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Abstract

Let S = K[xq,...,x,] be a polynomial ring over a field K, and E = A(y1, ..., ys) an exterior alge-
bra. The linearity defect 1dg (N) of a finitely generated graded E-module N measures how far N departs
from “componentwise linear”. It is known that Idg (N) < oo for all N. But the value can be arbitrary large,
while the similar invariant 1dg(M) for an S-module M is always at most n. We will show that if /4 (resp.
Ja) is the squarefree monomial ideal of S (resp. E) corresponding to a simplicial complex A C 2ALn}
then ldg (E/JA) =1dg(S/14). Moreover, except some extremal cases, ldg (E/J4) is a topological invari-
ant of the geometric realization |AY| of the Alexander dual AY of A. We also show that, when n > 4,
ldg(E/JA) =n — 2 (this is the largest possible value) if and only if A is an n-gon.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let A = P;yAi be a graded (not necessarily commutative) noetherian algebra over a
field K(= Ag). Let M be a finitely generated graded left A-module, and P, its minimal free
resolution. Eisenbud et al. [3] defined the linear part lin(P,) of P,, which is the complex
obtained by erasing all terms of degree > 2 from the matrices representing the differen-
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tial maps of P, (hence lin(P,); = P; for all i). Following Herzog and Iyengar [6], we call
Ids (M) = sup{i | H; (Iin(P,)) # 0} the linearity defect of M. This invariant and related concepts
have been studied by several authors (e.g., [3,6,9,12,18]). Following [5], we say a finitely gener-
ated graded A-module M is componentwise linear (or (weakly) Koszul in some literature) if M ;)
has a linear free resolution for all i. Here My;y is the submodule of M generated by its degree i
part M;. Then we have

1d4 (M) = min{i | the ith syzygy of M is componentwise linear}.

For this invariant, a remarkable result holds over an exterior algebra E = A(y1,..., y,). In
[3, Theorem 3.1], Eisenbud et al. showed that any finitely generated graded E-module N satis-
fies 1dg (N) < oo while proj.dimg (N) = oo in most cases. (We also remark that Martinez-Villa
and Zacharia [9] proved the same result for many selfinjective Koszul algebras.) If n > 2, then
we have sup{ldg(N) | N a finitely generated graded E-module} = co. But Herzog and Romer
proved that if J C E is a monomial ideal then 1dg(E/J) <n — 1 (cf. [12]).

A monomial ideal of E = /\(y1, ..., y,) is always of the form J4 := ([[;cp vi | F ¢ A) fora
simplicial complex A c 2!1--~"}_ Similarly, we have the Stanley—Reisner ideal

IA ::(l_[xingéA)

ieF
of a polynomial ring S = K[x1, ..., x,]. In this paper, we will show the following.

Theorem 1.1. With the above notation, we have 1dg(E/Ja) = 1ds(S/14). Moreover, if
Idg(E/Ja) > 0 (equivalently, A #+ 2T for any T C [n]), then Idg(E/J ) is a topological in-
variant of the geometric realization |AY | of the Alexander dual A . (But 1d(E/JA) may depend
on char(K).)

By virtue of the above theorem, we can put 1d(A) :=1dg(E/Ja) = 1ds(S/1a). If we set
d:=min{i | [Ia]; # 0} = min{i | [Ja]; # 0}, then 1d(A) < max{l,n — d}. But,if d =1 (i.e.,
{i} ¢ Aforsome 1 <i < n),thenld(A) < max{l,n—3}.Hence, ifn > 3, we have Id(A) <n—-2
for all A.

Theorem 1.2. Assume that n > 4. Then 1d(A) =n — 2 if and only if A is an n-gon.

While we treat S and E in most part of the paper, some results on S can be generalized to a
normal semigroup ring, and this generalization makes the topological meaning of 1d(A) clear. So
Section 2 concerns a normal semigroup ring. But, in this case, we use an irreducible resolution
(something analogous to an injective resolution), not a projective resolution.

2. Linearity defects for irreducible resolutions

Let C C Z" C R" be an affine semigroup (i.e., C is a finitely generated additive submonoid
of Z"),and R :=K[x*|ce C] C K[xlil, .. .,xni]] the semigroup ring of C over the field K.
Here x¢ for ¢ = (cy, ..., ¢,) € C denotes the monomial []7_, xic". Let P:=R>(C C R" be the
polyhedral cone spanned by C. We always assume that ZC =7",7Z" "P=C and C N (—C) =
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{0}. Thus R is a normal Cohen—Macaulay integral domain of dimension n with a maximal ideal
m:=(x%|0#ceC).
Clearly,

R:@Kxc

ceC

is a Z"-graded ring. We say a Z"-graded ideal of R is a monomial ideal. Let *mod R be the
category of finitely generated Z"-graded R-modules and degree preserving R-homomorphisms.
As usual, for M € *mod R and a € Z", M, denotes the degree a component of M, and M (a)
denotes the shifted module of M with M (a)y, = Ma1p.

Let L be the set of non-empty faces of the polyhedral cone P. Note that {0} and P itself belong
to L. For F € L, Pr:= (x°|ce C\ F) is a prime ideal of R. Conversely, any monomial prime
ideal is of the form P for some F' € L. Note that Pjgy =m and Pp = (0). Set K[F]:= R/Pr =
K[x®|ce C N F]for F € L. The Krull dimension of K[F] equals the dimension dim F of the
polyhedral cone F.

For a point u € P, we always have a unique face F' € L. whose relative interior contains u.
Here we denote s(u) = F.

Definition 2.1. (See [16].) We say a module M € *mod R is squarefree, if it is C-graded (i.e.,
M, =0 for all a ¢ C), and the multiplication map M, 3 y > xPy € M,y is bijective for all
a,b e C with s(a+b) =s(a).

For a monomial ideal I, R/I is a squarefree R-module if and only if / is a radical ideal (i.e.,
VI =1I). Regarding L as a partially ordered set by inclusion, we say A C L is an order ideal,
if As FD F eLimplies F' € A. If A is an order ideal, then I4 := (x*|c€ C,s(c) ¢ A) C R
is a radical ideal. Conversely, any radical monomial ideal is of the form I for some A. Set
K[A]:=R/I,. Clearly,

ifaeCands(a) e A,

K
K[A ;{
[Ala 0 otherwise.

In particular, if A =L (resp. A = {{0}}), then Iy =0 (resp. I = m) and K[A] = R (resp.
K[A] = K). When R is a polynomial ring, K[A] is nothing else than the Stanley—Reisner ring of
a simplicial complex A. (If R is a polynomial ring, then the partially ordered set L is isomorphic
to the power set 2{1+-"} "and A can be seen as a simplicial complex.)

For each F € L, take some ¢(F) € C Nrel —int(F) (i.e., s(c(F)) = F). For a squarefree R-
module M and F, G € L with G D F, [16, Theorem 3.3] gives a K -linear map <pg{F ‘Mery —
Me(G). They satisfy go%F =1Id and <p%G o goé’{F = go%F forall H D G D F. We have M. = My
for ¢, ¢/ € C with s(¢) = s(¢/). Under these isomorphisms, the maps goé’{ r do not depend on the
particular choice of ¢(F)’s.

Let Sq(R) be the full subcategory of *mod R consisting of squarefree modules. As shown
in [16], Sq(R) is an abelian category with enough injectives. For an indecomposable squarefree
module M, it is injective in Sq(R) if and only if M = K[F] for some F € L. Each M € Sq(R)
has a minimal injective resolution in Sq(R), and we call it a minimal irreducible resolution (see
[10,19] for further information). A minimal irreducible resolution is unique up to isomorphism,
and its length is at most 7.
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Let wg be the Z"-graded canonical module of R. It is well known that wg is isomorphic to
the radical monomial ideal (x¢ | ¢ € C,s(c) =P). Since we have Ext,(M*®, wg) € Sq(R) for
all M* € Sq(R), D(—) := RHomg(—, wg) gives a duality functor from the derived category

D" (Sq(R))(Z D¢y, (*mod R)) to itself.

In the sequel, for a K-vector space V, V* denotes its dual space. But, even if V = M, for
some M € *mod R and a € Z", we set the degree of V* to be 0.

Lemma 2.2. (See [19, Lemma 3.8].) If M € Sq(R), then D(M) is quasi-isomorphic to the com-
plex D*:0— D% - D' — ... - D" — O with

D'= P (Mr)* @k KIF].
FeL.
dim F=n—i
Here the differential is the sum of the maps
(oM p)" ®nat: (Me(r)* @k K[F1— (Me(r))* ®k K[F']

for F,F' € L with F D F' and dim F = dim F’ + 1, and nat denotes the natural surjection
K[F]— K[F']. We can also describe D(M*) for a complex M* € Db(Sq(R)) in a similar way.

Convention. In the sequel, as an explicit complex, D(M*) for M* € D?(Sq(R)) means the com-
plex described in Lemma 2.2.

Since Do D = 1Idps(sq(r))> D o D(M) is an irreducible resolution of M, but it is far from being
minimal. Let (/®, 3®) be a minimal irreducible resolution of M. For eachi € N and F € L, we
have a natural number v; (F, M) such that

= EBK[F]”"(F’M).
Fel

Since 7* is minimal, z € K[F] C I' with dim F =d is sent to

() e @ K[G]"+(GM)  pi+l
GelL
dimG<d
The above observation on D o D(M) gives the formula [16, Theorem 4.15]

vi(F, M) = dimg [Exty =™ F (M, 0p)], -

For each l e N with 0 <1 < n, we define the [-linear strand lin;(I®) of I°® as follows: The
term lin; (/°)" of cohomological degree i is

D KLFD,

dim F=I—i

which is a direct summand of I ,.and the differential ling (1*)" — lin; (1*)' ! is the corresponding
component of the differential 3’ : I’ — I'*! of I°. By the minimality of /°®, we can see that
lin;(1°®) are cochain complexes. Set lin(/*®) := @oglgn lin; (1°®). Then we have the following.
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For a complex M* and an integer p, let M*[p] be the pth translation of M*. That is, M*[p] is a
complex with M‘[p]=M*P,

Theorem 2.3. (See [19, Theorem 3.9].) With the above notation, we have
lin (1*) = D(Extly ' (M, wg))[n — 1.
Hence

lin(1*) = @ D(Exty (M, wp))lil.
ieZ
Definition 2.4. Let /°* be a minimal irreducible resolution of M € Sq(R). We call max{i |

Hi(lin(I*)) # 0} the linearity defect of the minimal irreducible resolution of M, and denote
it by 1d.irrg (M).

Corollary 2.5. With the above notation, we have
max{i | H' (lin;(1°)) # 0} =1 — depthg (Extly ' (M, wg)),
and hence
1d.irrg (M) = max{i — depthp (Ext’};i (M, a)R)) |0<i < n}
Here we set the depth of the O module to be +oo0.

Proof. By Theorem 2.3, we have H' (lin;(I*)) = Ext'y™ ~ (Exty (M, wg), wg). Since depthy N =
n—i

min{i | Ext, (N, wg) # 0} for a finitely generated graded R-module N, the assertion fol-
lows. O

Definition 2.6. (See Stanley [14].) Let M € *mod R. We say M is sequentially Cohen—Macaulay
if there is a finite filtration

O=MoCcMC---CM, =M
of M by graded submodules M; satisfying the following conditions.

(a) Each quotient M;/M;_; is Cohen—Macaulay.
(b) dim(M;/M;_1) < dim(M;+1/M;) for all i.

Remark that the notion of sequentially Cohen—Macaulay module is also studied under the
name of a “Cohen—Macaulay filtered module” [13].

Sequentially Cohen—Macaulay property is getting important in the theory of Stanley—
Reisner rings. It is known that M € *mod R is sequentially Cohen—Macaulay if and only if
Ext’}e_i (M, wp) is a zero module or a Cohen—Macaulay module of dimension i for all i (cf.
[14, III. Theorem 2.11]). Let us go back to Corollary 2.5. If N := Ext']’e_i(M, wpg) # 0, then
depthp N < dimg N <i. Hence depthp, N =i if and only if N is a Cohen—Macaulay module of
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dimension i. Thus, as stated in [19, Corollary 3.11], 1d.irrg (M) = 0 if and only if M is sequen-
tially Cohen—Macaulay.

~0 al
Let /°:0 — I° 1% 12 - .. be an irreducible resolution of M € Sq(R). Then it is easy
to see that ker(d") is sequentially Cohen—Macaulay if and only if i > 1d.irrg (M). In particular,

1d.irrg (M) = min{i | ker(3') is sequentially Cohen-Macaulay }.

We have a hyperplane H C R” such that B := H NP is an (n — 1)-dimensional polytope.
Clearly, B is homeomorphic to a closed ball of dimension n — 1. For a face F € L, set | F| to be
the relative interior of F N H.If A C L is an order ideal, then |A| :=( Jp. 4 | F| is a closed subset
of B,and | Jpc 4 | Flis a regular cell decomposition (cf. [1, §6.2]) of | A|. Up to homeomorphism,
(the regular cell decomposition of) | A| does not depend on the particular choice of the hyperplane
H. The dimension dim |A| of |A] is given by max{dim|F| | F € A}. Here dim |F| denotes the
dimension of |F| as a cell (we set dim@ = —1), that is, dim |F|=dim F — 1 =dim K[F] — 1.
Hence we have dim K[A] =dim |A| + 1.

If F eA,then Ur :=|Jp~p |F'| is an open set of B. Note that {Ur | {0} # F € L} is an
open covering of B. In [17], from M € Sq(R), the second author constructed a sheaf M ™ on B.
(For the sheaf theory used below, consult [7].) More precisely, the assignment

r(Up, MT) = Me(r
for each F # {0} and the map
(p%F,: F(UF/, M+) = Mc(F’) — Mc(F) = F(UF, M+)

for F, F’ # {0} with F D F’ (equivalently, Ur» D Uf) defines a sheaf. Note that M is
a constructible sheaf with respect to the cell decomposition B = |y, |F|. In fact, for all
{0} # F € L, the restriction M|z of M™ to |F| C B is a constant sheaf with coefficients
in M¢(r). Note that My is “irrelevant” to M +, where 0 denotes (0,0, ...,0) € Z".

It is easy to see that K[A]T = JxK| A, where K| 4 is the constant sheaf on |A[ with coef-
ficients in K, and j denotes the embedding map |A| < B. Similarly, we have that (wg)™ =
MK o, where K po is the constant sheaf on the relative interior B® of B, and /& denotes the
embedding map B° <> B. Note that (wg)™ is the orientation sheaf of B over K.

Theorem 2.7. (See [17, Theorem 3.3].) For M € Sq(R), we have an isomorphism
H' (B; MY) = [HIT (M), foralli > 1,
and an exact sequence
0— [HY(M)],— My — H°(B; M) — [Hy, (M)], — 0.

In particular, we have [H‘ﬂj'l(K[A])]o = I:Ii(|A|; K) for all i > 0, where ﬁi(|A|; K) denotes
the ith reduced cohomology of | A| with coefficients in K.

Let A C L be an order ideal and X := |A|. Then X admits Verdier’s dualizing complex D%,
which is a complex of sheaves of K-vector spaces. For example, Dy is quasi-isomorphic to
(@p)*[n —11.
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Theorem 2.8. (See [17, Theorem 4.2].) With the above notation, if ann(M) D 14 (equivalently,
supp(M+) :={x € B| (M), #0} C X), then we have

supp(Ext’k(M, wR)+) cX and Ext"R(M, wr)Tx = Exti_"+1(M+|X, D;()

Theorem 2.9. Let M be a squarefree R-module with M # 0 and [Hé1 (M)]o =0, and X the clo-
sure of supp(M ™). Then 1d.irrg (M) only depends on the sheaf M |x (also independent from R).

Proof. We use Corollary 2.5. In the notation there, the case when i = 0 is always unnecessary
to check. Moreover, by the present assumption, we have depthy (Ext’}e_l(M ,wpg)) =1 (in fact,

Ext’}e_l(M ,wR) is either the 0 module, or a 1-dimensional Cohen—Macaulay module). So we
may assume that i > 1.
Recall that

depthp (Ext';e_i(M, a)R)) = min{j | Ext'}{j (Ext’;{i (M, wg), wR) # 0}.

By Theorem 2.8, [Ext’}e_j (Ext’};i (M, wR), wg)]a can be determined by M|y for all i, j and all
a#0.If j > 1, then [Ext} (Ext’}{i (M, wg), wg)]p is isomorphic to

[Hin (Bxt (M, o) [y = Y (B3 Bxt (M. op) )
~ Hj_l(X; Sxt_i_l(M+|x§ DE{))*

(the first and the second isomorphisms follow from Theorems 2.7 and 2.8, respectively), and
determined by M*|x. So only [Ext'};] (Ext’}e_i(M ,wR), wg)]p for j =0, 1 remain. As above,
j n—i

they are isomorphic to [H,%(ExtR (M,a)R))];;. But, by [19, Lemma 5.11], we can compute
[H&(Ext’}e_i(M, wg))]o fori > 1 and j =0, 1 from the sheaf M |x. So we are done. O

Theorem 2.10. For an order ideal A C L with A # @, 1d.irrg (K [A]) depends only on the topo-
logical space | A|.

Note that ld.irrg (K[A]) may depend on char(K). For example, if |A| is homeomorphic
to a real projective plane, then Id.irrg (K[A]) = 0 if char(K) # 2, but Id.irrg(K[A]) = 2 if
char(K) =2.

Similarly, some other invariants and conditions (e.g., the Cohen—-Macaulay property of K[A])
studied in this paper depend on char(K). But, since we fix the base field K, we always omit the
phrase “over K.

Proof. If |A| is not connected, then [H,L(K [AD]o # 0 by Theorem 2.7, and we cannot use
Theorem 2.9 directly. But even in this case, depthp (Ext'l'e_" (K[A], wg)) can be computed for all
i # 1 by the same way as in Theorem 2.9. In particular, they only depend on |A|. So the assertion
follows from the next lemma. O

Lemma 2.11. We have depthg (Extly ' (K[A], wg)) € {0, 1, +00}, and

depthp (Ext'};l (K[Al,wR)) =0 ifandonlyif |A'|is not connected.
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Here A" := A\ {F | F is a maximal element of A and dim |F| = 0}.

Proof. Since dimp Ext’,’e_l(K [A], wg) < 1, the first statement is clear. If dim|A| < 0, then

|A’| = @ and depthy (Ext’}i,_l(K [A], wg)) = 1. So, to see the second statement, we may assume
that dim|A| > 1. Set J := I//14 to be an ideal of K[A]. Note that either J is a 1-dimensional
Cohen—Macaulay module or J = 0. From the short exact sequence 0 — J — K[A] — K[A'] —
0, we have an exact sequence

0— Extly '(K[A'], wr) — Extly '(K[A], wg) — Exty '(J, wg) — 0.
Since Ext’}{l (J, wg) has positive depth,
depthg (Extly '(K[A'], w)) =0

if and only if depthy (Ext';{l (K[A], wg)) = 0. But, since K[A’] does not have 1-dimensional
associated primes, Ext’,’{1 (K[A'], wg) is an artinian module. Hence we have the following.
depthy (Exty ' (K[A'], wg)) =0 <= [Exty ' (K[A'], wg)], #0
< [Hy (K[A)],=H°(14]; K) #£0
&= |A’| is not connected. O

3. Linearity defects of symmetric and exterior face rings

Let S:= K[xy, ..., x,] be a polynomial ring, and consider its natural Z"-grading. Since S =
K[N"]is anormal semigroup ring, we can use the notation and the results in the previous section.
Now we introduce some conventions which are compatible with the previous notation. Let

e :=(0,...,0,1,0,...,0) € R"” be the ith unit vector, and P the cone spanned by ey, ...,e,.
We identify a face F' of P with the subset {i | e; € F} of [n] :={1,2,...,n}. Hence the set L of
nonempty faces of P can be identified with the power set 21" of [1n]. We say a = (a1, ...,a,) €

N" is squarefree, if a; =0, 1 for all i. A squarefree vector a € N" will be identified with the
subset {i | a; = 1} of [n]. Recall that we took a vector ¢(F) € C for each F € L in the previous
section. Here we assume that ¢(F) is the squarefree vector corresponding to F € L = 211, So,
for a Z""-graded S-module M, we simply denote M. r) by M. In the first principle, we regard
F as a subset of [r], or a squarefree vector in N”, rather than the corresponding face of P. For
example, we write Pr = (x; |i ¢ F), K[F]= K|[x; | i € F]. And S(—F) denotes the rank 1 free
S-module S(—a), where a € N” is the squarefree vector corresponding to F.

Squarefree S-modules are defined by the same way as Definition 2.1. Note that the free mod-
ule S(—a), a € Z", is squarefree if and only if a is squarefree. Let *mod S (resp. Sq(S)) be the
category of finitely generated Z"-graded S-modules (resp. squarefree S-modules). Let P, be a
Z""-graded minimal free resolution of M € *mod S. Then M is squarefree if and only if each P;
is a direct sum of copies of S(—F) for various F' C [n]. In the present case, an order ideal A of
L(= 21"y is essentially a simplicial complex, and the ring K [A] defined in the previous section
is nothing other than the Stanley—Reisner ring (cf. [1,14]) of A.

Let E = A{(1,...,yu) be the exterior algebra over K. Under the Bernstein-Gel fand—
Gel’fand correspondence (cf. [3]), E is the counter part of S. We regard E as a Z"-graded ring
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by degy; = e; = degx; for each i. Clearly, any monomial ideal of E is “squarefree”, and of the
form

JA:=<1_[yi|FC[n],F¢A>

ieF

for a simplicial complex A C 2", We say K (A) := E/J is the exterior face ring of A.

Let *mod E be the category of finitely generated Z"-graded E-modules and degree preserving
E-homomorphisms. Note that, for graded E-modules, we do not have to distinguish left modules
from right ones. Hence

Dy (-) := €D Hom:moa £ (—, E(a))

aeZ

gives an exact contravariant functor from *mod E to itself satisfying Dg o Dg =1d.

Definition 3.1. (See Rimer [11].) We say N € *mod E is squarefree, if N = @Fc[n] Np (e.,if
a € 7" is not squarefree, then N, = 0).

An exterior face ring K (A) is a squarefree E-module. But, since a free module E(a) is not
squarefree for a # 0, the syzygies of a squarefree E-module are not squarefree. Let Sq(E) be
the full subcategory of *mod E consisting of squarefree modules. If N is a squarefree E-module,
then so is Dg(N). That is, Dg gives a contravariant functor from Sq(E) to itself.

We have functors S:Sq(E) — Sq(S) and £ :Sq(S) — Sq(E) giving an equivalence Sq(S)
Sq(E). Here S(N)r = Nf for N € Sq(E) and F C [n], and the multiplication map S(N)r >
2 x;2 € S(N)fuyy fori ¢ F is given by

~

S(N)F =Np 3z (—=D*CFyiz € Npyyy = S(N) Fuiy,s

where a(i, F) =#{j € F | j <i}. For example, S(K (A)) = K[A]. See [11] for detail.

Note that A := S oDg o £ is an exact contravariant functor from Sq(S) to itself satisfying A o
A =1d. Itis easy to see that A(K[F]) = S(— F°), where F°:=[n]\ F. We also have A(K[A]) =
I5v, where

AV :={F Cln]| F°¢ A}

is the Alexander dual complex of A. Since A is exact, it exchanges a (minimal) free resolution
with a (minimal) irreducible resolution.

Eisenbud et al. [2,3] introduced the notion of the linear strands and the linear part of a
minimal free resolution of a graded S-module. Let P,:--- — P} — Py — 0 be a Z"-graded
minimal S-free resolution of M € *mod S. We have natural numbers B; o(M) for i € N and
acZ" suchthat P, =P,y S(—a)fiaM) We call Bi.a(M) the graded Betti numbers of M. Set
la| ="} ,a; fora=(ai,...,a,) € N". For each [ € Z, we define the [-linear strand lin;(P,)
of P, as follows: The term lin; (P, ); of homological degree i is

@ S(_a)ﬂi,a(M),

la|=l+i
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which is a direct summand of P;, and the differential lin; (P, ); — lin;(P,);—1 is the correspond-
ing component of the differential P; — P;_1 of P,. By the minimality of P,, we can easily verify
that lin; (P,) are chain complexes (see also [2, §7A]). We call lin(P,) := &P, 7 lin; (P,) the linear
part of P,. Note that the differential maps of lin(P,) are represented by matrices of linear forms.
We call

Ids(M) := max{i | H;(lin(P,)) # 0}

the linearity defect of M.
Sometimes, we regard M € *mod S as a Z-graded module by M; = @\aII/ M,. In this case,

we set B j(M) 1=, ; Bi.a(M). Then liny (P,); = S(—1 — i)Pr+i ).

Remark 3.2. For M € *mod S, it is clear that 1dg(M) < proj.dimg(M) < n, and there are many
examples attaining the equalities. In fact, lds(S/(xlz, cees x,%)) =n. But if M € Sq(S), then we
always have ldg(M) < n — 1. In fact, for a squarefree module M, proj.dimg(M) = n, if and
only if depthg M =0, if and only if M = K & M’ for some M’ € Sq(S). But Ids(K) = 0 and
lds(M' ® K) =1ds(M’). So we may assume that proj.dimg M’ <n — 1.

Proposition 3.3. Let M € Sq(S), and P, its minimal graded free resolution. We have
max{i | H; (lin;(P,)) # 0} =n — I — depthg (Ext, (A(M), S)),
and hence
1ds(M) = max{i — depthg(Ext ' (A(M), S)) |0 <i <n}.

Proof. Note that /® := A(P,) is a minimal irreducible resolution of A(M). Moreover, we have
A(lin;(P,)) = lin,,_;(1°®). Since A is exact,

max{i | H;(lin;(P,)) # 0} = max{i | H' (lin,—;(1°®)) # 0},
and hence
lds(M) =1d.irrs (A(M)). (3.1
Hence the assertions follow from Corollary 2.5 (note that S = wg as underlying modules). O

For N € *mod E, we have a Z"-graded minimal E-free resolution P, of N. By the similar
way to the S-module case, we can define the linear part lin(P,) of P,, and set ldg (N) := max{i |
H;(lin(P,)) # 0}. (In [12,18], Idg (N) is denoted by Ipd(N). “Ipd” is an abbreviation for “linear
part dominate”.) In [3, Theorem 3.1], Eisenbud et al. showed that ldg(N) < oo for all N €
*mod E. Since proj.dimg(N) = oo in most cases, this is a strong result. If n > 2, then we have
sup{ldg(N) | N € *mod E} = oo. In fact, since E is selfinjective, we can take “cosyzygies”. But,
if N € Sq(E), then 1dg (V) behaves quite nicely.

Theorem 3.4. For N € Sq(E), we have 1dg(N) =1ds(S(N)) < n — 1. In particular, for a sim-
plicial complex A C 2™, we have 1dg (K (A)) = 1ds(K[A]).
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Proof. Using the Bernstein—Gel’fand—Gel’fand correspondence, the second author described
Idg(N) in [18, Lemma 4.12]. This description is the first equality of the following computa-
tion, which proves the assertion.

ldg(N) = max{i — depthg(Exty ' (SoDg(N), S))|10<i<n} (by[18])
= max{i — depthg(Exty (Ao S(N),S))|0<i<n} (seebelow)
=1dg(S(N)) (by Proposition 3.3).

Here the second equality follows from the isomorphisms S o Dg(N) =ESoDg oo S(N) =
AoS(N). O

Remark 3.5. Herzog and Romer showed that 1dg (N) < proj.dimg(S(N)) for N € Sq(E) [12,
Corollary 3.3.5]. Since 1ds(S(N)) < proj.dimg(S(N)) (the inequality is strict quite often), The-
orem 3.4 refines their result. Our equality might follow from the argument in [12], which
constructs a minimal E-free resolution of N from a minimal S-free resolution of S(N). But
it seems that certain amount of computation will be required.

Theorem 3.4 suggests that we may set
1d(A) :=1dg(K[A]) =1dg (K (A)).

Theorem 3.6. If I # (0) (equivalently, A # 21", then 1ds(14) is a topological invariant of
the geometric realization |AV | of the Alexander dual A of A. If A # 2T for any T C [n], then
1d(A) is also a topological invariant of | AV | (also independent from the number n = dim S).

Proof. Since A(14) = K[AY] and AV # @}, the first assertion follows from Theorem 2.10 and
the equality (3.1) in the proof of Proposition 3.3.

It is easy to see that A # 27 for any T if and only if 1d(A) > 1. If this is the case, 1d(A) =
Ids(14) + 1, and the second assertion follows from the first. O

Remark 3.7. (1) For the first statement of Theorem 3.6, the assumption that /4 # (0) is neces-
sary. In fact, if /o = (0), then A = 21 and AV = 3. On the other hand, if we set I ;= 2["] \ [n],
then I'V = {#} and |I'V| =@ = |AY|. In view of Proposition 3.3, it might be natural to set
lds(14) =1ds((0)) = —oo. But, I = wg and hence lds (/) = 0. One might think it is better to
set 1ds((0)) = 0 to avoid the problem. But this convention does not help so much, if we consider
K[A] and K[I']. In fact, Ids(K[A]) =1ds(S) =0 and 1dg(K[I']) =1ds(S/ws) = 1.

(2) Let us think about the second statement of the theorem. Even if we forget the assumption
that A # 27, 1d(A) is almost a topological invariant. Under the assumption that /4 # 0, we have
the following.

e 1d(A) < 1 if and only if K[A"] is sequentially Cohen—Macaulay. Hence we can determine
whether 1d(A) < 1 from the topological space |AY].

e 1d(A) = 0, if and only if all facets of AV have dimension n — 2, if and only if |AY] is
Cohen—Macaulay and has dimension n — 2.

[T T)

Hence, if we forget the number “n”, we cannot determine whether 1d(A) = 0 from |AY|.
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4. An upper bound of linearity defects

In the previous section, we have seen that 1dg (N) = 1dg(S(N)) for N € Sq(E), in particular
Idg(K{A)) =1ds(K[A]) for a simplicial complex A. In this section, we will give an upper bound
of them, and see that the bound is sharp.

For 0 # N € *mod E, regarding N as a Z-graded module, we set indegz (N) := min{i | N; #
0}, which is called the initial degree of N, and indegg (M) is similarly defined as indegg(M) :=
min{i | M; # 0} for 0 £ M € *mod S. If A # 2" (equivalently /4 £ 0 or J4 % 0), then we have
indegg(/4) =indegp(Ja) =min{ffF | F C [n], F ¢ A}, where #F denotes the cardinal number
of F. So we set

indeg(A) :=indegg(/4) =indegg(Ja).
Since 1d(20") =1dg(S) = 1dg (E) = 0 holds, we henceforth exclude this trivial case; we assume

that A #2111,
We often make use of the following facts:

Lemma 4.1. Let 0 # M € *mod S and let P, be a minimal graded free resolution of M. Then
(1) lin;(P,) =0 for all i <indegg(M), i.e., there are only l-linear strands with [ > indeg (M)
in P,;
(2) liningegg(ar)(Po) is a subcomplex of Pe;
) if M € Sq(S), then lin(P,) = @oglgn ling(P,), and linj(P,); =0 for all i > n — 1 and all
0 <1 < n, where the subscript i is a homological degree.
Proof. (1) and (2) are clear. (3) holds from the fact that P; = @Fc[n] S(—F)fir. o
Theorem 4.2. For 0 # N € Sq(E), it follows that
ldg (N) < max{0,n — indegz (N) — 1}.
By Theorem 3.4 this is equivalent to say that for M € Sq(S),
Ids(M) < max{O, n —indegq(M) — 1}.
Proof. It suffices to show the assertion for M € Sq(S). Set indegg(M) = d and let P, be a min-
imal graded free resolution of M. The case d = n is trivial by Lemma 4.1 (1), (3). Assume that
d < n — 1. Observing that lin;(P,); = S(—I — i)Piitl where Bi.i+1 are Z-graded Betti numbers
of M, Lemma 4.1 (1), (3) implies that the last few steps of P, are of the form

0— S(_n)ﬁn—d‘n — S(_n)ﬂn—d—l,n ®S(—n+ l)ﬁn—d—l‘n—l N

Hence ling(Pg)y,—qg = S (—n)ﬁ"*dv" = P,_4. Since ling (P,) is a subcomplex of the acyclic com-
plex P, by Lemma 4.1(2), we have H,,_4(ling(P,)) =0, sothat ids(M) <n—d —1. O

Note that Jo € Sq(E) (resp. Ia € Sq(S)). Since 1d(A) < ldg(Ja) + 1 (resp. 1d(A) <
Ids(14) + 1) holds, we have a bound for 1d(A), applying Theorem 4.2 to J (resp. 14).
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Corollary 4.3. For a simplicial complex A on [n], we have
1d(A) < max{1, n — indeg(A)}.
Let A, I be simplicial complexes on [n]. We denote A x I” for the join
(FUG|FeA, GeT}
of A and I, and for our convenience, set
ver(A) :={v e[n] | {v} € A}.

Lemma 4.4. Let A be a simplicial complex on [n]. Assume that indeg(A) = 1, or equivalently
ver(A) # [n]. Then we have

1d(A) =1d(A * {v})
for v e [n]\ ver(A).

Proof. We may assume that v = 1. Let P, be a minimal graded free resolution of K[A x {1}]
and /C(x;) the Koszul complex

0= S(—1) -5 S—0

with respect to x;. Consider the mapping cone P, ®s [C(x1) of the map Po(—1) L P,. There
is the short exact sequence

0— Py — P ®@s K(x1) = Po(=D[-1]—0,
whence we have H; (P, ®s K(x1)) =0 for all i > 2 and the exact sequence
0— Hi(Po ®s K(x1)) = Ho(Po(—=1)) = Ho(P).
But since Hy(P,) = K[A * {1}] and x; is regular on it, we have H(P, ®5 K(x1)) = 0. Thus

P, ®s K(x1) is acyclic and hence a minimal graded free resolution of K[A]. Note that lin(P, ®g5
K(x1)) =1lin(P,) ®s K(x1): in fact, we have

liny (P ®s5 K(x1)), = ling (P ®s S); @ liny (Pa[~1] ®5 S(=1),
= (lin(P.); ®s S) & (liny(Pa)i—1 ®s S(—1))
= (lin (P,) ®5 K(x1)),,

where the subscripts i denote homological degrees, and the differential map

liny (P, ®5 K(x1)), — liny (Pe ®5 K(x1)),_,
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is composed by 8i(l), —Bi@ 1» and the multiplication map by x;, where 8i<l) (resp. ai@ 1) is the

ith (resp. (i — 1)st) differential map of the /-linear strand of P,. Hence there is the short exact
sequence
0 — lin(P,) — lin(Ps ®s K(x1)) = lin(Ps) (=D [—1] — 0,
which yields that H; (lin(P, ®s [C(x1))) =0 for all i > 1d(A = {1}) + 2, and the exact sequence
0 — Higasip+1(lin(Pe ®5 K(x1))) = Hiaax(1y) (lin(Pe)(—1))
L Hiacasy (1n(Ps)) — Higcas(iy (1in(Pe @5 K (x1)))-

Since x does not appear in any entry of the matrices representing the differentials of lin(P,), it
is regular on H,(lin(P,)), and hence we have

Haasip+1(lin(Pe ®5 K(x1))) =0
and
Higaxq1y) (lin(P. ®s IC(x1))) #0,
since Hig(ax{1)) (1in(P,)) # 0. Therefore 1d(A) =1d(A * {1}). O
Let A be a simplicial complex on [n]. For F C [n], we set
Ap={GeA|GCF}

The following fact, due to Hochster, is well known, but because of our frequent use, we
mention it.

Proposition 4.5. (Cf. [1,14].) For a simplicial complex A on [n], we have

Bij(KlA)= > dimg Hj i 1(Ar: K),
FClnl, tF=j

where B; j(K[A]) are the Z-graded Betti numbers of K[A].

Now we can give a new proof of [18, Proposition 4.15], which is the latter part of the next
result.

Proposition 4.6. (Cf. [ 18, Proposition 4.15].) Let A be a simplicial complex on [n]. If indeg A =
1, then we have

1d(A) < max{l,n — 3}.
Hence, for any A, we have

1d(A) < max{l,n — 2}.
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Proof. The second inequality follows from the first one and Corollary 4.3. So it suffices to
show the first. We set V := [n] \ ver(A). Our hypothesis indeg A = 1 implies that V # &. By
Lemma 4.4, the proof can be reduced to the case §) = 1. We may then assume that V = {1}.
Thus we have only to show that 1d(A * {1}) < max{1, n — 3}. Since we have indeg(A * {1}) > 2,
we may assume n > 4 by Corollary 4.3. The length of the O-linear strand of K[A x {1}] is O,
and hence we concentrate on the /-linear strands with [ > 1. Let P, be a minimal graded free
resolution of K[A * {1}]. Since, as is well known, the cone of a simplicial complex, i.e. the join
with a point, is acyclic, we have

Bin(K[Ax{1}]) = dimg H,—i—1(A*{1}; K) =0

by Proposition 4.5. Thus lin;(P,),—; = 0 for all / > 1. Now applying the same argument as the
last part of the proof of Theorem 4.2 (but we need to replace n by n — 1), we have

H,,_z(lin(P.)) =0,
andsold(Ax{1}) <n—3. O

According to [18, Proposition 4.14], we can construct a squarefree module N € Sq(E)
with 1dg(N) = proj.dimg(S(N)) = n — 1. By Theorems 3.4 and 4.2, M := S(N) satisfies
that indegg(M) =0 and Ids(M) =n — 1. For 0 <i <n — 1, let £2;(M) be the ith syzygy
of M. Then £2;(M) is squarefree, and we have that 1ds(£2;(M)) =1ds(M) —i =n —i — 1 and
indeg($2; (M)) > indegg(M) + i =i. Thus by Theorem 4.2, we know that indegg(£2; (M)) =i
and 1ds(£2;(M)) =n — indegg(§2;(M)) — 1. So the bound in Theorem 4.2 is optimal.

In the following, we will give an example of a simplicial complex A with 1d(A) =n —
indeg(A) for 2 < indeg(A) < n — 2, and so we know the bound in Proposition 4.3 is optimal
if indeg(A) > 2, that is, ver(A) = [n].

Given a simplicial complex A on [r], we denote A®D for the ith skeleton of A, which is
defined as

AD = (Fe A|#F <i+1).

Example 4.7. Set ¥ :=2["1_ and let I" be a simplicial complex on [n] whose geometric re-
alization |I"| is homeomorphic to the (d — 1)-dimensional sphere with 2 < d < n — 1, which
we denote by S9~!. (For m > d there exists a triangulation of S?~! with m vertices. See, for
example, [1, Proposition 5.2.10].) Consider the simplicial complex A := I" U X@=2)_ We will
verify that A is a desired complex, that is, 1d(A) = n — indeg(A). For brief notation, we put
t :=indeg A and [ :=1d(A).

First, from our definition, it is clear that ¢ > d. Thus it is enough to show that n — d <[; in
fact we have that / <n —t <n —d <[ by Corollary 4.3, and hence thatt =d and l =n — d.
Our aim is to prove that

ﬂn—d,n(K[A]) #0 and ﬁn—d—l,n—l (K[A]) =0,
since, in this case, we have~ H,_;(ling (~P.)) #0,and hence n —d <.

Now, let F C [n], and Co(AF; K), Co(I'F; K) be the augmented chain complgxes of A and
I'r, respectively. Since ¥ @=2) have no faces of dimension > d — 1, we have Ci_1(AF; K) =
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C~d,1 (I'r; K) and hence I:Id,l (Af; K) = ﬁd,l (I'r; K). On the other hand, our assumption that
|I"| =~ §9~1 implies that I" is Gorenstein, and hence that

K if F=|[n]

Hy (Tr: K ={ _
a-1(I'r3 K) 0 otherwise.

Therefore, by Proposition 4.5, we have that

,Bn—d,n(K[A]) =dimg ﬁd_l(r; K)=1 7&0’

Br—d—1.n—1(K[A]) = Z dimg Hy—1(I'r; K) =0.
FClnl, tF=n—1

5. A simplicial complex A with ld(A) =n — 2 is an n-gon

Following the previous section, we assume that A # [n], throughout this section. We say a
simplicial complex on [n] is an n-gon if its facets are {1,2},{2,3},...,{n — 1,n}, and {n, 1}
after a suitable permutation of vertices. Consider the simplicial complex A on [r] given in Ex-
ample 4.7. If we set d = 2, then A is an n-gon. Thus if a simplicial complex A on [#n] is an n-gon,
we have 1d(A) = n — 2. Actually, the inverse holds, that is, if ld(A) =n — 2 withn >4, A is
nothing but an n-gon.

Theorem 5.1. Let A be a simplicial complex on [n] with n > 4. Then 1d(A) = n — 2 if and only
if A is an n-gon.

In the previous section, we introduced Hochster’s formula (Proposition 4.5), but in this sec-
tion, we need explicit correspondence between [Torf (K[A], K)]F and reduced cohomologies of
AF, and so we will give it as follows.

Set V:=(xy,...,x,) =S and let o := S ®k /\ V be the Koszul complex of S with respect
to xi, ..., x,. Then we have

[Tor? (K141, K)] = Hi([K[Al @5 K] ) = Hi([K[A1 @k [\ V]})

for F C [n]. Furthermore, the basis of the K-vector space [K[A] ®k /\ VI1F is of the form
x% @ AF\Ox with G € Ap, where X0 =[], x; and AF\Ox = x;; A~ A x;, for {iy, ..., ik} =
F\ G with i] < --- < i. Thus the assignment

¢ :CN AR K) 3 el > (1) OO @ AF\Ox e [K[Al@k \ V],

with G € A gives the isomorphism ¢* :C*(Ap: K)[—1] — [K[A] ®k /\ V1F of chain com-
plexes, where Ci=Y(Ap; K) (resp. Ci_1(Ap; K))is the (i — 1)st term of the augmented cochain
(resp. chain) complex of Ar over K, e¢ is the basis element of éi_ 1(AF; K) corresponding to
G, and e*G is the K -dual base of e;. Here we set

a(A,B):=t{(a,b)|la>b, ac A, be B}
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for A, B C [n]. Thus we have the isomorphism

@:H' ' (Ap: K) — [Torfp_; (K[A] K)] . (5.1
Lemma 5.2. Let A be a simplicial complex on [n] with indeg(A) > 2, and P, a minimal
graded free resolution of K[A]. We denote Q, for the subcomplex of P, such that Q; :=

@ng_l S(—pbii c @jez S(—j)Pii = P;. Assume n > 4. Then the following are equivalent.

(1) 1d(A) =n —2;
(2) Hy—2(liny(P,)) #0;
(3) Hy—3(Qs) #0.

In the case n > 5, the condition (3) is equivalent to H,,_3(lin; (P,)) # 0.

Proof. Since indeg(A) > 2, ling(P,); = 0 holds for i > 1. Clearly, H;(Q,) = H;(liny(P,)) for
i > 2. Since linj(P,); =0 fori >n — 2 and [ > 3 by Lemma 4.1 and that 1d(A) < n — 2 by
Proposition 4.6, it suffices to show the following.

Hy—>(lina(Py)) = H,—3(Qs) and  H;i(Qs) =0 fori>n—2. (5.2)
Since Q, is a subcomplex of P,, there exists the following short exact sequence of complexes.
0— Q4 — Py — P,:=P,/Q, — 0,
which induces the exact sequence of homology groups
Hi(P)) — Hi(Py) — Hi—1(Q4) — Hi—1(Py).

Hence the acyclicity of P, implies that H;(P,) = H;_1(Q,) for all i > 2. Now H;(P,) =0 for
i > n— 1 by Lemma 4.1 and the fact that P; = @122 lin; (P,);. So the latter assertion of (5.2)
holds, since n —2 > 2. The former follows from the equality Hn_z(f’:) = H,_2(linz(P,)), which
isa direct~consequence of the fact that linp (P,) is a subcomplex of P,, that P,_» = liny(Ps)p—2,
and that P,_; =0. O

Let A be a 1-dimensional simplicial complex on [r] (i.e., A is essentially a simple graph).
A cycle C in A of length 7 (> 3) is a sequence of edges of A of the form (v, v2), (v2, v3), ...,
(v¢, v1) joining distinct vertices vy, ..., ;.

Now we are ready for the proof of Theorem 5.1.

Proof of Theorem 5.1. The implication “<=" has been already done in the beginning of this
section. So we shall show the inverse. By Proposition 4.6, we may assume that indeg(A) > 2.
Let P, be a minimal graded free resolution of K[A] and Q, as in Lemma 5.2. Note that Q,
is determined only by [/a]> and that it follows [Ia]o = [{ m]2. If the 1-skeleton AD of A
is an n-gon, then so is A itself. Thus by Lemma 5.2, we may assume that dim A = 1. Since
1d(A) =n — 2, by Lemma 5.2 we have

Hi(4; K) = H' (4; K) = [Tory_,(K[A], K)],,,, #0,
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and hence A contains at least one cycle as a subcomplex. So it suffices to show that A has no
cycles of length < n — 1. Suppose not, i.e., A has some cycles of length < n — 1. To give a
contradiction, we shall show

0 — lina(Pe)p—2 — lina(Pe)n—3 (5-3)

is exact; in fact it follows H,_, (linp (P, )) = 0, which contradicts to Lemma 5.2. For that, we need
some observations (this is a similar argument to that done in Theorem 4.1 of [15]). Consider the
chain complex K[A] ®kx AV ®k S where V is the K -vector space with the basis x1, ..., x,.
We can define two differential map @, 9 on it as follows:

HfONx®g) = Z(—l)“(i’c)(xif @ A\ix @ 8);
ieG
A(fOrx@g) =Y (- (f@ANx®x5).
ieG
By a routine, we have that 9 + 99 = 0, and easily we can check that the ith homology group
of the chain complex (K[A]®k AV ®k S, ¥) is isomorphic to the ith graded free module of a
minimal free resolution P, of K[A]. Since, moreover, the differential maps of lin(P,) is induced

by d due to Eisenbud and Goto [4], Herzog, Simis and Vasconcelos [8], lin;(P,); — lin;(Py)i—1
can be identified with

P [rrf(kiaLK)] ek S @ [Tord,(KIALK)], @k S.
FCln), tF=i+l FC[n], §F=i—1+1

where 9 is induced by 9. In the sequel, —{i} denotes the subset [n] \ {i} of [n]. Then we may
identify the sequence (5.3) with

0— [Tory_,(K[AL K)],, ®x S KN PTory 5 (K141 K)]_ ;) ®k S

ieln]
and hence, by the isomorphism (5.1), with
0— H' (A K) @k S —> @D H'(A_i: K) ®x S. (5.4)
i€(n]

Here ¢ is composed by &; ‘HY (A K) @k S — I:Il(A_{,'}; K) ®k S which is induced by the
chain map

£:C* (A1 K) ®k S — C*(A_qi): K) ®k S,

& (e’g; ® 1) = { (_l)a(i’G)e*G ®x; ifi ¢ G;
0 otherwise.

Well, let C be a cycle in A of the form (vy, v2), (v2, v3), ..., (v, v1) with distinct vertices
V1, ..., V. Wesay C has a chord if there exists an edge (v;, vj) of G such that j #i +1 (mod?),
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and C is said to be minimal if it has no chord. It is easy to see that the 1st homology of A is
generated by those of minimal cycles contained in A, that is, we have the surjective map:

&y H\(C: K) — H(A: K).
cca
C : minimal cycle

Now by our assumption that A contains a cycle of length < n — 1 (that is, A itself is not a
minimal cycle), we have the surjective map

D A K) 5 (A K) (5.3)

ieln]
where 7 is induced by the chain map 7: @é.(A_{,-}; K)— 5.(A; K), and n is the sum of
Ni :Ce(A_(i): K) 3 eg > (=1)*"Peg € Co(A; K).

Taking the K-dual of (5.5), we have the injective map

' k) 5 @ B (A K),

i€[n]
where 1* is the K-dual map of 7, and composed by the K -dual
nf i HY (A K) — HY(A_;iy; K)

of n;. Then for all 0 #£ z € H'(A; K), we have nf(z) # 0 for some i. Recalling the map
E:H' (A K)®k S — @HYA_;j; K) ®k S in (5.4) and its construction, we know for
ze HY(A; K),

n
E®y) =) i@ ®xy,
i=1

and hence ¢ is injective. 0O

Remark 5.3. (1) If A is an n-gon, then A" is an (n — 3)-dimensional Buchsbaum complex with
H,_4(AY:K)=K.Ifn=5,then AY isa triangulation of the Mobius band. But, forn > 6, AY
is not a homology manifold. In fact, let {1, 2}, {2,3}, ..., {n — 1, n}, {n, 1} be the facets of A,
then if F = [n]\ {1, 3, 5}, easy computation shows that Ik ov F is a O-dimensional complex with
3 vertices, and hence Hy(lk,v F; K) = K2.

(2) If indeg A > 3, then the simplicial complexes given in Example 4.7 are not the only ex-
amples which attain the equality 1d(A) = n — indeg(A). We shall give two examples of such
complexes.

Let A be the triangulation of the real projective plane PR with 6 vertices which is given in
[1, Fig. 5.8, p. 236]. Since P2R is a manifold, K[A] is Buchsbaum. Hence we have

HE (K[A]) = [Hg (K[A])], = Hi(4; K).
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So, if char(K) = 2, then we have depthS(Ext‘é(K[A], ws)) = 0. Note that we have A = AV in
this case. Therefore, easy computation shows that

1d(AY) =1d(A) =3 =6 — 3 =6 — indeg(A).

Next, as is well known, there is a triangulation of the torus with 7 vertices. Let A be the
triangulation. Since dim A = 2, we have indeg(AY) =7 — dim A — 1 = 4. Observing that K[A]
is Buchsbaum, we have, by easy computation, that

1d(AY) =3=7—-4=7—indeg(A").

Thus AV attains the equality, but is not a simplicial complex given in Example 4.7, since it
follows, from Alexander’s duality, that

. ~ ) . ~ ) 2#1 fori=3;
dimg H;(AY; K) =dimg Hs—i(A; K) = {0 fori > 4

_ More generally, the dual complexes of d-dimensional Buchsbaum complexes A with
H;_1(A; K) # 0 satisfy the equality

1d(AY) =n — indeg(A"),

but many of them differ from the examples in Example 4.7, and we can construct such complexes
more easily as indeg(AY) is larger.
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