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Abstract

For a prime numbep andek, the cyclic group of ordep*, we consider the group rirg, [C ]
over thep-adic integers. Following L. Solomon, one can define the zeta function of tth;[@pk]-
moduIeZp[Cpk]”, which counts submodules of finite indele),[Cpk]". In this article we develop
arecursion formula (relating submodulequ;[Cpk]” to certain submodules @‘,,[Cpk_l]”), which
yields some new explicit formulas for the zeta functiongf[Cpk]" inthecases=1,2andn > 1,
andk = 3,n = 1. An important combinatorial tool for these computations is the M&bius function of
a partially ordered set.
0 2004 Published by Elsevier Inc.
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1. Introduction

Let p be aprime number and,« be the (multiplicative) cyclic group of order, where
k is a non-negative integer. Lét be a finitely generated torsion freégC «]-module. In
[8] L. Solomon introduced a zeta function attached.iaefined as

f(s)= Y [L:UT™;
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here the sum extends over all submodulesf finite index inL, and the series converges
for all s € C with Re(s) sufficiently large (although we will regard this series rather as
a formal sum; therefore, we will not care abajutestions of convergence in the sequel).
Solomon showed that there is an Euler product

t(s)=[]eu .
I

wherel ranges over all prime numbelis; = L ® Z; (Z; being the ring of-adic integers)
and

(=Y LU,

UiCL;

this time summing over aEl[Cpk]—submodulesjl of finite index inL;. Thus we can work
locally in order to compute; (s).

If I £ p the OrdelZ[[Cpk] is the maximal order ir@;[Cpk], and¢yz, (s) is a product of
Dedekind zeta functions of number fields, cf. [8, (1.2)]. The dasep is more delicate.
Let R C Q,[C ] be the maximal order (containilﬁgp[cpk]). Then

21, () =81, ()¢, o (),

where again; 7z (s) is a product of Dedekind zeta functions of number fields, and
8L,(s) € ZIp~*]is a polynomial inp™* with integral coeffieents, according t&olomon’s
First Conjectureproved in [1, Theorem 1]. The difficulty in calculating the zeta function
of L consists in determining this polynomial.

The goal of this paper is to find explicit formulas for the zeta functioh ef Z[C 1",
wheren is a positive integer. PuRy := Z,,[Cpk], and IetEk be the maximal order of
the group algebr@p[cpk]. Sincer[CPk] =ZQpy @ Qpw) ®--- ®Qp(wr) (wi being a
primitive p’th root of unity) we getl?k =Zp®Zplw1] ® --- ® Zplwi]. In this case [8,
(1.2)] reads

n—1 k
§zic 1 (8) = Sgp () l_[ <§(S —J) l_[ Qo (8 — j)>,

j=0 i=1

where (s) is the Riemann zeta function, ang.,) (s) is th~e Dedekind zeta function of the
cyclotomic fieldQ(w;). Furthermore the zeta function &; is the “p-part” of the above
product of zeta functions,

1
(A= p A= pl) - A= pr T )T

and it suffices to compute

Ly (0) =

Erp(5) = Sy ()¢ (5).
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The only cases treated so far are- 1 andk = 1 by Solomon (cf. [8], and an easier proof
by I. Reiner in [6]), and: = 1 andk = 2 by Reiner in [6]. In this paper we will generalize
Reiner's method. The main idea is thg¢ can be written as a fibre product &f,_; and
some discrete valuation ring. This allows one to reduce the zeta functi®j ¢ sum
over submodules oR}) to a sum over submodules &;_,. More accurately we get the
following formula:

e =2z Y, (PO TR, T]

UeR],

where;Z»; (s) is easy to calculate, andU) is a certain non-negative integer, depending
on the submodulé/ of finite index in R}_,. Unfortunately the sum on the right-hand
side is not quite the zeta function & _;, but the terms can be rearranged in order
to obtain aZ[p~*]-linear combination of the zeta functions of the submoduleor
PR} 4 C UC R}_,. This transformation is accompltied by means of a combinatorial
tool: the Mébius function fithe lattice of those submodulés In addition we mention that
it is evidently not enough to consider zeta functions of fRgemodules. We should rather
find a recursive formula, similar to the one above, for the zeta function of any submodule
U C R} offinite index.

This will be done in the sequel, and thereby we are able to find explicit formulas for
¢re (s) in the following cases

e k=1andn >1,
e k=2 andn > 1 (where our result in the cage= 1 is “more explicit” than the one in

[6]),
e k=3 andn=1.

The paper is organized as follows: in Section bviefly describe two algebraic concepts
that will be useful for the derivation of the recursion formula in Section 3. In Section 4 we
define the Mdbius function of a partially ordered set, and apply it to our case. In Section 5
we discuss a functional equation for the zeta functioﬁgtpk]". Eventually, Sections 6—
8 are devoted to the development of explicit formulas for the zeta functiofig [aﬁ‘pk]”
in the cases mentioned above.

Throughout this paper, we fix the following notatignis a prime numbefZ, the ring
of p-adic integersC « with k > O is the cyclic group of ordes®, ando is a fixed generator
of this group. Furthermorg;, = Z,,[Cpk], and

k

gr=0l "D 4P D 6P L e Ry,

and fori > 1 we letw; be a primitivep’ th root of unity.
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2. Zetafunctionsof matrix ringsand Reiner’smethod

If R is any commutative ring, we denote by, kR) the ring ofn x n matrices overR.
We define the zeta function of MR) as the formal sum

M, (R ($) = Z [Mu(R): 1]7°.

I1EM, (R)

Here the summation is over all left idealsof finite index in M, (R) (or equivalently, all
right ideals/ of finite index in M,(R)). In a similar way we can generalize the definition
of a zeta function from the introduction: &t be anR-module, and put

tvis)y= Y [V:UI™,

ucv
whereU runs through alR-submodules of finite index i .

Theorem 2.1. The zeta function d¥l,,(R) and the zeta function of thR-moduleR” satisfy

M, (R) () = Lpn(ns).

Proof. By Morita’s theorem (cf. [4, Section 3.12]) there is a lattice isomorphism between
the lattice of leftideald of M,,(R) and the lattice oR-submodule$/ of R". This induces

an isomorphism between the lattices of ideals/submodulésité index Moreover, if
andU correspond to each other under this isomorphism, one can easily show that

n

[M,(R): T]=[R":U]",
whence the desired equalitym
Form the proof of the theorem we immediately infer:

Corollary 2.2.1f I € M,(R) andU C R" are of finite index and correspond to each other
under Morita’s isomorphism, then

¢1(s) = ¢y (ns),

where;(s) = ng[l : J17%, J running through all leftM,,(R)-ideals of finite index,
contained in/.

The above theorem allows us to compute the zeta function of the rif@&M instead
of the zeta function of the module} . To this ring, Reiner's method is applicable, as we
will see in the next section. We will now briefly describe this method introduced by Reiner
in [6].
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Suppose we are given a fibre product of rings

f1
A—— A1

Al e

Az —= A/
82

where all maps are ring surjections. Thus
A={(x1,x2) € A1 D Az | g1(x1) = g2(x2)}.

We further assume that every left ideal 4f is principal. The aim is to describe all left
ideals ofA in terms of the left ideals ofi; and A».

Let I C A be a left ideal. Thenfi(I) = A1 for somea € A1. Hence there exists
B e fo(I) suchthatd, ) € A andg1(a) = g2(B8). Put

I>:={xe€A2|(0,x) e},
which is a left ideal ofd; satisfying
I =A(a, B)+ (0, I).
Therefore, every leftideal C A has the forml = A(«, B) + (0, I2) with

e auniquely determined left ide& < A, with go(12) =0,
e ageneratow € Ay of f1(1),
e anelemenp € A, with g1(a) = g2(B8); hereg is uniquely determined mog.

3. Arecursion formulafor the zeta function of R,’;

In this section we will derive a formula famy, (g,)(s) (which amounts to the same as
CRr(s), by Theorem 2.1). To this end, as we already mentioned in the introduction, we
have to find a formula fogy (s), whereV € M, (Ry) is an arbitrary ideal (from now on all
ideals are of finite index, unless stated otherwise). Put

R = Ry, R=Ri_1, S =Zplwxl, F:= FplCpe-1]
and¢ := ¢. There is a canonical fibre product diagram linking these rings
modgy
—_—
I

o—T

X <=—X

S
l mod (1—wk)1’k*1
F

modp
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where all maps are ring surjections ant a generator of’ ,x-1 in R. This leads to a fibre
product diagram

Mo (R) —22 M, (S)

le lgl 1)

Mn(]_?) ?) Mn(F)

SinceS is a principal ideal domain (even a discrete valuation ring), we know that every
left ideal of M,(S) is principal (cf. [5, Theorem 17.24]). Therefore, Reiner’s method,
introduced in the preceding sectidsapplicable to this situation.
Let V C M, (R) be a leftideal. Then

V = Ml‘l(R)(aV7 ,BV) + (Oa Vz)a (2)
whereay € f1(V), Bv € f2(V) with g1(av) = g2(Bv) and

Vo={xeM,(R)|(0,x)eV}.
Lemma 3.1. The left idealV, € M,,(R) is given by

V2= f2(V N ¢M,(R)).

Proof. This follows from¢M,,(R) = ker(f1) = {(0,x) e M, (R) | x e M,,(R)}. O

Lemma 3.2.

(a) There exists a let1,,(R)-ideal V° 2 f>(V) such thatV, = pV°.
(b) By € V°, whereBy is asin(2).

Proof. The canonical ma® — R maps¢ to p. Hence
V2= f2(VN¢M,(R)) S f2(dM,(R)) = pM,(R),
i.e., there is &° € M, (R) such thatV, = pV°. Now (a) follows because of
pVe=V22 falgp- V)= pfa(V).
Part (b) follows from
O, pBv) = (O, p)(av, Bv) =¢(av,Bv) €V,

i.e.,pBy e Vo=pV°. O
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We summarize: the left ided can be written as
V =M,(R)(ay, Bv) + (0, PV°) (3

with ay € f1(V), Bv € V°, gi(ay) = g2(Bv) andpV® = fo(V N $M,(R)).
Our goal is the computation of

()= ) VNI

NCV
By Reiner’'s method and the above lemma, every left ideal pfA has the form
Ma(R) (@, B) + (0, pN), 4)
where

e N CM,(R)is aleftideal,
e o € M, (S) with detl@) ## 0 (which meang$M,,(S) : M, (S)a] < 00),
e B e N such thaigr(a) = g2(B).

Let R denote a system of representatives of generat@d,, (S) with det(«) # 0 of all
leftideals of M, (S). Every leftideal of M, (R) determines a unique paiz, N) with« € R
and a left idealsV € M,,(R). On the other hand, i € R andN C M,,(R) are fixed, the
number of left ideals of M(R) belonging to(a, N) equals the number of elementss N
distinct modp N, satisfyingg1 (o) = g2(8).

For our purpose we have to determine the left ideals of the form (4),¢Rylcontained
in V, and we denote the number of theseuy, N). A necessary condition for such a left
ideal to be contained if is pN C pV°, thatisN C V°.

Lemma3.3.Leta € R andN C V°.

@) v, N) #0&=a e f1(V N £, H(N)).
(b) If v(a, N) # 0, thenv(a, N) =[pV° NN : pN].

Proof. (a) v(a, N) # 0 iff there is a left ideal of the form (4) contained ¥ i.e., there is
ap e N such thate, B) € V. This is the case ifis = f1(v) for somev e V N £, 1(N).

(b) Suppose («, N) # 0. Letvg € V with @ = f1(vo) andBg := f2(vo) € N, according
to (a). The possiblg, defining a left ideal as in (4) contained ¥ are exactly all

BeN suchthat JveV: a= fi(v) ands = fo(v).

Sincev — vg € ker( f1), this meanss € fo(vo + (ker(f1) N V)) N N. Now

f2(vo+ (ker(f1) N V)) NN = (Bo+ fa(ker(f1)NV)) NN
= Bo+ (f2(ker(f1) NV)NN) sincefoe N
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=po+ (pV°NN).

Since we have to count the numbew, N) of thoseg that are distinct mog N, the claim
follows. O

Lemma3.4.Let N :=M,(R)(a, B) + (0, pN) be a left ideal as ir{4). Then
[Ma(R) : N] = [Mn(S) : My (S)a ] [Ma(R) : N,

and in particular this index does not depend ®n

Proof. Consider the surjective map
@My (R) = M, (8) /My (S)ae =M, (S)/ f1(N)

induced byf1. ThenN C ker(p), and because of key) = ffl(fl(N)) = N +ker(f1) we
get

[ker(p) : N] =[ker(f1) : N nker(f1)]=[(0, pM,(R)) : (O, pN)] = [Mn(R) : N]. O

We now obtain a first formula for the zeta function\of

_ — ((MA(8) : My (S)a] M, (R) : N1\ ~*
tvis)= Y Zv(a,m( MR 1 V] ) : (5)

NcveaeR

and using Lemma 3.3

v =[Ma®):V] Y Y [pV°NN:pN]
NcCVe acR
acf1 (VNS5 L)

x ([M(S) : M,y (S)a][M,(R): N]) . (6)

Lemma 3.5.

Yo IMa®) Mu(®e] T =M f2(V N S D) ewis)(9)-
aeR
e fivVnfy W)

Proof. Every leftideal of M, (S) is principal, hence we have an isomorphism
M, ($) = f1(V N f5 1)

of left M,,(S)-modules. Thus their zeta functions coincide, and the lemma is proved.
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Note thatV°/pV° is anF ,-vector space in a natural way. Therefore, we may put
ly<(N) :=dimg, (N 4+ pV°/pV°®)

if N C V°, and the value of (o, N) determined in Lemma 3.3(b) can be transformed into

X7 37 2 k-1
[pVo NN : pﬁ] _ _[N : PN]_ - prr _  n2pFlolye (W)
[N:pVenNN] [N+ pVe:pVe]

Together with
[Mn(R) : V] = [Mn(S) : fl(V)][M(I_?) : V°]

(cf. Lemma 3.4) we infer from (6) the new formula

() =y Y PP (v AV E@)][VEN]) T ()

Ncve
for the zeta function o¥ .
Lemma 3.6.
[AV): AV A £ EE)][Ve: N] = p 7 @ [N + (V) : N].
Proof. The following exact sequence is immediate:
0— (VN f3 X)) + (V nker(f) = V== A(V)/A1(V N £ (N) =0,

wherer is induced byfi. The definition ofv° implies f2(V Nker(f1)) = pV*°, and using
fo(Vvn f{l(N)) = f2(V) N N we get another exact sequence

0— (VN £, X)) + (V nker(f1) = V =5 £(V)/((f2(V)NN) + pV°) = 0,

wherens is induced byf,.
Hence

[AV): AV W) ] =[0V): (f200)NN) + pV°]

_ [2(V) : f2(V) N N] _IN+ L(V): N
[(F2(V)NN)+pVe: fa(V)NN] - [pVe:pV°eNN]

and
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_ [V°:N]
" [Ve:N+pVel
[Ve:N] [V°:N]
T Ve pVOlIN + pVe i pVel  pririhye)’

[pV":pV"ﬂN]:[]V+pV°:]V]

and the assertion follows.O

With the help of this lemma formula (7) can be further simplified, and this yields the
following theorem.

Theorem 3.7. The following recursion formula holds for the zeta function of a left ideal
V C M, (R):

2 k-1

{V(S)ZQ-M,,(S)(S) Z (pn pr _lVO(N))l_S[N—FfZ(V)IN]_S; (8)

NCve
hereV* is given bypV° = f2(V N ¢M,(R)) andly-(N) =dimg,(N + pV°/pV°).

We will now retranslate this formula back to submodule®bf using Morita’s theorem
(cf. Corollary 2.2). We will mainly use the same notation as before, which should not be
confusing. All submodules ak” are again understood to be of finite index, unless stated
otherwise. We have a fibre product diagram analogous to (1)

Rn 1 > Sl‘l

.le lgl ©)

R —— F"
82

with surjectiveR-module homomorphisms.

Theorem 3.8. The following recursion formula holds for the zeta function of a submodule
V C R™

Cv(s) =Lsn(s) Y. pr e MEI[N 4 Hv) N (10)
Ncve

hereV® is given bypV° = f2(V N$R") andey-(N) = dimg, (N + pV°/pV°).

The term “recursion formula” is justified by the fact that the sum on the right-hand side
extends over submodules Bf, hence we descended framo k — 1. We will reorder this
sum in the next section and thereby obtain more practical results, at least in some cases.
Note that the factots: (s) can be easily evaluated, f6ris a discrete valuation ring (e.g.,
[1, Section 1]):
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Theorem 3.9. Let C be a discrete valuation ring with residue fielg},, the field withp
elements. Then

n—1

con) =[J(a-p=)™"

j=0

Notation. Lete € {0, ..., np*~1}. We put

ty(e;s) = Z [N+f2(V):]V]_S. (11)
NCVe
evo(ﬁ)ze

Then (10) can be rewritten as

pk—l
tv(s) =gsn(s) Y pP Oy (). (12)
e=0

We remark that it is particularly interesting to apply the recursion formula ter.
This is discussed in [10] together with some applications.

4. Mobiusfunctions

Our intention is to express the right-hand side of (10) in terms of the zeta functions
{g (s) for certain submodule®’ < R". This can be done by a combinatorial tool, the
Mobius function of a partially ordered set, which we will introduce first. The standard
reference for details and examples is [7].

Thus let(P, <) be a partially ordered set, which we require tolbeally finite,i.e.,
for all x, y € P there are only finitely many € P with x < z < y. TheM@bius function
w: P x P — Zis inductively defined by

0 x Ly,
pulx,y)y=11 x=y,
_ngquu,(x,z) x<y.

We recover the classical Mobius functiphfrom number theory by letting? be the set of
positive integers, partially ordered by the divisibility relatiprf m | n are integers, then
p(m,n) = (n/m).

The reason for studying is the following useful inversion formula, which follows
immediately from the definition.
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Theorem 4.1 (M6bius inversion formula)Let (P, <) be a locally finite partially ordered
set and leta € P. Let f: P — C be a function such thaf (x) = 0 if a ¢ x. Define
g:P— Chy

g)i= Y f(y).

a<y<x

Then

f@= Y u@.x0g).

asysx

In the rest of this section we will deal with the following situation. LRtbe a
commutative ring. IfV is an R-module, we can consider the lattice of all submodules
of finite index in V, which is partially ordered by inclusion and locally finite. Hence we
can study the M6bius functiom of that lattice.

Theorem 4.2. Let U, V be R-modules withU C V and [V : U] < oo. If the radical of
V /U satisfiesadV/U) # 0, thenu (U, V) = 0.

Proof. Let it be the Mdbius function of the finite lattice of submodulesVofU. Then
obviously

nU, V)=, V/U).

If M is a non-empty subset of all maximal submodule¥ g1/, then[ ) M # 0, because
rad'V/U) # 0. Thus the set of all maximal submodules&fU is across cubf the lattice
(cf. [7, Section 6]), and the claim follows from [7, Theorem 3]a

Theorem 4.3. The Mobius functiom of the lattice of subspaces of ardimensionalF ,-
vector space satisfies

n(0,F) = (-1 p@.

This is proved in [7, Section 5, Example 2]. We are now able to calculate the Mdbius
function of the lattice of submodules of a ifely generated module over a discrete
valuation ring.

Corollary 4.4. Let C be a discrete valuation ring with prime elementand residue class
fieldF,. Let M be a finiteC-module,

MZC/(n)@---&C/(n") (a2 D).

Then the M6bius function of the lattice of submodules #f satisfies

(0, M) = { -1'p® a=--=a,=1,
0 otherwise
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We continue lettingR be a commutative ring. Moreover, the submodulesRSf
considered here are always of finite index.

Notation. Let U € X C R" be submodules. We put

wXis)= ) [X:NI™ (13)

NCX
N+U=X

We clearly have

zu(U;s) =¢u(s).

We will now show thaty (X; s) for U C X can always be expressed in termg gf(s) for
U C W C X. More precisely:

Theorem 4.5. Let U € X € R" submodules, and let be the Mdbius junction of all
submodules of finite index iR". Then

wX;s)= Y wW, XX : W1 gw(s).
UCWCX

Proof. We define
fW) =[X: W] zy(W;s)

foralUc W c X, and
gWy:= Y fWH= Y [X:WITg(Wss)
Ucwcw Ucwcw
=[X:WI™ DWW Y WNTT =X W ().
Ucw'cw Ncw’

N+U=W’

Now the inversion formula (Theorem 4.1) implies

wX)=fX)= Y wW X)gW),
UCWCX

and the theorem is proved O

We now return to the notations of Section 3. In particular weRet R, = Z,,[Cpk],
R = Ri—1="7,[C x-1] andey (N) = dimg,(N + pV/pV).
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Lemmad4.6.LetV C R" andpV CY C V. Then

Z [N+Y:N] ¥ = Z [X +Y: XI5 2,v(X;s)
NcV pVCXcV
ey (N)=e [X:pV]=p*¢

forallee{O,...,npk}.
Proof. SinceN € V we have 0< ey (N) = dimg, (N + pV/pV) <np*, and
ey(N)=e & 3FJpVCXCV: N+pV=X and [X:pV]=p°

Hence

dIN+Y:NIT= Y > IN+Y:NIT

NCV pvVCXcV  NCV
ey(N)=e [X:pV]=p¢ N+pV=X

Now N + pV = X impliesN + Y = X + Y, whence the latter sum equals

E [X+Y:X]* E [X:N]* = E [(X+7Y: X1 zpv(X;s). O
pVCXcVv NCX pvVCXcv
(X:pV]=p® N+pV=X [X:pV]=p*

We can use the results of this section in order to compue s) fore € {0, ..., np*—1}

(defined in (11)), which are the building blocks of the zeta functionvof R". By
Lemma 3.2 we havpV° C f2(V) C V°, and Lemma 4.6 yields

)= Y X+ fa(V): X1 gpye(Xss). (14)
pvecxcye
[X:pVel=p*

The expressionspvo()_(; s) for pvV° € X C V° equal (according to Theorem 4.5)

o)=Y u(W, XX : W7 g0, (15)
pVeCcwcx

where u is the Mébius function of the lattice of submodules of finite indexRf.
Therefore, we have proved the following important corollary.

Corollary 4.7. Let V C R" be a submodule. B§12), (14), (15)the quotienty (s)/¢s (s)
is aZ[p~*]-linear combination of the zeta functions

t(s) for pvecwcve.
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5. A functional equation

Let R = R, andV C R" be anR-submodule. Furthermore, we I&t be the maximal
order of R® Q, = QplC il hence

R=Z,®Zyw1]® - & Zylwxl.
In the introduction we defined

_tvls) vl

Sy (s) = = ,
s R

wheregz»;(s) is given by Theorem 3.9, andl, (s) € Z[p~—*], which is a special case of
Solomon’s first conjecture proved in [1]. Note that this assertion also follows from our
recursion formula (12) together with Corollary 4.7 (even though the conjecture is proved
in [1] in a much more general situation).

The main result of this section is the following functional equatiorsfer(s).

Theorem 5.1. The functiorSz- (s) satisfies the following functional equation
Spn(s) = p(n272ns)(l+p+--~+pk71)5Rn (n —s).

Proof. PutA :=M,(R). ThenA := M,,(I?) 2> Ais a maximal orderin M(R® Q). The
proof of the functional equation for the zeta function of a group gG] presented
in [1, Theorem 2] can be generalized to the matrix ring(¥,[G]), and hence to oun
(details are worked out in [9]). Thus we obtain in the same manner

ca(s) :[/I-A]lfz" §,}(S)
ta(l—ys) ' t;(1—s)

Now Theorem 2.1 yields

Grr(ns) _ (R : R>-2%s {rn(n —ns)
Cin (ns) ' Cgn(n —ns)

If we substitutes for ns, the claim follows from the next lemma.o

Lemmab.2. Let ﬁk D Ry be the maximal order iR, ® Q,. Then

~ k1
[Ri: Rl = pttrttr
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Proof. The assertion is trivial fok = 0, sinceﬁo = Ro=Z,. If k > 0 we have the fibre
product diagram

Ry ——— Zplwy]

.

Ri_1 —— Fp[cpk—l]

which gives rise to an exact sequence

h
00— Ry —— Zplw] ® R—1 —— Fp[C 1] —— 0.

p

Then

[Ri: Ril = [Zp[on] @ Ri—1: Zp[en] @ Ri—1] - [Zp[en] @ Ri—1: Ri ]

=[Ri_1: Ri_1]- lim(h)| = [Rk_1: Re_a]- p?" .

and the claim follows by induction. o
Putx := p~* and defindy (x) € Z[x] for a submodulé’ C R" by
Sv(p™)=6v(s). (16)

Similarly we defindy (e; x) € Z[x] for 0< e < np*~1 by

. _ ty(e;s)
tyle; p~°) = ———, 17
VEr) = o 4
wherety (e; s) is asin (11), and so we clearly may write (12) in the form
npk—l
Sy(x) = Z p”("pk_l_e)x"pk_l_efv(e; x). (18)
e=0

Corollary 5.3. 5z (x) is a polynomial inZ[x] of degree2n(1+ p + - -- + p*¥~1), having
constant ternil and satisfying the functional equation

o k=1 1
Spn(x) = (pn2x2n)l+p+ P S g <—)
prx



C. Wittmann / Journal of Algebra 274 (2004) 271-308 287

Proof. The functional equation follows immediately from Theorem 5.1, and this implies
the degree statement as soon as we have showdh@) = 1 # 0. Now

2 . SRn(S)
Spn(0) = lim ———,
O = e oy

and the denominator tends to 1 by Theorem 3.9. But the same holds for the nominator by
formula (12), since all terms disappear for> oo, except the one havingvaluenpt—1,
i.e., N = R", contributing 1 to the sum. O

6. Thecasen =1

In this section we fixn =1 andk > 1. Let R = Ry = Zp[o] with ol = 1, and
R=Ri_1= Zp[t] with 7" = 1. Then we have a surjective homomorphism

k
T:R— R/pRETF,[C ] =F,[yl/(y"),
ocr>omodp>y+ 1 (29)
Therefore, we have a unique filtration

_ 5 W _
R=Vy" 2V¥ 2.2V = pR.

The ideals of the rin@?p[y]/(yl’k) are the ones generated Pyfor 0 </ < p*, whence

VP =(p.0c-1") (0<i<pb).
We begin by computingy (s) for V = Vl(") (0< 1< pb. This will be done by applying the
recursion formula from Section 3, together with (14), (15), so we need some information
concerning theR-ideals f>(V) andV°. Now pR C V C R impliespR C f2(V) C V° C

R, hence these ideals occur in the unique filtration

o _ k=1 (k—=1) k=1 _ 5
R=vg P 2vf P 2. 2viTV = pR. (20)

Lemma6.l.LetpRC V CR,ie.,V = Vl(k) for some0 < < p*. Then

(k—1) k-1
V, l ,
(@ =1 =P
pR 1z pL
) Vo { R 1< ptp -1,
= (k—1) k-1
‘/l_pk—l(p_l) l >p (p - 1)
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Proof. (a) Recall thatf>(c') = 7, by definition off>. Thus the claim is trivial fof < p¥—1,

and the rest follows from the identity
k k—1 5
fa(Vil) =V = pR = f2(pR).

(b) It suffices to determine the indgxX : V°], for pR € V° C R, andR/pR has a
unigue composition series. We have

PR/pV® = f2@R)/f2(V NPR) Z$R/(VNGR) = (PR +V)/V Zn (@R + V) /7 (V),

where the firstisomorphism is induced liy(note that keff2) N¢ R = ker( f2) Nker(f1) =
0 by the fibre product diagram (9)). Moreover

r@)=m(0" PV o’ ) =G+ DY L,
and since/” 14 ... 4 u + 1= (u — 1)?~* holds in the polynomial rind ,[u], we find
n(@)=(G+17" " —1)7 =y e,
This leads to

T(@R+V)=n(pR) + (V)= (i”kil(”*l)) + ()

() 1< pFtp -1,
(ypk—l(p_]_)) I > pk—l(p —1),

and the assertion follows frofiR : V°] =[x (¢R + V) :w(V)]. O
Using (14), (15) we obtain the following formulas far(e; s) (0 < e < p%).
Theorem 6.2. LetV = Vl(k) for some0 < < pF.

(@) If0<I < pk1:

k=1_jy —
(p” ) er(s) e=0,
k—1 —s
prr—l—e\ S _ =S k=1 _
iers)=1 (P ) (g‘/p(ﬁi?,e (s)—p g";ﬁleﬂ(s)) O<e<p L
Syi-n () —p 7 e-n  (8) prl—l<e<ptt.
pk’lfe pk7176+l

(b) If pFE<i < pFt(p -

Cr(s) e=0,

ty(e;s) = : ¢ye-y () = p ey () O<e< prL
pk’lfe pk7176+l
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(c) If I = p¥, thenry (e; s) is identical torvém(e; s)forall 0< e < pkt.

Proof. Since V;k) PR=R= Vék), their zeta functions and consequently their

functions must coincide for all. Hence part (c) is proved.

For (a) and (b) we note that® = R for all values of/ under consideration, according
to the preceding lemma. Now the case 0 follows directly from (14) and the calculation
of f2(V) in Lemma 6.1. Ife > 0 we will have to compute in addition the functions

pR(X s) for pR € X C R suchthafX : pR] =

according to (15). BuK = V%= in view of the unique filtration (20), and sinééhas a
pe _
unigue maximal submodul® containingp R we infer

wX,X)=1, nM,X)=-1 and w(W,X)=0 VpRCWCM
(cf. Theorem 4.2). This proves the theorenm

Unfortunately the computation of (¢; s) is much more complicated for*~1(p — 1) <
[ < p¥ (the case not covered in the above theorem). The reason is that fot thesieleal
V° is no longer isomorphic t&®, and the lattice of submodules &P /pV° seems to be
too complex for (14), (15) to yield explicit results in general.

Nonetheless, we are now able to compute the zeta function of th&gimgsome cases.
Fork = 1 andk = 2 Theorem 6.2 will provide us the answer, while foe 3 we will have
to make an additional effort.

The casé =1

Let R =Ry =7Z,[C,]. FixanidealpR CV CR,i.e.,V = V(l) for some 0< 1 <
SinceZ, = VSO) V(O) pZ, andgz, (s) = (1—p~*)~ 1 Theorem 6.2 and formula(12)
yield

e lf/=00rl=p

Pz, e=0,
v ={( e 0 oh

thatisgy (s) = (¢z, ()2 p* + (L= p™)) = (¢z,()?A— p~* + p*=%).
e IfO<l<p:

¢z, (5)

e )= { (1- p)2z, ()

thatiscy (s) = (¢z,(9))?(p*™ + (L — p™)) = (&2, () *(L+ (p — Dp™).
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Up to isomorphism there are two ideals of finite index®Ainviz R andJ :=radR). The

above formulas imply that we must havg” = ... = vV = J, and if v C R is an

arbitrary ideal of finite index, then

px2—x+1 VZ=R,

8V(x)z{(p—1)x+1 vV

holds, where the notation is as in Section 5. We finally remark that the zeta functibn of
can be derived in a completely elementary way from the zeta functi@, fdfr the ringR
is a local ring,J is its maximal ideal, and we thus have the formula

¢r(s)=p*(¢r(s) — 1).
The casé =2

Let R = Rz = Z,[C 2]. Our goal is the computation Ok (x) (which gives a formula

for ¢r(s)). SinceR = Véz), Theorem 6.2 is applicable with= 0.
We therefore find

(P?) "Ry (5) e=0

(r") " (cy0 ) = Py () O<e<p. (21)
p—e p—e+l

tr(e;s) =

The zeta functions occurring here have been calculated in the preceding subsection. Putting
x:=p~and

So(x) == p)c2 —x+1, S1(x) = (p—Dx+1, (22)

we can translate (21) into

xpgo()g) R e=0,

IAR(e' x)= xpil(al(x) - X50(X)) e=1,
; xPe(l —fc)gl(x) 2<e<p—1,

do(x) — x61(x) e=p,

wherefg (e; x) is as in (17), and by (18) we get

p
Sr@x) =) pP~xP~“ir(e: x).
e=0

After some trivial transformations we obtain the following polynomial:

Sr(x) = pPHix2rt2 _2pPa2ptly (pP 4 pP1)x2p

p p—1
+Z((pi_2pi71)x2i71)+Z(pi71x2i)+(p+l)x2_2x+l'
=2 =2
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Note that one may easily verify the functional equation

o A 1
8R(x) — pp+lx2p+28R (_)
px

predicted by Corollary 5.3.
The casd =3
We now consideRsz = Zp|C 3] This time we have to compute

2

p
A 2_ ¢ 2 fa
Sra(x) =) PP P gy (£ ),

f=0
cf. (18). By Theorem 6.2 we find
A xP8 g, (x) f=0,
th(f; x)= xpsz (SV(Z) (x) —x - SV(Z) (x)> 1< f< p2’
2 2
pe—f pe—f+1

using once more the filtration

2 2
Re=Vo? 2. 2VY = pRo.

It remains to determine the polynomiél‘ga for0< 1< p2.
1

For! =0 (as well as fof = p? because oR, = pRy>) this has been accomplished in
the preceding subsection. We recall that

p
by ()= p"=x"h(e x),
e=0

using the abbreviation
fi(e; x) =1, (e; x)
1
and similarly
ti(e;s):=t ;
1(e;s) V]<z>(e s)
for the rest of this section. Therefore, we “only” have to determine these polynomials

fi(e; x) for0 <1 < p2.
The cases X! < p(p — 1) are covered by Theorem 6.2:
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o f1<I<p—1:

27 do(x) . e=0,
xpflfl(él(x) - xSo(x)) e=1,
f(e;x) = xP=I=¢(1— x)81(x) 2<e<p—1,
(Al—x)Sl(Ax) p—l<e<p-—1,
do(x) — x81(x) e=p.
o If p<I< p?—p:
o)  e=0,
fie: x) = 81(x) — xdo(x) e=1,

gl—x)81(Ax) 2<e<p-1,
do(x) —xd1(x) e=p.

Heredo, 51 are the polynomials introduced earlier in (22).
The remaining casp® — p <[ < p? is the hardest part. We define
I''=1-(p*-p)ell,....p—1)

and furthermore sét := VI(Z). We havefa(V) = pR1 andV° = vlﬁl) by Lemma 6.1. For
the rest of this section, define

R:=R1=7Zplo] witho? =1,
and¢ :=0? 1+ ... 40+ 1eR. Then Vl(,l) = J :=radR) as we noted in the first
subsection. Since we want to apply formula (14) again, in order to calcy{ate), we
first need some information on the lattice ®fsubmodules o¥/°/pV° = J/pJ. Put
R/pRZ=TF,[yl/(y?) = F.
ThenJ/pJ is an F-module satisfying
J/pd ZF, @ F,ly1/(y" 1),
by the following lemma.

Lemma 6.3.

(a) The elementp and ¢ — (¢ — 1)?~1 are associates iR, as well as(c — 1)? and
plo —1).
(b) We have
J=¢R&® (0 — DR,

and the surjective R-module homomorphism
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Yid =T, &F,[yl/(y"2),
¢~ (1,0),
oc—1— (0,1)

hasker(y) = pJ. Moreover,J has exactlyp + 1 maximal submodules, two being
isomorphic toJ and thep — 1 remaining ones being isomorphic fa

Proof. (a) Since
p=0"1+. .. 4o+1=@0 -1’1 modp,

there is an element € R such thatyp = ¢ — (0 — 1)?~1. Note thatx must be invertible,
as can be seen by applying the augmentation eap — Z,, Zf;ol riol Zf’;olki
to this equation. Now the first claim follows, and the second one is a direct consequence
(multiply both elements by — 1).
(b) SinceJ = pR + (0 — )R, part (a) yields/ = ¢pR & (o0 — 1)R. Fora,b € R may
write

¥ (ag +b(o — 1)) = (m1(a), m2(b)),

with 71 := p1 o w andmp := p2 o w. Heren is defined as in (19), angy: F — [,

p2: F— Fp[y]/(yl’—l) are the canonical projections. From ker) = J and ketrp) =

PR + (0 — 1)P~1R we infer ke(y) = pJ, using (a) once again. For the statement
concerning the maximal submodulesJjoive quote the proof of [8, Lemma 14]. O

We next have to determine the lattice Bfsubmodules of , @ IF,, [yl/(y?~1). To this
end we begin by counting the submodulédhaving|U| = p¢ elementg0 < e < p). For
e =0 ande = p there is clearly only one such submodule. Fox @ < p, U must be
contained inW :=F, & (37~17¢), or more precisely be a maximal submoduleVsf
There arep + 1 such submodules, fo¥ /radW) =F, & F,.

We are now able to state the lattice of submodules,of IF,,[y]/(yl’*l):

e=p F,® @

e=p—1| Fp@o( (LD)r (2D ... (p—-1LD)r 081
e=p-2| F,®(39) (L0r (@WMF ... (p—LMr 080
e=2 |Fp& (77 (1377 (2 57)p - ((p=1.577%)p 00 (5779)
e=1 Fr®0  ((13772)p (2 5772))p - ((p=1.577%)p 00 (5777
e=0

(23)
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In this diagram, the submodules in each row hateslements, where is indicated in
the leftmost column. The lattice structure is settled by the following inclusions:

e EachlF, ® (3" (i =0,..., p— 1) contains all modules occurring in the subsequent
row.
e Each0® (') (i =0, ..., p— 1) is contained in all modules of the preceding row.

The lattice structure can be visualized as follows:

We will now transfer this diagram to the lattice 8fsubmodules off containingpJ.
Thus we obviously have to replace eathC F, @ F,[yl/(y*~1 by v~1(U) (cf.
Lemma 6.3). However, for the applications we have in mind, it suffices to know whether
the corresponding module is isomorphicRoor to J (which are the only possibilities, as
we noted above). Far=0, ..., p — 1 we havey ((c — 1)'*t1) = (0, '), and consequently

v HF, @ (7)) =¢R® (0 — DR and v 10® () =ppR® (0 — 'R

are non-cyclicR-modules, that is isomorphic th. The last assertion of Lemma 6.3(b) and
diagram (23) now imply the following diagram of isomorphism types:

e=p J
e=p—1 J R R ... R J
e=p—2 J R R ... R J
SRR SO (24)
e=2 J R R ... R J
e=1 J R R R J
e=0 J

After this discussion, we return to our original task, viz the calculation of

. — . —S .
ne;s)= Y [X+pR:X] 2,y ®(X; $)
pvexcv®
[X:pVPl=p
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for 0< e < p. SinceV,” = (p, (6 — ') =¢R & (6 — ' R = J by Lemma 3.6(a) we
can rewrite this sum as

ti(e;s) = Z [X+L(pR):X]_Sij(X;S), (25)
pJCXcl
[X:pJ]=p°

wheret is the R-module isomorphism
VP =¢R® (0 —D'R—>J=¢R® (0 — DR,
P @, (a—l)l/|—>(r—1.
Thus it remains to determinép R). From Lemma 6.3(a) we infer

LpR) =((¢— (0 = D" HYR) = (¢ — (0 — DP )R,

and applyingy defined as in Lemma 6.3 yields

YR =((L. =57 ) =((p - 1.5 (26)

Now if pJ € X € J such thaf{X : pJ] = p¢, we can read off the functions,; (X; s)
from diagram (24), using formula (15):

e If e=0,thenX = pJ and
zps(X58) =8py(s) =8y (s).

o Ife>2andy(X)=F,® (y"~¢), then

2pr(X;8) =25(5) = p* (205 () + (p — DLR()) + p - p~2Ls(5).

In order to compute the:-factors in formula (15) we may use Theorem 4.4, for
X/pJ =F,®GP ) =F,dF,[ul/wH=F,®F,[u]/@?t),i.e., we can apply
this theorem withC :=TF , [u].

e Otherwise X has a unique maximal submodule lying ovye/, and Theorem 4.2
implies

CR(S) —p~°Ly(s) XE=R,

zps(X;s) = { s ~
p (1—p ){:J(s) X=/J.
Finally we just have to determine the indide&+¢(pR) : X] for pJ € X C J occurring
in (25). After “shifting” this problem viayy we may equivalently compute the indices
[U+yu(pR):UlforU =y (X)<F, d Fp[y]/(yl’—l). We already knowy((pR) by
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(26), and we record these indices in a diagram corresponding to (23), namely the index
[U + ¥(pR) : U] at the very position ot/ in (23):

e=p 1

e=p—1 1 p p ... p p
e=1'"+1 1 p »p p P
e=1I' p p P 1 p
e=l'—1 | p? p* p? P> p
o=l —2 B B pd P p?
e=1 P A |
e=0 pl/

Now we are ready to state the result of the sufa; s) according to (25). Therefore,
we complete the list of polynomialg(e; x) from the beginning of this subsection for
p? — p <1 < p?. Again we will make use of the polynomiabg(x), 51(x) defined in
(22), and with’ =1 — (p% — p) we get

71(0; x) = x"§1.(x). R R
f1(p; x) = (L= 2x + px?)d1(x) — (p — Dxdo(x).

o IfI'=1:
fi(e;x)= { (x—prz)(Sl(x)+(1+(p—2)x)50(x) e=1,
(1—x)d1(x) 2<e<p—1
o If I/ >1:
(p — Dx"So(x) + (&1 = px!t1)51(x) e=1,
(p = D F17e —xF2) o (x)
o +(xl/_e —(p+ xl+2—e 4 pxl/+3_e)(§1(x) 2<e<l -1,
fi(e; x) = o2
(1+ (p —2x — (p — Dx?)do(x)
+(x = (p+ Dx2 + px3)81(x) e=1,
(1—x)b1(x) I'+1<e<p-1

We conclude this section by some numerical examples. We list the polyntﬁz}jﬁj%](x)
for p € {2,3,5}:

87,1051 (x) = 128¢14 — 192¢13 4 160x12 — 481! + 4810 — 819 4 3248
— 12"+ 16¢% — 205+ 6x* — 33+ 5x2 — 3 + 1,
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SZg[CQﬂ (x)

= 159432326 — 159432325 4 106288224 — 5904923 + 354294%% — 196830G:%*
+ 33461122 - 65610:1° + 11153% 18+ 1093517 + 4374¢16 1 29889 1°
—5103¢14+9963¢13 — 1701 1% + 332111 + 162¢ 10+ 135:° + 4598
—90x "+ 153¢® — 30x° + 18* — x3 4+ 6x% —3x + 1,

876[C15) (X)

= 465661287307739257812% — 279396772384643554687%
+1490116119384765625000 4 33527612686157226562%
+ 67055225372314453125% — 19371509552001953125%
+35017728805541992187% + 35762786865234375008°
+17881393432617187500* + 50365924835205078125°
+ 184774398803710937567 — 3576278686523437501
+ 1233816146850585937%° -+ 2908706665039062500°
+ 18715858459472656248 + 1714229583740234375'
— 1621246337890625@0°+ 700473785400390625°
— 92029571533203125*+ 140094757080078125°
— 184059143066406252 + 28018951416015625*
— 3681182861328123°+ 5603790283203125°
— 736236572265625° + 1120758056640625 " — 147247314453125°
+ 224151611328125° — 29449462890625™ + 448303222656265°
— 5889892578126% + 8966064453126°1 — 1177978515626
+17932128906267° — 2355957031268 + 3586425781267
— 47119140625%0+ 71728515625%° — 9423828125%% + 143457031251
— 18847656252+ 2869140625°* — 37695312520 4 57382812519
— 7539062518+ 1147656257 — 531250G:16 + 112343751° + 245342514
+ 76250013 + 64687512 — 3750011 + 3875010 + 21125° + 15008
+600r” +1175¢% — 130v° + 90x* + 9x3 4+ 8x%2 — 3x 4 1.

The functional equation

)1+p+p2 i 1
2,

2 2
8z,1C 51(0) = (px
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predicted by Corollary 5.3 is indeed satisfiedill cases (this has been checked as a test of
the correctness of the computations).

7. Thecasek=1landn >1

We putR := Ry =Z,[C,] in this section. Our intention is to compute the zeta function

of R", or equivalently the polynomiaiz:(x). In view of the next section we determine
more generallyy (x), whereV C R" is a submodule of finite index (as always). We will
see below that the zeta function bfonly depends on

m :=dimg, (fz(V)/pVO).

Here fo: R" — 7 is the map defined in (9), which in fact is the augmentation map in our
case. Let/° be defined as in Section 3. Singg(V) C V° = Z’I’, by Lemma 3.2, and since
f2(V)/pV°injects intoV°/pV° =T, we have O< m < n.

We introduce the following notation.
Notation. We put

qg:=p"

for the rest of this article. For every non-negative integexe set

m

(@m = l_[(l_qj)~

j=1

Furthermore, if, m are non-negative integers, we denote by

i

the number of-dimensional subspaces of arrdimensionalF ,-vector space. It is well-
known that in the casa > [ this number equals

P" =" =p) - P" =Yy @n

PP —-p G =D T @@

The following combinatorial lemma is due to Cauchy (cf. [3, I11.8.5] for a proof).

Lemma 7.1. The following identity of polynomials holds

m—1 m

[Ta-px)=)" [’ﬂ (~1 p@x'.
p

=0 i=0
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Lemma7.2.LetY C IF’;, be a subspace withim(Y) = m.

(@) Forl e{0,...,n} let x() be the number of subspac&sc IF’;, with dim(U) = and
UNY =0.Then

MD=pW[H;m},

p

in particular, x (1) =0if I > n —m.
(b) If e {0,...,n}, then

min{e,m}
2 wores E (5] [] e
p p

Xg[?'[’7 f=max{0,e4+m—n}
dim(X)=e

Proof. (a) Comparing dimensions clearly impligg/) = 0 if / + m > n. Hence we can
restrict ourselves to the case-m < n. Fix a basisy1, ..., y, of Y. We begin by counting
the number of pssibilities b choosel linearly independent vectorsgy, ..., u; € IF’;,
satisfying

(Vs ooy Ym) N (U1, ...,u;) =0.

For uj there arep” — p™ possibilities, because; ¢ (y1, ..., ym). Sinceus has to be
linearly independent af1, we must havey ¢ (y1, ..., ym, u1), hence there arg" — pntl
choices forup, and so on. Finally there arg” — p”*+'~1 choices foru; because of
up €y, ..o, Ymo U1, oo, U 1).

On the other hand, a subspatec F), of dimension/ has exactly|GL;(F,)| =

(p' =1)---(p' — p!~1) distinct bases. Hence

n

(l)—(pn_pm)"'(p _pm+lil)_ ml | —m
N N I A

(b) We have
Z (X+Y:X]*
XcF,
dim(X)=e
min{e,m}
= Z [Y:XﬂY]iS: Z Z (pm—f)*s
XSF, f=0 XCF”
dim(X)=e dim(X)=e
dim(xny)=f
min{e,m}
= Y. Y, |XxcFldimX)=eandX nY = Xo}|(p" /)"
f=0 XoCY

dim(Xg)=f
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Fix a subspacé& C Y such that dimiXo) = f, and putY := Y/ Xo. Then:
[{X CF | dim(X) =eandX NY = Xo}|
=|{XSF/Xo=F, / |dmX)=e— f andX NY =0}

_ pm=Pe=p) | MM
e—f p’

where the last equation follows from part (a). Since there[’%i]g subspaceXo C Y of
dimensionf, we get

Z [X+Y:X]° = Z

XCF), f=0
dim(X)=e

min{e,m}
[m} [”—m} pm= e (pm=1)7*,
Flle=r1,

Note that[’é:’j'f]p #0 only if e — f <n — m, so the summation may start with =
max0, e + m — n}, and the proof is complete.0

Lemma7.3.LetpV° C X C Ve with[X: pV°] = p¢, 0< e <n.Then

n—1

opve(Xis)=[](a-p'=) 7"

j=e
Proof. SinceV*® =Zj, formula (15) implies

pve(Xss)= Y p(W, X)X : W7 i),
pPLLCWCX'

where pZ" € X' C 7" with [X" : pZ] = p°. We also haveW = Z", and thus by
Theorem 3.9:

n—1

Ly (s) =Lz (s) = 1_[(1_ pj—s)—l_

j=0

Denote by the Mobius function of the lattice of subspacesIFgf. Using )_(//pZ'I; =F,
we get

Y W X)X W
pPLLCWCX'
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= ¥ auEE: U =3 [§] coept ey
P

UQF; i=0
e ) e—1
e i () —i -
= [l} (—1) p@p=is = [T@-r7).
i=0 p j=0

by Lemma 7.1. Here we made use of the fact fbél, F) = (—1eip(Q)if U F¢ is
a subspace such that dith) = i (cf. Theorem 4.3). Now multiplying byzllz) (s) proves the
assertion. O

The above results allow us to compuiée; s) as in (14) for 0< e < n:

n—1
tv(e; s) = ( > X+ V) )‘f]‘f) [Ta-r—)"
pVecxcve Jj=e
[X:pV°l=p*

min{e,m}
— m n—m (m—=f)e=f)(,m—f\5
= E p p
( [f}p [e -/ L ( ) )

f=max{0,e+m—n}
n—1
Jla-r7,

j=e

becausen = dim(f2(V)/pV°). Now (18) implies

n
Sv(x)=)_ p""mOx" " ly (e x)

e=0
with
e—1 min{e,m}
A ; m n—m _ — —
tv(ex)=[](1-p'x) > |:f} [f—fi| pn=De=f)m=f
j=0 f=max{0,e+m—n} p p

We recall thatR = R1 = Z,[Cp], hencefo(R") = (R")° = Z’;, with the notations of
Section 3. Thus: = n for V. = R", and we have the following formula.

Theorem 7.4.1f R = R1 =7Z,[C,], then

n e—1
Sgn(x) = Z([Z} pn(nfe)XZ(nfe) H(l—ij))«
p

e=0 j=0
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8. Thecasek=2andn>1

In this section we will compute the zeta function 85 (R2 = Z,,[sz]), i.e., the
polynomial,

np
SRS (x)= Z pn(npfe)xnpfeng (e;x),
e=0

wherefgs (¢; x) is defined in (17) by means of (cf. (14))
try(ess) Y [R:X] e (X =) Y pre(X:).
pR"gXER" pR”ngR”
[X:pR"]=p° [X:pR"]=p°
Here we put

R:=R1=7,[Cp],

and we will keep this notation for the rest of this section. It therefore remains to determine
the sums

t'(e;s):= E Zprn (X 5)
pRnngRn
[X:pRM=p°

for 0 < e < np. Utilizing (15) yields

des)= Y Yo w(V.XOIX VI ev(s)

pR'CXCR" pR"CVCX

[X:pR"]=p*
> ( > /L(V,X)[X:V]_S)Q“V(S). (27)
pR'CVCR" \ VCXCR"

[X:pR"]=p°

The functiongy (s) have been calculated in the preceding section, and we recall that they
only depend on

m(V) :=dimg, (f2(V)/pV®),
where againfz: R" — Zj, andV° are defined as in Section 3.

Fix pR™ C V C R". We will first evaluate the parenthetical expressionin (27) belonging
to V. This computation can be performed®i/pR". More precisely, let

F:=TF,[yl/(y") = R/pR,
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and letU C F" be the image o¥ under the canonical projection: R” — F". Then

Y. wV.XX:VIT = 3T pU.NY UL, (28)
VCXCR" UCYCF"
[X:pR"]=p* |Y|=p€

where the Mo6bius function of the lattice of submodulesFdifis denoted by as well.
There is anF-module isomorphism

U=F,/(™) e eF,h/ (™),

and the integers & r1 < --- < r, < p are uniquely determinedry,...,r,) will be
referred to as thsomorphism typef U.

Lemma8.1. Let pR" C V C R" and letU C F" be the image o under the projection
w:R"— F". Let(ri,...,r,) bethe isomorphism type 6f. Then

m(V)={1<i<n|rp,=00rr; = p}|.

Proof. By definitionm(V) = dim(f2(V)/pV°) = dim(fz(V)/pZ';) + dim(pZ'I;/pV"),
and we write

U=("")e--e@(" ™) cF"
in the sequel. Ifwe puk = (y) ® --- & (¥) € F", then obviously
F(WV/pZy = ((V) + K) /K = (U + K)/K,

and thus dimfz(V)/pZ',’,) =|{i | ri = p}l.
In addition we have

pZy/pVe = f2(pR") [ f2(V NGR") = (m (V) + 7 (¢R")) /7 (V)

with ¢ = o?~1 4 ... + o + 1 (cf. proof of Lemma 6.1). From (V) = U andn(¢R") =
GPYH @@ (7Y we infer dim(pZy,/pV°) = |{i | i = 0}], and the lemma is
proved. O

The next step is the computation of the sum (28). For the rest of this section, we continue
to use the notation introduced at the beginning of Section 7.

Lemma8.2. LetU C F" be a submodule of isomorphism ty@e, . .., ;). Setn’ := [{1 <
i<nl|ri# p}landf :=r1+---+r,. Then the following holds far> f:

Y. w, Y)[Y:U]S=[ " } (D pCD (pe ),
UcYcr® e/ p
|Y|=p®
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in particular=0if e > f +n'.

Proof. The sum extends over al > U such thatlY : U] = |Y|/|U| = p¢~/. Hence it
suffices to calculate

Y. wUY= Y AOY/U)= Y @O H),
UCYCF" UCYCF" HCF"/U
|Y|=p* |Y|=p* |H|=p*~f

whereji is the Mdbius function of the lattice of submodulestsf/U. Now
F'/UZF,lyl/(y""™) & @ F,lyl/(y"")

=F,lyl/(y’") @ - - ®F,[yl/(y’~"") by definition ofn’
=F,/ (P @ @ Fp[yl/ (yP ™).

Applying Theorem 4.4 yields
_ ~ N n _ave—f (f—.f')
Yo o wun= Y u(&H)-[e_f] (—pe/pla),
p
Y= |H'|=p~/

i1 being the Mébius function of the lattice of subspaceh??;/)f and the claim follows. O

We briefly review the steps made towards the computation of (27). Instead of summing
over pR" C V C R", we sum over all submoduldg C F". Because of the preceding
lemma, the parenthetical expression27) only depends on the isomorphism typelaf
as well as the zeta function ®f by Lemma 8.1. Accordingly we only require the number of
submodules F” of given isomorphism type. This problem is considered in the following
theorem (for a proof, see [2, Theems 2.10, 2.1IRroposition 3.2]).

Theorem 8.3. Let C be a discrete valuation ring with prime elementand residue class
fieldF,. Leta; < --- < a, be positive integers, to be partitioned as follows

al = ... = Ay =i uj,
Ak +1 = 0 = Aky+ky =0 U2,
Afy+-Aky_1+1 = = = Qg4 tky = Ud

suchthaty; < --- <ug andki +---+ kg =n (all k; > 1). There are precisely

v(ul”'ud> = 4((])" pZi<jkikj(uj—Mi)
ky---ka @Dy ( Dy
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submodule#/ C C" satisfying
C"/UZC/(n) @ C/(x™).
For given integers & r1 < --- <r, < p we will apply this theorem withC :=TF,[y]
anda; ;= p —rp—; (i =0,...,n). We have indeed & a1 < --- < a, < p, and after

defining u; and k; as in the statement of the theorem, the submodiles F" of
isomorphism typéry, ..., r,) correspond to the submodul&$ < (F,[y])" such that

(Fp [[y]])n/U, =F, [[y]]/(yal) S Fp[[)’ﬂ/(ya"),

and there are (7. ;) of those.
We are now able to state the result of the sufts s) from (27).

Theorem 8.4. Let0 < e < np be an integer. Then

, n / e e—f e—f\—S
fe=Y Y v(ﬁ.,.,ﬁj)[eﬁf}p(—l) TpC) (p ) tns),

d=1 0ur<-<ug<p
ki+-+kg=n
fLe< f+n'

where f, n" andm depend on;, k;, viz

d
f=np— Zkiui,
i=1
’_ n—ki u1=0,
n' = .
n otherwise
k1+kgs wuir=0anduy = p,
m— k1 u1=0anduy < p,
ka u1 > 0anduy = p,
0 otherwise

Furthermore

Cm () :=¢v(s)
for any submodul& C R" with m(V) = m (cf. preceding sectign

From this theorem we immediately infer the polynomié&zs(e;x) and SRg (x), and
hence the computation of the zeta functionRjfis complete in this case.

We conclude this section by some numerical examples: the ponnoE‘@inLspz]n (x)
for p€{2,3,5} andn € {1, 2, 3}.
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87,1ca(x) = 8x8 — 8x% 4+ 6x* + 3x3 — 2¢ + 1,
87,1ca2(x) = 4096c1% — 6144c 11 4 6400: 10 — 2304¢° + 281618 — 2304¢ 7 + 195¢°
—576¢° + 176¢* — 36x° + 25x% — 6x + 1,
8,103 (x) = 13421772813 — 234881024 + 278921216° — 1436549121°
+ 1367080964 — 1101004803+ 10202316812 — 4369612811
+ 1738956810 — 4376576 ° + 2173696 — 682754 7 + 199264°
—26880c° 4 4172c* — 548¢3 4 133¢2 — 14x + 1,
8751091 (x) = 81x® — 54x" 4+ 36x® 4 9x® 4 3x* + 3x3 + 4x? — 2x 4 1,
§751c42(x) = 430467211 — 38263752+ 30823578+ 7085881
+ 1535274 4 338547611 4 211920310 — 135594G° + 1167128°
— 150660 + 26163° + 4644c° + 234c* + 12¢3 + 582 — 8x + 1,
8 751ce12 ()
= 15009463529699912%* — 144535574730443538° + 1231228969926001632
— 54675533967356 33" + 637754136327746F° + 14396280763046013°
+ 65812672022590898 — 4740422864535543" 4 491629626972198G°
— 868287187367289° + 200488295095218 + 15476501507688"
+ 7777442401882+ 573203759544 + 2750182374420
— 44113559288° + 9250878788°% — 3303682207 + 1698740%°
+137627%° + 22581* — 717x3 4 598¢2 — 26x + 1,
8761Cs1 (x) = 1562512 — 6250¢ 1 + 3750¢10 4 18750 + 125¢8
+375¢" 4 25x8 + 75¢% + 5x* + 15¢3 + 6% — 2x + 1,
871c,e2(*) = 59604644775390625° — 28610229492187508°
+ 186920166015625082 4 7209777832031256*
+ 76293945312567°+ 2210998535156253°
— 56915283203125'8 + 450073242187500°
— 12957763671876° + 90329589843750"°
+ 20233642578126 — 6640722656250
+ 5911884765626 — 265628906250
+ 323738281250+ 5781093750° — 331718758 + 460875067
— 2331255 4 362250:° + 50x* + 1890¢3 + 1962 — 12x + 1,
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SZs[Czs]?’(x)

= 55511151231257827021181583404541015625
— 27533531010703882202506065368652343730
+ 18282264591107377782464027404785156350
+ 6658211759713594801723957061767578%25
— 84406792666413821280002593994140625
+ 2229149913546280004084110260009765625
— 97134670795639976859092712402343780
+ 456909228887525387108325958251953785
— 20771263370988890528678894042968750
+ 91639080055756494402885437011718730
+ 17826733196852728724479675292968750
— 580450014909729361534118652343 7500
+5919211489055305719375610351562530
— 326670646662823855876922607421875
+ 48173992687091231346130371093750
+6197919498234987258911132812500
— 47538805550336837768554687560
+ 65995047889947891235351562569— 560464551913738250732421878
+ 527960383119583129882812530— 3042483555221557617187506
+ 3173334783096313476562500+ 197320674046325683593 75
—10704343749847412109375 + 155168577658691406250t
—12172919096679687508" + 299082953417968756°
+ 12299589121093780- 2230297421875¢ + 3924820390626’
— 6675043750°1225488125° — 371225 4 2342653 + 5146¢% — 62x + 1.

Note that we checked in each case va#dity of the functional equation

N _ (2 2\ 1+p ¢ 1
5zp[cp2]n(x)—(p x) '52,,[0,,2]”( p,1x>

predicted by Corollary 5.3.
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