期刊论文详细信息
JOURNAL OF ALGEBRA 卷:314
Linearity defects of face rings
Article
Okazaki, Ryota ; Yanagawa, Kohji
关键词: Stanley-Reisner ring;    exterior face ring;    linearity defect;    weakly Koszul module;    componentwise linear;    sequentially Cohen-Macaulay;    squarefree module;   
DOI  :  10.1016/j.jalgebra.2007.02.049
来源: Elsevier
PDF
【 摘 要 】

Let S = K [x(1), . . .(,) x(n)] be a polynomial ring over a field K, and E = boolean AND < y(1), . . ., y(n)> an exterior algebra. The linearity defect Id(E)(N) of a finitely generated graded E-module N measures how far N departs from componentwise linear. It is known that Id(E)(N) < infinity for all N. But the value can be arbitrary large, while the similar invariant Id(S)(M) for an S-module M is always at most n. We will show that if I-Delta (resp. J(Delta)) is the squarefree monomial ideal of S (resp. E) corresponding to a simplicial complex Delta subset of 2({1, . . .,n}), then Id(E)(E/J(Delta)) = Id(S)(S/I-Delta). Moreover, except some extremal cases, Id(E)(E/J(Delta)) is a topological invariant of the geometric realization vertical bar Delta(boolean OR)vertical bar of the Alexander dual Delta(boolean OR) of Delta. We also show that, when n >= 4, Id(E)(E/J(Delta)) = n - 2 (this is the largest possible value) if and only if Delta is an n-gon. (c) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2007_02_049.pdf 243KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次