formula from Section 3, together with (14), (15), so we need some inform
concerning theR-idealsf2(V ) andV ◦. Now pR ⊆ V ⊆ R impliespR ⊆ f2(V ) ⊆ V ◦ ⊆
R, hence these ideals occur in the unique filtration

R = V
(k−1)
0 � V

(k−1)
1 � · · · � V

(k−1)

pk−1 = pR. (20)

Lemma 6.1. LetpR ⊆ V ⊆ R, i.e.,V = V
(k)
l for some0 � l � pk . Then

(a) f2(V ) =
{

V
(k−1)
l l < pk−1,

pR l � pk−1.

(b) V ◦ =
{

R l � pk−1(p − 1),

V
(k−1)

l−pk−1(p−1)
l > pk−1(p − 1).
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Proof. (a) Recall thatf2(σ ) = τ , by definition off2. Thus the claim is trivial forl < pk−1,
and the rest follows from the identity

f2
(
V

(k)

pk−1

) = V
(k−1)

pk−1 = pR = f2(pR).

(b) It suffices to determine the index[R : V ◦], for pR ⊆ V ◦ ⊆ R, andR/pR has a
unique composition series. We have

pR/pV ◦ = f2(φR)/f2(V ∩ φR) ∼= φR/(V ∩ φR) ∼= (φR + V )/V ∼= π(φR + V )/π(V ),

where the first isomorphism is induced byf2 (note that ker(f2)∩φR = ker(f2)∩ker(f1) =
0 by the fibre product diagram (9)). Moreover

π(φ) = π
(
σpk−1(p−1) + · · · + σpk−1 + 1

) = (ȳ + 1)p
k−1(p−1) + · · · + (ȳ + 1)p

k−1 + 1,

and sinceup−1 + · · · + u + 1= (u − 1)p−1 holds in the polynomial ringFp[u], we find

π(φ) = (
(ȳ + 1)p

k−1 − 1
)p−1 = ȳpk−1(p−1).

This leads to

π(φR + V ) = π(φR) + π(V ) = (
ȳpk−1(p−1)

) + (
ȳl

)
=

{(
ȳl

)
l � pk−1(p − 1),(

ȳpk−1(p−1)
)

l > pk−1(p − 1),

and the assertion follows from[R : V ◦] = [π(φR + V ) : π(V )]. �
Using (14), (15) we obtain the following formulas fortV (e; s) (0 � e � pk).

Theorem 6.2. LetV = V
(k)
l for some0 � l � pk .

(a) If 0 � l < pk−1:

tV (e; s) =



(
ppk−1−l

)−s
ζR(s) e = 0,(

ppk−1−l−e
)−s

(
ζ
V

(k−1)

pk−1−e

(s) − p−sζ
V

(k−1)

pk−1−e+1

(s)
)

0 < e � pk−1 − l,

ζ
V

(k−1)

pk−1−e

(s) − p−sζ
V

(k−1)

pk−1−e+1

(s) pk−1 − l < e � pk−1.

(b) If pk−1 � l � pk−1(p − 1):

tV (e; s) =
{

ζR(s) e = 0,

ζ
V

(k−1)

pk−1−e

(s) − p−sζ
V

(k−1)

pk−1−e+1

(s) 0< e � pk−1.
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(c) If l = pk , thentV (e; s) is identical tot
V

(k)
0

(e; s) for all 0� e � pk−1.

Proof. Since V
(k)

pk = pR ∼= R = V
(k)
0 , their zeta functions and consequently theirt-

functions must coincide for alle. Hence part (c) is proved.
For (a) and (b) we note thatV ◦ = R for all values ofl under consideration, accordin

to the preceding lemma. Now the casee = 0 follows directly from (14) and the calculatio
of f2(V ) in Lemma 6.1. Ife > 0 we will have to compute in addition the functions

zpR(X; s) for pR ⊆ X ⊆ R such that[X : pR] = pe,

according to (15). ButX = V
(k−1)

pk−1−e
in view of the unique filtration (20), and sinceX has a

unique maximal submoduleM containingpR we infer

µ(X,X) = 1, µ(M,X) = −1 and µ(W,X) = 0 ∀pR ⊆ W � M

(cf. Theorem 4.2). This proves the theorem.�
Unfortunately the computation oftV (e; s) is much more complicated forpk−1(p−1) <

l < pk (the case not covered in the above theorem). The reason is that for thosel the ideal
V ◦ is no longer isomorphic toR, and the lattice of submodules ofV ◦/pV ◦ seems to be
too complex for (14), (15) to yield explicit results in general.

Nonetheless, we are now able to compute the zeta function of the ringRk in some cases
Fork = 1 andk = 2 Theorem 6.2 will provide us the answer, while fork = 3 we will have
to make an additional effort.

The casek = 1

Let R = R1 = Zp[Cp]. Fix an idealpR ⊆ V ⊆ R, i.e.,V = V
(1)
l for some 0� l � p.

SinceZp = V
(0)
0

∼= V
(0)
1 = pZp andζZp (s) = (1−p−s )−1, Theorem 6.2 and formula (12

yield

• If l = 0 or l = p:

tV (e; s) =
{

p−sζZp (s) e = 0,(
1− p−s

)
ζZp (s) e = 1,

that isζV (s) = (ζZp (s))2(p1−sp−s + (1− p−s )) = (ζZp (s))2(1− p−s + p1−2s).
• If 0 < l < p:

tV (e; s) =
{

ζZp (s) e = 0,(
1− p−s

)
ζZp (s) e = 1,

that isζV (s) = (ζZp (s))2(p1−s + (1− p−s )) = (ζZp (s))2(1+ (p − 1)p−s ).
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Putting
Up to isomorphism there are two ideals of finite index inR, viz R andJ := rad(R). The
above formulas imply that we must haveV (1)

1
∼= · · · ∼= V

(1)
p−1 = J , and if V ⊆ R is an

arbitrary ideal of finite index, then

δ̂V (x) =
{

px2 − x + 1 V ∼= R,

(p − 1)x + 1 V ∼= J,

holds, where the notation is as in Section 5. We finally remark that the zeta functionJ

can be derived in a completely elementary way from the zeta function ofR, for the ringR

is a local ring,J is its maximal ideal, and we thus have the formula

ζJ (s) = ps
(
ζR(s) − 1

)
.

The casek = 2

Let R = R2 = Zp[Cp2]. Our goal is the computation ofδ̂R(x) (which gives a formula

for ζR(s)). SinceR = V
(2)
0 , Theorem 6.2 is applicable withl = 0.

We therefore find

tR(e; s) =
{(

pp
)−s

ζR1(s) e = 0,(
pp−e

)−s(
ζ
V

(1)
p−e

(s) − p−sζ
V

(1)
p−e+1

(s)
)

0 < e � p.
(21)

The zeta functions occurring here have been calculated in the preceding subsection.
x := p−s and

δ̂0(x) := px2 − x + 1, δ̂1(x) := (p − 1)x + 1, (22)

we can translate (21) into

t̂R(e;x) =


xpδ̂0(x) e = 0,

xp−1
(
δ̂1(x) − xδ̂0(x)

)
e = 1,

xp−e(1− x)δ̂1(x) 2 � e � p − 1,

δ̂0(x) − xδ̂1(x) e = p,

wheret̂R(e;x) is as in (17), and by (18) we get

δ̂R(x) =
p∑

e=0

pp−exp−et̂R(e;x).

After some trivial transformations we obtain the following polynomial:

δ̂R(x) = pp+1x2p+2 − 2ppx2p+1 + (
pp + pp−1)x2p

+
p∑((

pi − 2pi−1)x2i−1) +
p−1∑(

pi−1x2i
) + (p + 1)x2 − 2x + 1.
i=2 i=2
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Note that one may easily verify the functional equation

δ̂R(x) = pp+1x2p+2δ̂R

(
1

px

)
predicted by Corollary 5.3.

The casek = 3

We now considerR3 = Zp[Cp3]. This time we have to compute

δ̂R3(x) =
p2∑

f =0

pp2−f xp2−f t̂R3(f ;x),

cf. (18). By Theorem 6.2 we find

t̂R3(f ;x) =
xp2

δ̂R2(x) f = 0,

xp2−f
(
δ̂
V

(2)

p2−f

(x) − x · δ̂
V

(2)

p2−f +1

(x)
)

1 � f � p2,

using once more the filtration

R2 = V
(2)
0 � · · · � V

(2)

p2 = pR2.

It remains to determine the polynomialsδ̂
V

(2)
l

for 0 � l � p2.

For l = 0 (as well as forl = p2 because ofR2 ∼= pR2) this has been accomplished
the preceding subsection. We recall that

δ̂
V

(2)
l

(x) =
p∑

e=0

pp−exp−et̂l (e;x),

using the abbreviation

t̂l (e;x) := t̂
V

(2)
l

(e;x)

and similarly

tl(e; s) := t
V

(2)
l

(e; s)

for the rest of this section. Therefore, we “only” have to determine these polyno
t̂l (e;x) for 0 < l < p2.

The cases 1� l � p(p − 1) are covered by Theorem 6.2:
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• If 1 � l � p − 1:

t̂l (e;x) =


xp−l δ̂0(x) e = 0,

xp−l−1
(
δ̂1(x) − xδ̂0(x)

)
e = 1,

xp−l−e(1− x)δ̂1(x) 2� e � p − l,

(1− x)δ̂1(x) p − l < e � p − 1,

δ̂0(x) − xδ̂1(x) e = p.

• If p � l � p2 − p:

t̂l (e;x) =


δ̂0(x) e = 0,

δ̂1(x) − xδ̂0(x) e = 1,

(1− x)δ̂1(x) 2 � e � p − 1,

δ̂0(x) − xδ̂1(x) e = p.

Hereδ̂0, δ̂1 are the polynomials introduced earlier in (22).
The remaining casep2 − p < l < p2 is the hardest part. We define

l′ := l − (
p2 − p

) ∈ {1, . . . , p − 1}

and furthermore setV := V
(2)
l . We havef2(V ) = pR1 andV ◦ = V

(1)

l′ by Lemma 6.1. For
the rest of this section, define

R := R1 = Zp[σ ] with σp = 1,

and φ := σp−1 + · · · + σ + 1 ∈ R. ThenV
(1)

l′
∼= J := rad(R) as we noted in the firs

subsection. Since we want to apply formula (14) again, in order to calculatetl(e; s), we
first need some information on the lattice ofR-submodules ofV ◦/pV ◦ ∼= J/pJ . Put

R/pR ∼= Fp[y]/(yp
) =: F.

ThenJ/pJ is anF -module satisfying

J/pJ ∼= Fp ⊕ Fp[y]/(yp−1),
by the following lemma.

Lemma 6.3.

(a) The elementsp and φ − (σ − 1)p−1 are associates inR, as well as(σ − 1)p and
p(σ − 1).

(b) We have

J = φR ⊕ (σ − 1)R,

and the surjective R-module homomorphism
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ψ :J → Fp ⊕ Fp[y]/(yp−1),
φ �→ (1,0),

σ − 1 �→ (0,1)

has ker(ψ) = pJ . Moreover,J has exactlyp + 1 maximal submodules, two bein
isomorphic toJ and thep − 1 remaining ones being isomorphic toR.

Proof. (a) Since

φ = σp−1 + · · · + σ + 1 ≡ (σ − 1)p−1 modp,

there is an elementα ∈ R such thatαp = φ − (σ − 1)p−1. Note thatα must be invertible
as can be seen by applying the augmentation mapε :R → Zp ,

∑p−1
i=0 λiσ

i �→ ∑p−1
i=0 λi

to this equation. Now the first claim follows, and the second one is a direct conseq
(multiply both elements byσ − 1).

(b) SinceJ = pR + (σ − 1)R, part (a) yieldsJ = φR ⊕ (σ − 1)R. For a, b ∈ R may
write

ψ
(
aφ + b(σ − 1)

) = (
π1(a),π2(b)

)
,

with π1 := ρ1 ◦ π and π2 := ρ2 ◦ π . Here π is defined as in (19), andρ1 :F → Fp ,
ρ2 : F → Fp[y]/(yp−1) are the canonical projections. From ker(π1) = J and ker(π2) =
pR + (σ − 1)p−1R we infer ker(ψ) = pJ , using (a) once again. For the statem
concerning the maximal submodules ofJ we quote the proof of [8, Lemma 14]. �

We next have to determine the lattice ofF -submodules ofFp ⊕ Fp[y]/(yp−1). To this
end we begin by counting the submodulesU having|U | = pe elements(0 � e � p). For
e = 0 ande = p there is clearly only one such submodule. For 0< e < p, U must be
contained inW := Fp ⊕ (ȳp−1−e), or more precisely be a maximal submodule ofW .
There arep + 1 such submodules, forW/rad(W) ∼= Fp ⊕ Fp.

We are now able to state the lattice of submodules ofFp ⊕ Fp[y]/(yp−1):

e = p

e = p − 1

e = p − 2
...

e = 2

e = 1

e = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Fp ⊕ (1)

Fp ⊕ (ȳ) 〈(1,1)〉F 〈(2,1)〉F . . . 〈(p − 1,1)〉F 0⊕ (1)

Fp ⊕ (
ȳ2

) 〈(1, ȳ)〉F 〈(2, ȳ)〉F . . . 〈(p − 1, ȳ)〉F 0⊕ (ȳ)

...
...

...
. . .

...
...

Fp ⊕ (
ȳp−2

) 〈(
1, ȳp−3

)〉
F

〈(
2, ȳp−3

)〉
F

. . .
〈(

p − 1, ȳp−3
)〉

F
0⊕ (

ȳp−3
)

Fp ⊕ 0
〈(

1, ȳp−2
)〉

F

〈(
2, ȳp−2

)〉
F

. . .
〈(

p − 1, ȳp−2
)〉

F
0⊕ (

ȳp−2
)

0

(23)
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In this diagram, the submodules in each row havepe elements, wheree is indicated in
the leftmost column. The lattice structure is settled by the following inclusions:

• EachFp ⊕ (ȳi) (i = 0, . . . , p − 1) contains all modules occurring in the subsequ
row.

• Each 0⊕ (ȳi) (i = 0, . . . , p − 1) is contained in all modules of the preceding row.

The lattice structure can be visualized as follows:

We will now transfer this diagram to the lattice ofR-submodules ofJ containingpJ .
Thus we obviously have to replace eachU ⊆ Fp ⊕ Fp[y]/(yp−1) by ψ−1(U) (cf.
Lemma 6.3). However, for the applications we have in mind, it suffices to know wh
the corresponding module is isomorphic toR or to J (which are the only possibilities, a
we noted above). Fori = 0, . . . , p − 1 we haveψ((σ − 1)i+1) = (0, ȳi), and consequentl

ψ−1(Fp ⊕ (
ȳi

)) = φR ⊕ (σ − 1)i+1R and ψ−1(0⊕ (
ȳi

)) = pφR ⊕ (σ − 1)i+1R

are non-cyclicR-modules, that is isomorphic toJ . The last assertion of Lemma 6.3(b) a
diagram (23) now imply the following diagram of isomorphism types:

e = p J

e = p − 1 J R R . . . R J

e = p − 2 J R R . . . R J
...

...
...

...
. . .

...
...

e = 2 J R R . . . R J

e = 1 J R R . . . R J

e = 0 J

(24)

After this discussion, we return to our original task, viz the calculation of

tl(e; s) =
∑

pV
(1)

l′ ⊆X⊆V
(1)

l′
[X:pV

(1)]=pe

[X + pR : X]−sz
pV

(1)

l′
(X; s)
l′
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for 0 � e � p. SinceV
(1)

l′ = (p, (σ − 1)l
′
) = φR ⊕ (σ − 1)l

′
R ∼= J by Lemma 3.6(a) we

can rewrite this sum as

tl(e; s) =
∑

pJ⊆X⊆J
[X:pJ ]=pe

[
X + ι(pR) : X]−s

zpJ (X; s), (25)

whereι is theR-module isomorphism

ι :V (1)

l′ = φR ⊕ (σ − 1)l
′
R → J = φR ⊕ (σ − 1)R,

φ �→ φ, (σ − 1)l
′ �→ σ − 1.

Thus it remains to determineι(pR). From Lemma 6.3(a) we infer

ι(pR) = ι
((

φ − (σ − 1)p−1)R) = (
φ − (σ − 1)p−l′)R,

and applyingψ defined as in Lemma 6.3 yields

ψι(pR) = 〈(
1,−ȳp−l′−1)〉

F
= 〈(

p − 1, ȳp−l′−1)〉
F
. (26)

Now if pJ ⊆ X ⊆ J such that[X : pJ ] = pe , we can read off the functionszpJ (X; s)

from diagram (24), using formula (15):

• If e = 0, thenX = pJ and

zpJ (X; s) = ζpJ (s) = ζJ (s).

• If e � 2 andψ(X) = Fp ⊕ (ȳp−e), then

zpJ (X; s) = ζJ (s) − p−s
(
2ζJ (s) + (p − 1)ζR(s)

) + p · p−2sζJ (s).

In order to compute theµ-factors in formula (15) we may use Theorem 4.4,
X/pJ ∼= Fp ⊕ (ȳp−e) ∼= Fp ⊕Fp[u]/(ue−1) ∼= Fp ⊕Fp�u�/(u

e−1), i.e., we can apply
this theorem withC := Fp�u�.

• OtherwiseX has a unique maximal submodule lying overpJ , and Theorem 4.2
implies

zpJ (X; s) =
{

ζR(s) − p−s ζJ (s) X ∼= R,(
1− p−s

)
ζJ (s) X ∼= J.

Finally we just have to determine the indices[X+ι(pR) : X] for pJ ⊆ X ⊆ J occurring
in (25). After “shifting” this problem viaψ we may equivalently compute the indic
[U + ψι(pR) : U ] for U := ψ(X) ⊆ Fp ⊕ Fp[y]/(yp−1). We already knowψι(pR) by
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index

,
or
(26), and we record these indices in a diagram corresponding to (23), namely the
[U + ψι(pR) : U ] at the very position ofU in (23):

e = p 1

e = p − 1 1 p p . . . p p

...
...

...
...

. . .
...

...

e = l′ + 1 1 p p . . . p p

e = l′ p p p . . . 1 p

e = l′ − 1 p2 p2 p2 . . . p2 p

e = l′ − 2 p3 p3 p3 . . . p3 p2

...
...

...
...

. . .
...

...

e = 1 pl′ pl′ pl′ . . . pl′ pl′−1

e = 0 pl′

Now we are ready to state the result of the sumtl(e; s) according to (25). Therefore
we complete the list of polynomialŝtl(e;x) from the beginning of this subsection f
p2 − p < l < p2. Again we will make use of the polynomialŝδ0(x), δ̂1(x) defined in
(22), and withl′ = l − (p2 − p) we get

• t̂l (0;x) = xl′ δ̂1(x).
• t̂l (p;x) = (1− 2x + px2)δ̂1(x) − (p − 1)xδ̂0(x).
• If l′ = 1:

t̂l (e;x) =
{(

x − px2
)
δ̂1(x) + (

1+ (p − 2)x
)
δ̂0(x) e = 1,

(1− x)δ̂1(x) 2 � e � p − 1.

• If l′ > 1:

t̂l(e;x) =



(p − 1)xl′ δ̂0(x) + (
xl′−1 − pxl′+1

)
δ̂1(x) e = 1,

(p − 1)
(
xl′+1−e − xl′+2−e

)
δ̂0(x)

+(
xl′−e − (p + 1)xl′+2−e + pxl′+3−e

)
δ̂1(x) 2 � e � l′ − 1,(

1+ (p − 2)x − (p − 1)x2
)
δ̂0(x)

+(
x − (p + 1)x2 + px3

)
δ̂1(x) e = l′,

(1− x)δ̂1(x) l′ + 1 � e � p − 1.

We conclude this section by some numerical examples. We list the polynomialsδ̂Zp[C
p3](x)

for p ∈ {2,3,5}:

δ̂Z2[C8](x) = 128x14 − 192x13+ 160x12− 48x11 + 48x10 − 8x9 + 32x8

− 12x7 + 16x6 − 2x5 + 6x4 − 3x3 + 5x2 − 3x + 1,
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δ̂Z3[C27](x)

= 1594323x26− 1594323x25+ 1062882x24− 59049x23+ 354294x22− 196830x21

+ 334611x20− 65610x19+ 111537x18+ 10935x17+ 4374x16+ 29889x15

− 5103x14+ 9963x13− 1701x12+ 3321x11+ 162x10+ 135x9 + 459x8

− 90x7 + 153x6 − 30x5 + 18x4 − x3 + 6x2 − 3x + 1,

δ̂Z5[C125](x)

= 4656612873077392578125x62− 2793967723846435546875x61

+ 1490116119384765625000x60+ 335276126861572265625x59

+ 670552253723144531250x58− 193715095520019531250x57

+ 350177288055419921875x56+ 35762786865234375000x55

+ 17881393432617187500x54+ 50365924835205078125x53

+ 18477439880371093750x52− 357627868652343750x51

+ 12338161468505859375x50+ 2908706665039062500x49

+ 1871585845947265625x48+ 1714229583740234375x47

− 162124633789062500x46+ 700473785400390625x45

− 92029571533203125x44+ 140094757080078125x43

− 18405914306640625x42+ 28018951416015625x41

− 3681182861328125x40+ 5603790283203125x39

− 736236572265625x38+ 1120758056640625x37− 147247314453125x36

+ 224151611328125x35− 29449462890625x34+ 44830322265625x33

− 5889892578125x32+ 8966064453125x31− 1177978515625x30

+ 1793212890625x29− 235595703125x28+ 358642578125x27

− 47119140625x26+ 71728515625x25− 9423828125x24+ 14345703125x23

− 1884765625x22+ 2869140625x21− 376953125x20+ 573828125x19

− 75390625x18+ 114765625x17− 5312500x16+ 11234375x15+ 2453425x14

+ 762500x13+ 646875x12− 3750x11+ 38750x10+ 21125x9 + 1500x8

+ 600x7 + 1175x6 − 130x5 + 90x4 + 9x3 + 8x2 − 3x + 1.

The functional equation

δ̂Zp[C
p3](x) = (

px2)1+p+p2 · δ̂Zp[C
p3]

(
1

)

px
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predicted by Corollary 5.3 is indeed satisfied in all cases (this has been checked as a te
the correctness of the computations).

7. The case k = 1 and n � 1

We putR := R1 = Zp[Cp] in this section. Our intention is to compute the zeta func
of Rn, or equivalently the polynomial̂δRn(x). In view of the next section we determin
more generallŷδV (x), whereV ⊆ Rn is a submodule of finite index (as always). We w
see below that the zeta function ofV only depends on

m := dimFp

(
f2(V )/pV ◦).

Heref2 :Rn → Zn
p is the map defined in (9), which in fact is the augmentation map in

case. LetV ◦ be defined as in Section 3. Sincef2(V ) ⊆ V ◦ ∼= Zn
p by Lemma 3.2, and sinc

f2(V )/pV ◦ injects intoV ◦/pV ◦ ∼= Fn
p , we have 0� m � n.

We introduce the following notation.

Notation. We put

q := p−1

for the rest of this article. For every non-negative integerm we set

(q)m :=
m∏

j=1

(
1− qj

)
.

Furthermore, ifl, m are non-negative integers, we denote by[
m

l

]
p

the number ofl-dimensional subspaces of anm-dimensionalFp-vector space. It is well
known that in the casem � l this number equals

(pm − 1)(pm − p) · · · (pm − pl−1)

(pl − 1)(pl − p) · · · (pl − pl−1)
= pl(m−l) (q)m

(q)l(q)m−l

.

The following combinatorial lemma is due to Cauchy (cf. [3, III.8.5] for a proof).

Lemma 7.1. The following identity of polynomials holds:

m−1∏
l=0

(
1− plx

) =
m∑

i=0

[
m

i

]
p

(−1)ip(i
2)xi.
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Lemma 7.2. LetY ⊆ Fn
p be a subspace withdim(Y ) = m.

(a) For l ∈ {0, . . . , n} let χ(l) be the number of subspacesU ⊆ Fn
p with dim(U) = l and

U ∩ Y = 0. Then

χ(l) = pml

[
n − m

l

]
p

,

in particular, χ(l) = 0 if l > n − m.
(b) If e ∈ {0, . . . , n}, then

∑
X⊆Fn

p

dim(X)=e

[X + Y : X]−s =
min{e,m}∑

f =max{0,e+m−n}

[
m

f

]
p

[
n − m

e − f

]
p

p(m−f )(e−f )
(
pm−f

)−s
.

Proof. (a) Comparing dimensions clearly impliesχ(l) = 0 if l + m > n. Hence we can
restrict ourselves to the casel + m � n. Fix a basisy1, . . . , ym of Y . We begin by counting
the number of possibilities to choosel linearly independent vectorsu1, . . . , ul ∈ Fn

p

satisfying

〈y1, . . . , ym〉 ∩ 〈u1, . . . , ul〉 = 0.

For u1 there arepn − pm possibilities, becauseu1 /∈ 〈y1, . . . , ym〉. Sinceu2 has to be
linearly independent ofu1, we must haveu2 /∈ 〈y1, . . . , ym,u1〉, hence there arepn −pm+1

choices foru2, and so on. Finally there arepn − pm+l−1 choices forul because o
ul /∈ 〈y1, . . . , ym,u1, . . . , ul−1〉.

On the other hand, a subspaceU ⊆ Fn
p of dimensionl has exactly|GLl(Fp)| =

(pl − 1) · · · (pl − pl−1) distinct bases. Hence

χ(l) = (pn − pm) · · · (pn − pm+l−1)

(pl − 1) · · · (pl − pl−1)
= pml

[
n − m

l

]
p

.

(b) We have∑
X⊆Fn

p

dim(X)=e

[X + Y : X]−s

=
∑

X⊆Fn
p

dim(X)=e

[Y :X ∩ Y ]−s =
min{e,m}∑

f =0

∑
X⊆Fn

p

dim(X)=e
dim(X∩Y )=f

(
pm−f

)−s

=
min{e,m}∑

f =0

∑
X0⊆Y

∣∣{X ⊆ Fn
p | dim(X) = e andX ∩ Y = X0

}∣∣(pm−f
)−s

.

dim(X0)=f
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Fix a subspaceX0 ⊆ Y such that dim(X0) = f , and putY := Y/X0. Then:

∣∣{X ⊆ Fn
p | dim(X) = e andX ∩ Y = X0

}∣∣
= ∣∣{X ⊆ Fn

p/X0 ∼= Fn−f
p | dim(X) = e − f andX ∩ Y = 0

}∣∣
= p(m−f )(e−f )

[
n − m

e − f

]
p

,

where the last equation follows from part (a). Since there are
[
m
f

]
p

subspacesX0 ⊆ Y of

dimensionf , we get

∑
X⊆Fn

p

dim(X)=e

[X + Y : X]−s =
min{e,m}∑

f =0

[
m

f

]
p

[
n − m

e − f

]
p

p(m−f )(e−f )
(
pm−f

)−s
.

Note that
[

n−m
e−f

]
p

�= 0 only if e − f � n − m, so the summation may start withf =
max{0, e + m − n}, and the proof is complete.�
Lemma 7.3. LetpV ◦ ⊆ X ⊆ V ◦ with [X : pV ◦] = pe , 0 � e � n. Then

zpV ◦(X; s) =
n−1∏
j=e

(
1− pj−s

)−1
.

Proof. SinceV ◦ ∼= Zn
p , formula (15) implies

zpV ◦(X; s) =
∑

pZn
p⊆W⊆X′

µ(W,X′)[X′ : W ]−sζW (s),

where pZn
p ⊆ X′ ⊆ Zn

p with [X′ : pZn
p] = pe . We also haveW ∼= Zn

p , and thus by
Theorem 3.9:

ζW (s) = ζZn
p
(s) =

n−1∏
j=0

(
1− pj−s

)−1
.

Denote byµ̃ the Möbius function of the lattice of subspaces ofFe
p. UsingX′/pZn

p
∼= Fe

p

we get

∑
pZn⊆W⊆X′

µ(W,X′)[X′ : W ]−s
p
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=
∑

U⊆Fe
p

µ̃
(
U,Fe

p

)[
Fe

p : U]−s =
e∑

i=0

[
e

i

]
p

(−1)e−ip(e−i
2 )p−(e−i)s

=
e∑

i=0

[
e

i

]
p

(−1)ip(i
2)p−is =

e−1∏
j=0

(
1− pj−s

)
,

by Lemma 7.1. Here we made use of the fact thatµ̃(U,Fe
p) = (−1)e−ip(e−i

2 ), if U ⊆ Fe
p is

a subspace such that dim(U) = i (cf. Theorem 4.3). Now multiplying byζZn
p
(s) proves the

assertion. �
The above results allow us to computetV (e; s) as in (14) for 0� e � n:

tV (e; s) =
( ∑

pV ◦⊆X⊆V ◦
[X:pV ◦]=pe

[X + f2(V ) : X]−s

)
n−1∏
j=e

(
1− pj−s

)−1

=
( min{e,m}∑

f =max{0,e+m−n}

[
m

f

]
p

[
n − m

e − f

]
p

p(m−f )(e−f )
(
pm−f

)−s

)

·
n−1∏
j=e

(
1− pj−s

)−1
,

becausem = dim(f2(V )/pV ◦). Now (18) implies

δ̂V (x) =
n∑

e=0

pn(n−e)xn−e t̂V (e;x)

with

t̂V (e;x) =
e−1∏
j=0

(
1− pjx

) min{e,m}∑
f =max{0,e+m−n}

[
m

f

]
p

[
n − m

e − f

]
p

p(m−f )(e−f )xm−f .

We recall thatR = R1 = Zp[Cp], hencef2(R
n) = (Rn)◦ = Zn

p with the notations of
Section 3. Thusm = n for V = Rn, and we have the following formula.

Theorem 7.4. If R = R1 = Zp[Cp], then

δ̂Rn(x) =
n∑

e=0

([
n

e

]
p

pn(n−e)x2(n−e)
e−1∏
j=0

(
1− pjx

))
.
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8. The case k = 2 and n � 1

In this section we will compute the zeta function ofRn
2(R2 = Zp[Cp2]), i.e., the

polynomial,

δ̂Rn
2
(x) =

np∑
e=0

pn(np−e)xnp−et̂Rn
2
(e;x),

wheret̂Rn
2
(e;x) is defined in (17) by means of (cf. (14))

tRn
2
(e; s)

∑
pRn⊆X⊆Rn

[X:pRn]=pe

[
Rn : X]−s

zpRn(X; s) = (
pnp−e

)−s
∑

pRn⊆X⊆Rn

[X:pRn]=pe

zpRn(X; s).

Here we put

R := R1 = Zp[Cp],

and we will keep this notation for the rest of this section. It therefore remains to dete
the sums

t ′(e; s) :=
∑

pRn⊆X⊆Rn

[X:pRn]=pe

zpRn(X; s)

for 0 � e � np. Utilizing (15) yields

t ′(e; s) =
∑

pRn⊆X⊆Rn

[X:pRn]=pe

∑
pRn⊆V ⊆X

µ(V,X)[X : V ]−sζV (s)

=
∑

pRn⊆V ⊆Rn

( ∑
V ⊆X⊆Rn

[X:pRn]=pe

µ(V,X)[X : V ]−s

)
ζV (s). (27)

The functionsζV (s) have been calculated in the preceding section, and we recall tha
only depend on

m(V ) := dimFp

(
f2(V )/pV ◦),

where againf2 :Rn → Zn
p andV ◦ are defined as in Section 3.

Fix pRn ⊆ V ⊆ Rn. We will first evaluate the parenthetical expression in (27) belon
to V . This computation can be performed inRn/pRn. More precisely, let

F := Fp[y]/(yp
) ∼= R/pR,
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ntinue
and letU ⊆ Fn be the image ofV under the canonical projectionπ :Rn → Fn. Then∑
V ⊆X⊆Rn

[X:pRn]=pe

µ(V,X)[X : V ]−s =
∑

U⊆Y⊆Fn

|Y |=pe

µ(U,Y )[Y : U ]−s , (28)

where the Möbius function of the lattice of submodules ofFn is denoted byµ as well.
There is anF -module isomorphism

U ∼= Fp[y]/(yr1
) ⊕ · · · ⊕ Fp[y]/(yrn

)
,

and the integers 0� r1 � · · · � rn � p are uniquely determined.(r1, . . . , rn) will be
referred to as theisomorphism typeof U .

Lemma 8.1. Let pRn ⊆ V ⊆ Rn and letU ⊆ Fn be the image ofV under the projection
π :Rn → Fn. Let (r1, . . . , rn) be the isomorphism type ofU . Then

m(V ) = |{1� i � n | ri = 0 or ri = p}|.

Proof. By definition m(V ) = dim(f2(V )/pV ◦) = dim(f2(V )/pZn
p) + dim(pZn

p/pV ◦),
and we write

U = (
ȳp−r1

) ⊕ · · · ⊕ (
ȳp−rn

) ⊆ Fn

in the sequel. If we putK = (ȳ) ⊕ · · · ⊕ (ȳ) ⊆ Fn, then obviously

f2(V )/pZn
p

∼= (
π(V ) + K

)
/K ∼= (U + K)/K,

and thus dim(f2(V )/pZn
p) = |{i | ri = p}|.

In addition we have

pZn
p/pV ◦ = f2

(
φRn

)/
f2

(
V ∩ φRn

) ∼= (
π(V ) + π

(
φRn

))
/π(V )

with φ = σp−1 + · · · + σ + 1 (cf. proof of Lemma 6.1). Fromπ(V ) = U andπ(φRn) =
(ȳp−1) ⊕ · · · ⊕ (ȳp−1) we infer dim(pZn

p/pV ◦) = |{i | ri = 0}|, and the lemma is
proved. �

The next step is the computation of the sum (28). For the rest of this section, we co
to use the notation introduced at the beginning of Section 7.

Lemma 8.2. LetU ⊆ Fn be a submodule of isomorphism type(r1, . . . , rn). Setn′ := |{1�
i � n | ri �= p}| andf := r1 + · · · + rn. Then the following holds fore � f :

∑
U⊆Y⊆Fn

e

µ(U,Y )[Y : U ]−s =
[

n′
e − f

]
p

(−1)e−f p(e−f
2 )

(
pe−f

)−s
,

|Y |=p
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ming
g

of
ing
in particular = 0 if e > f + n′.

Proof. The sum extends over allY ⊇ U such that[Y : U ] = |Y |/|U | = pe−f . Hence it
suffices to calculate∑

U⊆Y⊆Fn

|Y |=pe

µ(U,Y ) =
∑

U⊆Y⊆Fn

|Y |=pe

µ̄(0, Y/U) =
∑

H⊆Fn/U

|H |=pe−f

µ̄(0,H),

whereµ̄ is the Möbius function of the lattice of submodules ofFn/U . Now

Fn/U ∼= Fp[y]/(yp−r1
) ⊕ · · · ⊕ Fp[y]/(yp−rn

)
∼= Fp[y]/(yp−r1

) ⊕ · · · ⊕ Fp[y]/(yp−rn′ ) by definition ofn′

∼= Fp�y�/
(
yp−r1

) ⊕ · · · ⊕ Fp�y�/
(
yp−rn′ ).

Applying Theorem 4.4 yields

∑
U⊆Y⊆Fn

|Y |=pe

µ(U,Y ) =
∑

H⊆Fn′
p

|H ′|=pe−f

µ̃(0,H ′) =
[

n′
e − f

]
p

(−1)e−f p(e−f
2 ),

µ̃ being the Möbius function of the lattice of subspaces ofFn′
p , and the claim follows. �

We briefly review the steps made towards the computation of (27). Instead of sum
over pRn ⊆ V ⊆ Rn, we sum over all submodulesU ⊆ Fn. Because of the precedin
lemma, the parenthetical expression in (27) only depends on the isomorphism type ofU ,
as well as the zeta function ofV by Lemma 8.1. Accordingly we only require the number
submodules⊆ Fn of given isomorphism type. This problem is considered in the follow
theorem (for a proof, see [2, Theorems 2.10, 2.11,Proposition 3.2]).

Theorem 8.3. Let C be a discrete valuation ring with prime elementπ and residue class
fieldFp . Leta1 � · · · � an be positive integers, to be partitioned as follows:

a1 = · · · = ak1 =: u1,

ak1+1 = · · · = ak1+k2 =: u2,
...

...
...

ak1+···+kd−1+1 = · · · = ak1+···+kd =: ud

such thatu1 < · · · < ud andk1 + · · · + kd = n (all ki � 1). There are precisely

ν

(
u1 · · ·ud

k · · ·k
)

:= (q)n
p

∑
i<j ki kj (uj −ui)
1 d (q)k1 · · · (q)kd
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submodulesU ⊆ Cn satisfying

Cn/U ∼= C/
(
πa1

) ⊕ · · · ⊕ C/
(
πan

)
.

For given integers 0� r1 � · · · � rn � p we will apply this theorem withC := Fp�y�
and ai := p − rn−i (i = 0, . . . , n). We have indeed 0� a1 � · · · � an � p, and after
defining ui and ki as in the statement of the theorem, the submodulesU ⊆ Fn of
isomorphism type(r1, . . . , rn) correspond to the submodulesU ′ ⊆ (Fp�y�)

n such that

(Fp�y�)
n/U ′ ∼= Fp�y�/

(
ya1

) ⊕ · · · ⊕ Fp�y�/
(
yan

)
,

and there areν
( u1···ud

k1···kd

)
of those.

We are now able to state the result of the sumst ′(e; s) from (27).

Theorem 8.4. Let 0 � e � np be an integer. Then

t ′(e; s) =
n∑

d=1

∑
0�u1<···<ud�p

k1+···+kd=n
f �e�f +n′

ν

(
u1 · · ·ud

k1 · · ·kd

)[
n′

e − f

]
p

(−1)e−f p(e−f
2 )

(
pe−f

)−s
ζm(s),

wheref,n′ andm depend onui , ki , viz:

f = np −
d∑

i=1

kiui,

n′ =
{

n − k1 u1 = 0,

n otherwise,

m =


k1 + kd u1 = 0 andud = p,

k1 u1 = 0 andud < p,

kd u1 > 0 andud = p,

0 otherwise.

Furthermore

ζm(s) := ζV (s)

for any submoduleV ⊆ Rn with m(V ) = m (cf. preceding section).

From this theorem we immediately infer the polynomialst̂Rn
2
(e;x) and δ̂Rn

2
(x), and

hence the computation of the zeta function ofRn is complete in this case.
We conclude this section by some numerical examples: the polynomialsδ̂Zp[C

p2]n(x)

for p ∈ {2,3,5} andn ∈ {1,2,3}.
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δ̂Z2[C4](x) = 8x6 − 8x5 + 6x4 + 3x3 − 2x + 1,

δ̂Z2[C4]2(x) = 4096x12− 6144x11+ 6400x10− 2304x9 + 2816x8 − 2304x7 + 195x6

− 576x5 + 176x4 − 36x3 + 25x2 − 6x + 1,

δ̂Z2[C4]3(x) = 134217728x13− 234881024x17+ 278921216x16− 143654912x15

+ 136708096x14− 110100480x13+ 102023168x12− 43696128x11

+ 17389568x10− 4376576x9 + 2173696x8 − 682752x7 + 199264x6

− 26880x5 + 4172x4 − 548x3 + 133x2 − 14x + 1,

δ̂Z3[C9](x) = 81x8 − 54x7 + 36x6 + 9x5 + 3x4 + 3x3 + 4x2 − 2x + 1,

δ̂Z3[C9]2(x) = 43046721x16− 38263752x15+ 30823578x14+ 708588x13

+ 1535274x12+ 3385476x11+ 2119203x10− 1355940x9 + 1167129x8

− 150660x7 + 26163x6 + 4644x5 + 234x4 + 12x3 + 58x2 − 8x + 1,

δ̂Z3[C9]3(x)

= 150094635296999121x24− 144535574730443598x23+ 123122896992600102x22

− 5467553396735679x21+ 6377541363277461x20+ 14396280763046013x19

+ 6581267202259089x18− 4740422864535540x17+ 4916296269721980x16

− 868287187367289x15+ 200488295095218x14+ 15476501507688x13

+ 777744240183x12+ 573203759544x11+ 275018237442x10

− 44113559283x9+ 9250878780x8− 330368220x7 + 16987401x6

+ 1376271x5 + 22581x4 − 717x3 + 598x2 − 26x + 1,

δ̂Z5[C25](x) = 15625x12− 6250x11+ 3750x10+ 1875x9 + 125x8

+ 375x7 + 25x6 + 75x5 + 5x4 + 15x3 + 6x2 − 2x + 1,

δ̂Z5[C25]2(x) = 59604644775390625x24− 28610229492187500x23

+ 18692016601562500x22+ 7209777832031250x21

+ 7629394531250x20+ 2210998535156250x19

− 56915283203125x18+ 450073242187500x17

− 12957763671875x16+ 90329589843750x15

+ 20233642578125x14− 6640722656250x13

+ 5911884765625x12− 265628906250x11

+ 32373828125x10+ 5781093750x9 − 33171875x8 + 46087500x7

− 233125x6 + 362250x5 + 50x4 + 1890x3 + 196x2 − 12x + 1,
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δ̂Z5[C25]3(x)

= 55511151231257827021181583404541015625x36

− 27533531010703882202506065368652343750x35

+ 18282264591107377782464027404785156250x34

+ 6658211759713594801723957061767578125x33

− 84406792666413821280002593994140625x32

+ 2229149913546280004084110260009765625x31

− 97134670795639976859092712402343750x30

+ 456909228887525387108325958251953125x29

− 20771263370988890528678894042968750x28

+ 91639080055756494402885437011718750x27

+ 17826733196852728724479675292968750x26

− 5804500149097293615341186523437500x25

+ 5919211489055305719375610351562500x24

− 326670646662823855876922607421875x23

+ 48173992687091231346130371093750x22

+ 6197919498234987258911132812500x21

− 47538805550336837768554687500x20

+ 65995047889947891235351562500x19− 560464551913738250732421875x18

+ 527960383119583129882812500x17− 3042483555221557617187500x16

+ 3173334783096313476562500x15+ 197320674046325683593750x14

− 10704343749847412109375x13+ 1551685776586914062500x12

− 12172919096679687500x11+ 299082953417968750x10

+ 122995891210937509− 22302974218750x8+ 3924820390625x7

− 6675043750x61225488125x5− 371225x4 + 234265x3 + 5146x2 − 62x + 1.

Note that we checked in each case thevalidity of the functional equation

δ̂Zp[C
p2]n(x) = (

pn2
x2n

)1+p · δ̂Zp[C
p2]n

(
1

pnx

)
predicted by Corollary 5.3.
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